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Abstract: In recent years, as part of the remarkable development of electronic techniques,
electronic control has been applied to various systems. Many sensors and actuators have been
implemented into those systems, and energy efficiency and performance have been greatly
improved. However, these systems have been complicated, and much time has been required
to develop system controllers. In this paper, a method of automatic controller design for those
systems is described. In order to automate the design of an electronic controller, an evolutionary
hardware is applied. First, the framework for applying the genetic algorithm to the automation
of controller design is described. In particular, the coding of a chromosome is shown in detail.
Then, how to make a fitness function is represented, with an air conditioner as an example, and
the controller of the air conditioner is developed automatically using our proposed framework.
Finally, an evolutionary simulation is performed to confirm our framework.

1. INTRODUCTION

Advances in electronics have enabled highly efficient
electronic parts to be built into control systems controlled
more efficiently and intricately than ever. Many such
systems convert analog signals from sensors to digital
signals, which are processed by micro processing units
(MPUs) or digital signal processors (DSPs), which
determine controlled variables and/or control sequences.
Digital signals are reconverted after processing into analog
input to a drive circuit in order to drive actuators.

When designing such a controller, a designer organically
combines resources such as sensors, actuators, and an
MPU that constitute a system. This can be done
comparatively easily when the system is on a small scale
and the signal from a sensor is used directly without
any complex calculation or any estimation. For example,
positioning controls and speed controls are such cases. Of
course, since there is a problem of stability or response
even with a small-scale system, tuning is required, and
design is not easy, although compared with a large-scale
system, the design of a controller is also not so difficult.
The gain-regulating proportional-integral-derivative (PID)
controller is an example of parameter tuning. However,
considerable development work is required in a large-scale
system, where complex operation must be implemented.
Control of a robot’s walking with obstacle avoidance is
such an example. In this case, in order to develop a
function, the controller designer will pay great attention
to using the full resources that constitute a robot and will
build the structure of a control program or a logical circuit.
Systems in recent years have many components similar to

that of a robot, therefore the flexibility of controller design
is increasing, but the difficulty of controller design is also
increasing. In home electronics and car components, many
of such control systems exist.

In this paper, in order to support the design of such a
controller, a complex programmable logic device (CPLD)
is used for the data-processing part of a controller, and
very-high-speed integrated circuit hardware description
language (VHDL) which describes the logical circuit in
the CPLD is optimized using evolutionary computation.

2. COMPUTER-AIDED CONTROLLER DESIGN
USING EVOLUTIONARY COMPUTATION

2.1 FPGA/CPLD/ASIC and VHDL

In this paper, a programmable LSI is used for the
implementation of evolutionary computation. CPLDs and
FPGAs are both a sort of programmable LSI. The FPGA
is SRAM-based where the scale of a logical block is
comparatively small, and the CPLD is EEPROM-based
where the scale of a logical block is large. The internal
logic of both can be designed using HDL. The ASIC
is one example of a device that can be designed using
HDL in the same way as programmable LSIs. CPLDs and
FPGAs can be immediately evaluated on the system for
the designed logical circuit. In addition, they are flexible
for the rearrangement of a specification. These merits
make them suitable for the intended use in the case of
a rapid prototyping. For this reason, a CPLD is used as a
controller in this paper. However, the proposed framework
is applicable to all devices that can be designed by HDL.
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library IEEE;

use IEEE.std_logic_1164.all;

entity HALF_ADDER is

port(

A,B : in std_logic;

S,CO : out std_logic);

end HALF_ADDER;

architecture DATAFLOW of HALF_ADDER is

signal C, D : std_logic;

begin

C  <= A or B;

D  <= A nand B;

CO <= not D;

S  <= C and D;

end DATAFLOW;
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Fig. 1. VHDL for a simple logical circuit
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Fig. 2. Outline of the genetic algorithm

VHDL is one of the most popular HDLs, and is therefore
used in this paper.

The logic described by VHDL is verified and synthesized
using a simulator or a logic synthesis tool so that it
can be written into a device. When CPLD or FPGA
serves as target devices, the programming code which
determines the function of the target device can be,
through a download cable, written into it in order to obtain
the target LSI easily. The VHDL for a simple logical circuit
is shown in Fig. 1.

2.2 Genetic algorithm

The genetic algorithm used as a basis of our framework
is outlined in Fig. 2. The decision-variable vector x of an
optimization problem is expressed with the sequence of N
notations sj(j=1,… , N) as follows:

x : s = s1s2s3 · · · sN (1)

It is assumed that the symbol string s is a chromosome
consisting of N loci. sj is a gene in the jth locus and value
sj is an allelomorph. The value is assumed to be a real
number, a mere notation, and so on of a group of integers
or a certain range of observations as an allelomorph.
The population consists of K individuals expressed with
Eq. (1). The population p(n) in generation n changes
to the population p(n + 1) in the next generation n + 1
through the reproduction of a gene. If reproduction in a
generation is repeated, and if the individual who expresses
solution x nearer to an optimum value is chosen with
high probability, then the value increases and an optimum
solution is obtained as detailed in references [1, 2].
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Fig. 3. XC9572 architecture
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Fig. 4. Example of CPLD application

2.3 Framework of controller design using evolutionary
computation

The study that optimizes a rewritable logical-circuit
IC like the CPLD using a genetic algorithm has been
applied in recent years. The framework which changes
the internal configuration of logical-circuit IC so as to
achieve its intended purpose in an evolutionary fashion is
called evolvable hardware (EHW). Using this framework,
a designer has only to define the criteria which evaluates
a controller. In this paper, the framework of a controller
design using EHW is explained with XC9572[3] as a test
device. Internal blocks of XC9572 are shown in Fig. 3.
XC9572 is a small CPLD that has 44 pins (34 user
input-outputs), 72 macro cells, and the 1600 usable gates.
The designer chooses input and output signals from 34
user I/Os, and defines the pin assignments. Each signal is
configured to each I/O. In the case that a CPLD is used in
a control system, sensors and actuators can be associated
to the I/O pins of the CPLD. An example of association is
shown in Fig. 4. In this example, I/O pins are associated to
one sensor and two actuators. The sensor value is inputted
into the CPLD as an 8-bit digital signal, and two 8-bit
digital signals are outputted as reference signals to two
actuators.
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The VHDL, which describes the internal logic of the
CPLD, is encoded on a chromosome. An example of
generated VHDL is shown in Fig. 5. This example serves as
a description corresponding to Fig. 4. This VHDL consists
of three declaration parts: (a) entity declaration part, (b)
signal declaration part, and (c) architecture declaration
part. The I/O signals of the CPLD are defined on part (a).
The internal signals of the CPLD are defined on part (b).
As for a description of signals in VHDL, the std logic
type and the std logic vector type are mainly used.
The std logic type can be used when dealing with a
signal alone, and the std logic vector type can be used
when dealing with some signals collectively. It is better
to use the std logic type and the std logic vector
type considering maintenance and readability. However,
when applying to our framework, the std logic type is
better to use. If two or more types are used to describe
signals, the VHDL decode process from the chromosome is
complicated and searching space becomes wider. A VHDL
description which uses a std logic vector type can be
replaced by a VHDL description which uses two or more
std logic types. The description can be restored if all
input, output and internal signals are used as the same
std logic type and only the number will be encoded
on the chromosome. Then, the number of input signals,
the number of output signals, and the number of internal
signals are encoded on the head of the chromosome as
shown in Fig. 6. In the case of Fig. 4, an input signal is
set up with 8 bits and an output signal with 16 bits.

A chromosome which represents the VHDL statement of
substitution indicated by Fig. 5(d) is shown in Fig. 7.
The chromosome structure corresponding to a process
statement is shown in Fig. 8. The value currently described
in the figure is equivalent to the process statement in which
”S000” and ”DI002” are enumerated at the sensitivity list
(Fig. 5(e)). A description of this VHDL has an if-statement
in the inside of a process statement, and the description
has two nesting levels. The hierarchy of the list structure
is deep compared with the assignment statement indicated
by line (d) in Fig. 5. As the gene of a multi-list structure is
prepared, it would be possible to represent various VHDL
expressions.

2.4 Variable length chromosome and genetic operations

The structure of the chromosome changes according
to the design specification of the control system. The
number of internal signals can be set up arbitrarily,
and various descriptions in VHDL are expressed with
different length of locus. The length of the chromosome
is determined by the line count of VHDL. In addition,
the length is determined by the number of internal signals
enumerated on the sensitivity list or the length of the
right-hand side of an assignment statement. When dealing
with such a variable length chromosome, the problem is
that the genetic operations will generate conflict on the
chromosome. In order to avoid this problem, the following
restrictions are observed.

(1) With a top layer, the length of the chromosome
is equal to the number of internal signals plus the
number of output signals plus one.

(2) All the signals are encoded on the chromosome using
a reference number.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity GA_VHDL is
port(

DI000 : in std_logic;
DI001 : in std_logic;
DI002 : in std_logic;
DI003 : in std_logic;
DI004 : in std_logic;
DI005 : in std_logic;
DI006 : in std_logic;
DI007 : in std_logic;
DO000 : out std_logic;
DO001 : out std_logic;
DO002 : out std_logic;
DO003 : out std_logic;
DO004 : out std_logic;
DO005 : out std_logic;
DO006 : out std_logic;
DO007 : out std_logic;
DO008 : out std_logic;
DO009 : out std_logic;
DO010 : out std_logic;
DO011 : out std_logic;
DO012 : out std_logic;
DO013 : out std_logic;
DO014 : out std_logic;
DO015 : out std_logic

);
end GA_VHDL;

architecture Behavioral of GA_VHDL is

signal S000 : std_logic;
signal S001 : std_logic;

begin

S000 <= (((((not DI007 nand DI004) nor not DI005) or DI003) and not DI007) nand not DI003);
S001 <= ((((not DI007 nor not DI007) nor DI004) or not DI002) or DI002);

process(S000, DI002) begin
if(S000'event and S000='1')then

DO000 <= (DI002 nand not S000);
end if;

end process;

DO001 <= not DI000;

process(S001) begin
DO002 <= S001;

end process;

DO003 <= (((((not DI006 and not DI002) nand not DI001) nand not DI001) or not DI006) or DI005);
DO004 <= ((((DI001 and not DI003) nand DI006) and DI002) nor not DI000);

process(DI001, S000) begin
DO005 <= (S000 nand DI001);

end process;

DO006 <= (((not DI000 and not DI002) nor DI003) and DI006);

process(S000, DI001) begin
if(S000'event and S000='1')then

DO007<=DI001;
end if;

end process;

DO008 <= ((((((((S001 or DI000) and not DI006) or not DI001) nand not DI000) and not DI003)
nor DI003) nand not DI002) or DI001);

DO009 <= (((((not DI001 nand not DI001) nor DI006) nand DI001) nor not DI001) and S000);

process(DI004) begin
DO010 <= not DI004;

end process;

process(S001) begin
if(S001'event and S001='0')then

DO011<=S001;
end if;

end process;

process(DI003, DI002) begin
if(DI003='1')then

DO012<=(DI003 nand not DI002);
end if;

end process;

process(DI005) begin
DO013 <= DI005;

end process;

DO014 <= ((((((((not S000 nand not DI003) nand not DI006) or DI005) nand S001) nand S001)
or not S001) or DI005) nand DI007);

DO015 <= ((((((((not DI001 nor not DI003) or not DI007) nor not DI003) nand not DI000)
or DI005) and not DI007) nor not DI007) nand not DI001);

end Behavioral;

(a) Entity  declaration

(b) Signal declaration

(c) Architecture body

(d) Substitution

(e) Process statement
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Fig. 5. Automatically generated VHDL

(3) The signal with a large reference number is described
by only the signal whose reference number is smaller
than the signal.

(4) The top layer of the chromosome describes the entity
declaration part using all internal signals and output
signals in order with a low reference number. Each
signal can be used only once.

(5) The crossover is operated on the top layer of the
chromosome.

These restrictions help avoid the conflict produced by
genetic operations.

Here, an example is given. Fig. 9 shows chromosomes
of two different lengths. The length of the chromosome
is determined at the initialization and it is changed by
genetic operations. The length of a chromosome equals
one plus the number of internal signals plus the number of
output signals. The number of inputs and the number of
outputs are determined by the specification of hardware.
In Fig. 9, the number of inputs is determined as 8
and the number of outputs is determined as 16. They
are determined by the designer. They do not change in
evolutionary calculation. The number of internal signals is
determined randomly at the initialization. In Fig. 9, they
are determined to be 5 and 2. A reference table is made
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Fig. 9. Two different length chromosomes
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Fig. 11. CPLD application to air conditioning

according to the number of signals. If the number of signals
differs, the size of the table also differs.

An example of crossover is shown in Fig. 10. The back
of the 6th gene is chosen in this example. Chromosome
(A) and chromosome (B) cross and change to chromosome
(A’) and chromosome (B’). Only the gene before and
behind the crossover point of each chromosome shows
the gene of a lower layer. In the figure, chromosome (A)
has two sensitivity lists and chromosome (B) has two
assignment statements. The structure of a chromosome
changes by replacing the gene from the back of a top gene
to before a crossover point. Both chromosome (A’) and
chromosome (B) came to have an assignment statement
and a sensitivity list.

3. APPLICATION TO AIR CONDITIONING

3.1 Air-conditioning controller using evolutionary
computation

In the sample application of Fig. 4, if the 8-bit input
is set to Predicted Mean Vote (PMV)[4] in a cabin,
and two 8-bit outputs are set to two actuators of
the air conditioner, the controller can be used as
an air-conditioning controller (Fig. 11). In this paper,
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evolutionary computation application to air conditioning
is shown.

An air-conditioning controller will be employed to keep the
inside of a cabin comfortable with the internal and external
thermal state. However, when developing the controller
of such an air-conditioning system, the designer has to
consider many sensors and actuators which constitute an
air-conditioning system. The room temperature, water
temperature, outdoor temperature, and solar radiation
must be measured, and a controller has to control many
actuators, such as a blower, an air mix door, and a mode
change door. In such a case, since many parameters must
be taken into consideration, trial and error of the system
developments must be repeated many times. Great effort
is required. So in this paper, evolutionary computation is
applied to designing the controller in order to reduce such
trial and error.

The schematic diagrams of an air-conditioning system are
shown in Fig. 12. Air is taken from the inlet by a blower.
All the air that flows in is cooled by 5 degrees. They are
dehumidified at this time. Then, a part of the air is warmed
by a heater to 80 degrees. The opening of a mix door is
changed to adjust the mixing ratio of the warm air and
the cold air. The input to a controller is PMV as follows.

3.2 Predicted mean vote (PMV)

PMV is the predicted mean vote of a large population of
people exposed to a certain environment. PMV represents
the thermal comfort condition on a scale from -3 to
3, derived from the physics of heat transfer combined
with an empirical fit to sensation. Thermal sensation is
matched as follows: “+3” is “hot.” “+2” is “warm.” “+1”
is “slightly warm.” “0” is “neutral.” “-1” is “slightly cool.”
“-2” is “cool.” “-3” is “cold.” Fanger derived his comfort
equation from an extensive survey of the literature on
experiments on thermal comfort[4]. This equation contains
terms that relate to clothing insulation Icl[clo], metabolic
heat production M [W/m2], external work W [W/m2], air
temperature Ta [̊ C], mean radiant temperature Tr [̊ C],
relative air speed v[m/s], and vapor pressure of water
vapor P [hPa].

PMV = {0.33 exp(−0.036M) + 0.028}
[
(M − W )

−3.05{5.73 − 0.007(M − W ) − P}
−0.42{(M − W ) − 58.1}
−0.0173M(5.87 − P )

−3.96 × 10−8fcl{(Tcl + 273.15)4

− (Tmrt + 273.15)4}

−fclhc(Tcl − Ta)
]

(2)

fcl is the ratio of clothed and nude surface areas given by:

fcl = 1.0 + 0.2Icl(Icl ≤ 0.5)
fcl = 1.05 + 0.1Icl(Icl > 0.5) (3)

where Tcl is the clothing surface temperature given by
repeated calculation of:

Tcl = 35.7 − 0.028(M − W )
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Fig. 13. Simulation results

−0.155Icl

[
3.96 × 10−8fcl{(Tcl + 273.15)4

−(Tmrt + 273.15)4} + fclhc(Tcl − Ta)
]

(4)

where hc is the heat transfer coefficient,
hc = max{2.38(Tcl − Ta)0.25, 0.0121

√
v} (5)

and Tmrt is mean radiant temperature. PMV is detailed
in [4]. 　　　　

3.3 Fitness function

The fitness function is as follows, where ∆E is the
difference between target PMV and estimated PMV, t is
time, Tend is the end of calculation time.

fitness = −
Tend∫
0

∆Edt (6)

The value will become high if it is a minimum of the
integrated value. In the simulation, a variation of a heat
load is given as a disturbance. The load is given randomly
between 0 W and 1100 W. The load is changed two times
in one fitness calculation; the timing of load switching is
also given randomly. The fitness values of chromosomes
are different from each other, even if the chromosomes are
exactly the same. However, the logic generated in this way
has high robustness to a disturbance.
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Fig. 14. Simulation results
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Fig. 15. Ten elite values in each generation

3.4 Simulation results

Figures 13, 14, and 15 shows the simulation results. In this
case, PMV in a front cabin is fed back to the controller. In
this calculation, the population size is 50, crossover rate is
1.0, mutation rate is 0.5, selection method is tournament,
and tournament size is 10. In all graphs, a tendency
changes every 60 seconds and changes at 30 seconds. These
variations are based on the load change.

At the time of zero generation shown in Fig. 13(a),
with a change of a heat load, the temperature rises or
descends. PMV also changes simultaneously. This means
that the optimization of a controller is inadequate. After
100 generations of calculation, the difference between
the target value and the estimated value decreases (Fig.
13(b)). At the 10000th generation as shown in Fig.
13(c), the tolerance decreases further. These results show
that the hardware corresponding to the purpose can be
obtained automatically by using this framework.

Figure 14 shows the air-conditioning control under
different heat loads. In order to correspond to an
alternation of a disturbance and to minimize PMV, the
rotation of the blower and the opening of the air mixture
door are controlled.

Figure 15 shows ten fitness values in each generation.
These values are the results of calculating the fitness value
of each generation’s elite 10 times. Since the fitness value
has given the thermal load at random as mentioned above,
a value which is different whenever calculated is shown,
but variation becomes small as a generation progresses.
However, a possibility that the optimal solution from

which evolution calculation is obtained is a partial solution
is pointed out. Also in the framework which we propose,
the obtained optimal solution may be a partial solution.
This is considered as a future subject.

Here, the calculation result up to 10000 generations was
shown. However, in the case of this example simulation,
about 2000 generations are enough. The slope of afitness
value and the error of the maximum fitness values are
consulted when deciding the end generation of calculation.

4. CONCLUSION

In this paper, in order to support the design of a
controller of a mechatronics system, a CPLD used for
the data-processing section of the controller and VHDL
which describes the logical circuit were optimized using
evolutionary computation. First, the framework of how to
apply the evolutionary computation to the automation of
controller design was described. In particular, the coding
of a chromosome was shown in detail. Then, how to
constuct a fitness function was illuminated with an air
conditioner as an example case, and the controller of the
air conditioner was developed automatically using our
proposed framework. Finally, an evolutionary simulation
was performed to confirm our framework.
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