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Abstract: Finite element or finite volume discretizations of distributed parameter systems
(DPS) typically lead to high order finite dimensional systems. Model approximation is then an
important first step towards the construction of optimal controllers. However, model reduction
methods hardly take model uncertainties and parameter variations into account. As such,
reduced order models are not well equipped when uncertain system parameters vary in time.
This is particularly true when system behavior does not depend continuously on the parameters.
It is shown in this paper that the performance of reduced order models inferred from Galerkin
projections and proper orthogonal decompositions can deteriorate considerable when system
parameters vary over bifurcation points. Motivated by these observations, we propose a detection
mechanism based on reduced order models and proper orthogonal decompositions that allows to
characterize the influence of parameter variations around a bifurcation value. for this, a hybrid
model structure is proposed. The ideas are applied on the example of a tubular reactor. In
particular, this paper discusses the difficulties in approximating the transition from extinction
to ignited state in a tubular reactor.

1. INTRODUCTION

Many non-linear chemical processes show spatial-temporal
characteristics which are usually modeled by means of
distributed parameter systems (DPS). Finite element or
finite volume techniques are commonly used to discretize
a DPS so as to allow numerical simulations of DPS.
Depending on the complexity and spatial geometry of
the system, finite element approximations typically lead
to high order approximations. The complexity of these
models is often prohibitive when model based control
system design or process optimization is the main purpose
of the model. A common approach is to approximate
the high order process by a simpler one, while keeping
a sufficient level of accuracy. Various model reduction
approaches are proposed in the literature. A particular
popular method of model reduction is the technique of
proper orthogonal decomposition (POD) (also known as
the method Karhunen Loeve expansions). This method
is widely used for obtaining reduced order models in
computational fluid dynamics and has more recently been
used for the approximation of chemical plants. A detailed
analysis of POD-Galerkin projection is given in Holmes
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et al. [1996]. Its application for the identification of DPS
systems is described in Zheng and Hoo [2002], while
computer assisted studies towards control applications are
given in Shvartsman and Kevrekidis [1998]. Some recent
research is directed towards reducing DPS by using a gray
box modeling approach Romijn et al. [2007] which showed
significant computational savings. Some other interesting
developments include multidimensional POD or tensorial
POD van Belzen et al. [2007] which shows how low rank
tensor approximations define suitable basis functions.

Most model reduction methods do not take model un-
certainty or the effect of time-varying system parameters
into account in the reduction process. The validity of
reduced order models is then limited if the model is largely
uncertain or if parameter variations lead to discontinu-
ities in the process behavior. Indeed, if systems exhibit
very drastic dynamical changes due to small parameter
variations then this usually leads to a large mismatch
between the system and its approximation. These kind of
discontinuous dependence on system parameters is not at
all uncommon in chemical engineering. Process parameters
can show bifurcation or trifurcation phenomena of various
types. For example, a jump from extinction to ignited
states is the effect of a bifurcation value in well defined sys-
tem parameter. Such effects are widely reported for many
chemical processes. See, for example, some early work in
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Fig. 1. Tubular reactor

Amundson [1970], Aris [1969], Hlavácek and Hoffmann
[1970] that provide an analytical treatment to bifurcation
phenomena. See also Jensen and Ray [1982].

This paper is motivated by the question on how to define
reduced order models for systems that have uncertain
time-varying parameters that exhibit strong discontinu-
ities in dynamic responses. This question is of evident
interest for questions on model validation. However, our
prime motivation amounts to detecting, monitoring and
controlling the parameters that cause abrupt changes in
the system dynamics. For systems that exhibit bifurcation
phenomena, we propose a hybrid model structure so as to
allow a classification of system parameters around their
bifurcation values.

Specifically, in this paper we consider a model of a tubular
reactor where the Damkohler number is viewed as uncer-
tain parameter that varies close to one of its bifurcation
values. Changes of the Damkohler number correspond to
the transition of the reactor from lower (extinction) to
higher (ignited) states. Recently Bizon et al. [2007] studied
the performance of reduced model of tubular reactor. In
that paper, the tubular reactor was modeled as a chain of
CSTR’s. The performance of the reduced order model was
studied as effect of inclusion of samples from a steady and
an oscillatory regime.

In this paper we propose a simple detection mechanism on
the basis of reduced order models. It processes the plant
output and predicts the region of process operation (below
or above a critical bifurcation parameter value).

This paper is organized by giving some background knowl-
edge about existence of multiple steady state in chemical
processes in section 2. Section 3 provides a brief summery
on proper orthogonal decompositions. Section 4 proposes
the detection mechanism while section 5 presents the re-
sults. Section 6 concludes the paper with some remarks
on future research directions.

2. TUBULAR REACTOR MODEL AND MULTIPLE
STEADY STATES

Considered a dynamical model of a tubular reactor as
depicted in Figure 1.

The model represents a reactor with both diffusion and
convection phenomena and a nonlinear heat generation
term. The model is governed by the partial differential
equations
∂T

∂t
=

1
Peh

∂2T

∂z2
− 1
Le

∂T

∂z
+ νCeγ(1− 1

T ) + µ(Twall − T )

(1a)
∂C

∂t
=

1
Pem

∂2C

∂z2
− ∂C

∂z
−DaCe

γ(1− 1
T ) (1b)

which are subject to the mixed boundary conditions

left side:


∂T

∂z
= Peh(T − Ti)

∂C

∂z
= Pem(C − Ci)

right side:


∂T

∂z
= 0

∂C

∂z
= 0

See, e.g., Zheng and Hoo [2002]. T (z, t) and C(z, t) are
dimensionless temperature and concentration variables,
respectively, which are functions of time t and position
z. Here, t ∈ R+ is the temporal independent variable and
z ∈ Ω := [0, 1] is the spatial independent variable. Inputs
to the model are u(t) = col(Twall(t), Ti(t), Ci(t)) which
are the wall temperature, the inflow temperature and
the inflow concentration, respectively. Initial conditions at
time instant t = 0 are set to T0(z) = 1 and C0(z) = 1.
The physical parameters of the system are mentioned in
Jensen and Ray [1982] and given in the table below.

Peclet number (energy) Peh 5
Peclet number (mass) Pem 5
Lewis number Le 1.0
Damkohler number Da bifur. para
Activation energy γ 20.0
Adiabatic temperature rise B 10.0
Heat of reaction ν 0.8375
Heat transfer coefficient µ 0

The model (1) is solved by the method of lines where the
spatial domain Ω = [0, 1] is gridded into 602 equidistant
points. With the given initial and boundary condition, a
time trajectory is simulated over 5000 time-samples of the
state measurement (T,C).

Inputs of the model are

• Wall temperature Twall(t, z) = 1 (dimensionless)
• Inflow conditions Ti(t) = 1, Ci(t) = 1
• Initial conditions T0(z) = 1 and C0(z) = 1.

Many tubular reactor models that occur in the litera-
ture can be adequately represented by this dimensionless
model. The spatial gridding into 602 grid points is the
result of a continued refinement of discretizations until the
numerical solutions do not change further in accuracy. This
is usually referred to as a converged Galerkin projection of
an infinite dimensional system. Due to extremities in the
process behavior under changes of the Damkohler number,
numerical integrators easily fail to integrate the system
state if the grid is too coarse. The model explains material
and energy balances in the reactor. The PDEs (1) are
parabolic in nature.

A classical analysis of tubular reactor model involves a
lumping of the spatial coordinate and yields a model that
is similar to a continuous stirred tank reactor (CSTR)
model. In a CSTR, multiple steady states and oscillating
solutions are observed as process parameter or process
inputs such as inlet temperatures are changed. The bal-
ance between heat generation and heat removal defines
the steady state at which the process is operating. A
“lower steady state” (extinction) results when the reaction
kinetics are limiting while “upper steady state” (ignition)
shows heat exchange is limiting (limited cooling). Reactor
shows a tendency to jump either to the upper or to the
lower steady state.

Similar effects occur in the tubular reactor where trans-
portation effects play a major role along with the reaction
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and heat effects. The Damkohler number (Da) is the ratio
of residence time to reaction time. Fast reactions have
smaller reaction time and therefore large Damkohler num-
bers. For large Da values we have almost complete con-
version. The Peclet number is the ratio of flow advection
to flow diffusion. It is defined for mass and heat transfer.
This number approaches infinity for plug flow reactors.
For tubular reactors, the Peclet numbers larger than one.
The Lewis number is the ratio of the physical transport
thermal time constant to the physical transport material
time constant. For a tubular reactor it is equal to one.
Adiabatic temperature rise is the ratio of heat of reaction
and average heat capacity of reactant and products. It is
probably the most important parameter which determines
the existence of multiple steady states. Highly exothermic
reactions show increased chances of existence of multiple
steady or periodic solutions. It is for this reason that
bifurcation phenomena are usually studied in the Peclet-
Da parameter space. For various values of the adiabatic
temperature rise B, different parameter sets are obtained
which may cause bifurcations of the solution set. The value
B = 10 corresponds to the adiabatic case, where heating
occurs at the reactor end (the hot spot). In turn, this in-
creases the reaction rate at the reactor end, which further
increases temperature. This effect persists and causes at a
certain temperature and concentration, a jump from the
lower to the higher steady state. Due to diffusion the larger
concentration levels are carried throughout the reactor
and lead to a higher steady state solution. The critical
Damkohler value for which this jump of steady states oc-
curs will be denoted by Da∗. Steady state solutions remain
in the lower state for Damkohler values Da < Da∗ and lead
to higher steady state values when Da > Da∗. More than
sixteen different types of bifurcation structure have been
reported in Jensen and Ray [1982]. Most of the literature
on bifurcations in tubular reactors is devoted to finding
conditions for existence of unique solutions, and to find the
bounds over the parameter. Hlavácek and Hoffmann [1970]
derived the bound B < 4 on the adiabatic temperature rise
that guarantees uniqueness of solutions.

Stability analysis of the various chemical processes exhibit-
ing multiple solutions has received large attention as well
Jensen and Ray [1982], Shvartsman and Kevrekidis [1998],
Hahn et al. [2004]. Eigenvalue analysis of the linearized
system at resultant steady state is one of the easiest
ways of stability estimation. Many times with Lyaponov
functional, Poincare maps, phase diagram are employed
to study it. Based on the eigenvalues two types of bifurca-
tions are commonly reported. When real eigenvalues cross
imaginary axis the resulting bifurcation is known as saddle
node which result into bifurcation of stable solution when
a pair of imaginary eigenvalues cross the imaginary axis
we have Hopf bifurcation, which result into bifurcation of
periodic solution.

3. PROPER ORTHOGONAL DECOMPOSITIONS

One of the most promising and significant techniques for
an efficient reduction of large-scale nonlinear systems in
fluid dynamics is the method of Proper Orthogonal De-
compositions (POD) also known as the Karhunen-Loève
method Holmes et al. [1996]. The method is based on
the observation that flow characteristics reveal coherent

structures or patterns in many processes in fluid dynamics.
This has led to the idea that the solutions of model equa-
tions may be approximated by considering a small number
of dominant coherent structures (called modes) that are
inferred in an empirical manner from measurements or
simulated data.

Given an ensemble of K measurements Tk(·, t), k =
1, . . . ,K with each measurement defined on some spatial
domain Ω, the POD method amounts to assuming that
each observation Tk belongs to a Hilbert space H of
functions defined on Ω. With the inner product defined
on H, it then makes sense to call a collection {ϕj}∞j=1 an
orthonormal basis of H if any element, say T ∈ H, admits
a representation

T(x) =
∞∑

j=1

ajϕj(x), x ∈ Ω.

Here, the aj ’s are referred to as the coefficients and
the ϕj ’s are the modes of the expansion. The truncated
expansion

Tn(x) =
n∑

j=1

ajϕj(x), x ∈ Ω

causes an approximation error ‖T − Tn‖ in the norm of
the Hilbert space. We will call {ϕj}∞j=1 a POD basis of H
whenever it is an orthonormal basis ofH for which the total
approximation error

∑K
k=1 ‖Tk − Tk

n‖ is minimal for all
truncation levels n. This is an empirical basis in the sense
that every POD basis depends on the data ensemble.

Using variational calculus, the solution to this optimiza-
tion problem amounts to finding the normalized eigen-
functions ϕj ∈ H of a positive semi-definite operator
R : H → H that is defined as

〈ψ1, Rψ2〉 :=
1
K

K∑
k=1

〈ψ1,Tk〉 · 〈ψ2,Tk〉

with ψ1, ψ2 ∈ H. R is well defined in this manner and
corresponds to a positive semi-definite matrix whenever H
is finite dimensional. In that case, a POD basis is obtained
from the normalized eigenvectors of R Astrid [2004].

Subsequently, a Galerkin projection is used to obtain the
reduced model as follows. Suppose that the system is
governed by a PDE of the form

∂Tn

∂t
= A(Tn) + B(u) + F(Tn, u, d) (2)

Let Hn denote an n dimensional subspace of H and let
Pn : H → Hn and In : Hn → H denote the canonical
projection and canonical injection maps. The reduced
model is then given by

Pn
∂Tn

∂t
= PnA(Tn) + PnB(u) + PnF(Tn, u, d) (3)

where Tn(·, t) = Tn(t) belongs to Hn = PnH for all t.
In the specific case of a POD basis, the finite dimensional
subspace Hn = span(ϕ1, . . . , ϕn) where the ϕj ’s denote
POD basis functions. In that case, (3) becomes an ordi-
nary differential equation in the coefficients aj(t) in the
expansion of Tn.
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Fig. 2. Dynamic error detection mechanism.

4. METHODOLOGY

Schematic idea of proposed methodology is shown in
Figure 2. The motivation for this methodology comes from
the fact that process has two different kinds of limitation
in bifurcation range - before and after bifurcation. For
bifurcation parameter (which is Damkohler number in our
example) below critical bifurcation value - reaction rate
is limiting while above the critical value heat exchange is
limiting. This result into two completely different reactor
behavior which is highly difficult to capture into single
reduced model. The difficulty arises due to the limitation
imposed by POD which is good for the system behavior it
has been trained for by including such dominant pattern
in the snapshots. Based on the bifurcation parameter
value below or above critical (Da− < Da∗ < Da+)
systems will behave differently. Such system exhibiting
two extreme behavior can be approximated by knowing in
which regime process is operating in. If process is operating
for parameter below critical bifurcation value then it will
be approximated by reduced model RM minus else by
RM plus. The reason for not including the transition from
lower to higher steady state and other details are explained
in the result section.

5. RESULTS AND DISCUSSION

5.1 Bifurcation study on full model

The PDEs governing the tubular reactor model are de-
scritized by the method of lines so as to represent the
model as a finite number of differential equations. The
discretized system is of state dimension n = 602. This
system is simulated for Damkohler numbers Da < Da∗

and Da > Da∗ below and above the bifurcation value
Da∗. Figure 3 shows the dynamic response of the tubular
reactor for these values.

Initial conditions for temperature and concentration were
equal to unity, while all system input mentioned in section
3 were constant and equal to 1. Left side plots are before
bifurcation and right side are after bifurcation. Upper plots
show temperature and lower plots show concentration.
Time, reactor length and both variables are in dimension-
less form.

The simulation results in Figure 3 show that for the
given parameter values, the bifurcation parameter range

Fig. 3. Behavior of tubular reactor before and after bifur-
cation.

(Da− < Da∗ < Da+) is (0.00320 < Da∗ < 0.00325). This
means that for certain Da∗ there exist multiple steady
states. It also means that for all simulations of adiabatic
reactor (µ = 0) with Damkohler number Da < Da− =
0.00320 the system shows lower steady state which is
characterized by slow reaction and lower temperature rise.
As the reactor is adiabatic in nature, we see the location
of the hot-spot at the reactor end. For Da+ > 0.00325, the
system jumps from lower to higher steady state. Around
Da = 0.03000, an immediate jump occurs from the initial
condition. In Jensen and Ray [1982], three steady states
are reported for these parameter ranges. However, it is
difficult to observe the middle steady state by dynamic
simulations. This middle steady state is usually said to be
unstable. By using software Doedel et al. [1997] one can
find this middle state as well. Operating at this middle
state could be optimal sometimes.

5.2 Model reduction

Model reduction for the given system is explained into
3 parts: For Damkohler numbers Da < Da∗, for values
(Da∗ ≤ Da < Da+

2 ) and for upper range of Da+

(Da ≥ Da+
2 ) which shows an immediate jump of steady

state solutions. As all three parameter ranges result into
different spatial profiles, it is difficult to capture all three
behaviors by one reduced model that is inferred from
a Galerkin-POD reduction method. But it is still very
attractive that we are classifying the parameter space
in these three regions. It will be shown that a partition
of the parameter space in these three regions is enough
to consider whole Da space, assuming that other process
parameter are constant.

MR and Detection Mechanism for Da < Da∗ and for
Da ≥ Da+

2 This range of Da gives either lower or higher
steady state. It means we can lump all possible Da values
in either group Da− or in group Da+. Galerkin-POD
method is known for its sensitivity to any other perturba-
tion than it is trained for. It means if we get snapshot for
certain combination of input, initial condition, parameter
values, then obtained basis function will not be able to
represent the system dynamics for other combination of
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parameters. This happens due to spatial directionality that
is inherent to the basis functions. Sometimes a simple
trick is used, to combine in time the snapshots of different
perturbation; performing POD over such snapshot will
then give (common) basis function which will have good
performance for all the complete parameters range. But
one should not try to get common basis for extreme param-
eters as then obtained basis will not perform well for either
of the parameters. To get these common basis function one
simply stack up the snapshots that are obtained for certain
parameter range. One must stack them up in time if one is
interested in getting spatial basis. We tried to get common
basis functions in similar way for Da < Da∗ (i.e. to
approximate lower steady state by POD) and for Da values
quite large (Da > Da+

2 ) such that system jumps from
initial condition immediately (i.e. to approximate higher
steady state) . The basis obtained for former (Da− < Da∗)
hence works good to approximate original systems with Da
less than bifurcation value. Similar holds for Da > Da+

2 .
Figure 4 shows the same thing, that error (static error -
normed over space and time) in reconstruction of snapshot
for various values of Da before and after bifurcation. Figure
also shows that common basis obtained byDa− gives small
error in reconstruction of snapshots for values of Da in
Da− space where as they give large error when we try
to reconstruct the snapshots of Da+. Similar results are
obtained when we use common basis of Da > Da+

2 .

If Φ = span(ϕ1, . . . , ϕn), denotes POD basis functions
which span the subspace Hn as given in section( 3) then
static error of snapshot reconstruction can be given by

ε = (I − Φ ∗ Φ′) ∗ Tk(·, t) where Tk(·, t) is an ensemble
(snapshot matrix) of K measurements k = 1, . . . ,K

Fig. 4. Results of static error detection mechanism.

This can be said as static detection mechanism to detect
bifurcation. Given snapshot data for any Da value by
finding the static error of snapshot reconstruction by using
common basis of Da+ and Da− one can find out the
operation regime of the process. Basis functions which
gives minimum error is the one where process is most
likely to be operating in, and one can use corresponding
reduced model. Dynamic error detection mechanism as
given in methodology section can then be applied which
will approximate full scale model by either of the reduced
model based on error criteria of dynamic detection mech-
anism. Figure 5 shows temperature and concentration at
the middle of the reactor of full model which jumps from

lower state to higher as Da changes from Da− to Da+

and two reduced models. At any instant, either of the
reduced models shows behavior close to the full model.
Model which gives minimum error (spatial norm) is the
one which can be selected. Each of the reduced model
needs around 3-4 basis functions which captures ∼ 99%
of the energy.

Fig. 5. Comparison of full scale and two reduced models
of tubular reactor

MR for Da ≥ Da∗ and for Da < Da+
2 In this range

of Da, we see transition from lower to higher state as a
dynamic effect. This is the most interesting case as if one
is able to capture this transition in efficient reduced model
then there is no need to have the detection mechanism as
mentioned in methodology section. But it is not possible
to approximate this model by a reduced one by using few
basis functions. The reason is that, while transition the
full scale model shows spatio-temporal phenomenon called
’traveling waves’. This is seen due to the inherent diffusive
nature of tubular reactor model. More on traveling wave
can be founding Marquardt [1990]. In the first bit of this
section it was mentioned that due to adiabatic nature of
the reactor hot spot is located at reactor end. During jump
from lower to higher state, reactor end is the first point
which shows this jump and then due to diffusions, the
next point jumps and in that fashion whole reactor jumps
to ignited state. As this jump is initiated from reactor end
(right side) we see a wave traveling through the reactor
from right to left side of the reactor. When one observes it
in time, it is seen that the wave travels very fast (compared
to residence time of reactants in the reactor) such that it
seems the whole reactor is ignited at one instant. It is
difficult to capture the wave pattern by using POD due to
the resultant triangular snapshot matrix. When snapshot
matrix is of such form the common notion of capturing
∼ 99% energy in few basis functions is not possible and one
must use high order reduced model which computationally
are not attractive. Figure 6 shows the wave pattern of
temperature and concentration in the reactor during the
transition.

6. CONCLUSIONS

In this paper we presented a new methodology to ap-
proximate a model of a parameter varying tubular reactor
by a hybrid model structure that consists of two reduced
order models. The parameter variation was chosen so as
to exhibit a discontinuous dependence of the dynamical
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Fig. 6. Wave pattern in the reactor

responses as function of the parameter (the Damkohler
number in the reaction). A critical value of the Damkohler
number causes the steady state response of the system to
change from a lower to a higher value. We presented both
a static and dynamic detection mechanism for which it is
easy to detect whether the parameter value is below or
above a critical value. In an on-line fashion the algorithm
allows to detect the parameter regime in which the process
is running. An investigation of the corresponding wave
patterns in the reaction shows the difficulty to capture
the transition from lower to higher state in the reduced
model.

Future work includes- application of devised methodology
on industrial glass manufacturing process, investigation to
capture wave pattern, optimal sensor placement problem
based on missing point estimation to detect bifurcation
in advance to help control action, observer design prob-
lem, computational aspects, exploiting the knowledge of
bifurcation phenomena for optimal process design and
controller tuning aspects, and possibility of employing
temporal basis function.
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