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Abstract: This paper considers the problem of observer-based H∞ control for a class of Itô-
type stochastic delay systems with nonlinear perturbations. An observer-based controller is
constructed based on Lyapunov-Krasovskii approach, which guarantees the closed-loop system is
robustly stochastically asymptotically stable in the mean square with prescribed H∞ disturbance
attenuation level for all admissible nonlinear perturbations. Sufficient condition for the existence
of desired controller is presented in terms of a strict linear matrix inequality (LMI) if the control
matrix B is full column rank. A numerical example is provided to demonstrate the effectiveness
of the proposed method.

1. INTRODUCTION

In many dynamical systems, the states may not be avail-
able, thus the existing stabilization methods based on state
feedback are not applicable to these systems. In such situa-
tions, the controller based on a state observer is very useful
to stabilize unstable systems or optimize the performances
and dynamical responses of the systems (O’Reilly [1983]).
Moreover, the observer has been successfully used to many
industrial fields, such as fault detection, temperature con-
trol, phase synchronization of chaotic systems, and so on
(Tarantino et al. [2000], Mattei [2001], Jana et al. [2006],
Meng and Wang [2007]).

Time delays are frequently encountered in many prac-
tical systems, the existence of time delays may cause
poor performances and instability to the systems. The
observer design and observer-based controller design for
delay systems have been attracted considerable interests
in the past decade. The results of Choi and Chung [1994],
Wang et al. [2002] have been obtained by Ricatti-like
equations. Based on LMI approach, Lu and Ho [2004], Xu
et al. [2004] have established observers for discrete-time
uncertain delay systems. Guaranteed cost observer-based
control problem for uncertain delay systems with para-
metric uncertainties has been addressed in Lien [2005a].
The results of Lien [2005a,b] are expressed by means of
LMIs with matrix equalities constraints instead of strict
LMIs. Although Park [2004] has been formulated by strict
LMI, it is conservative since there are some strict re-
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quirements on the relationships between the gain matrices
and the Lyapunov matrices. By using the singular value
decomposition (SVD) technique in Ho and Lu [2003], Chen
[2007a,b] have proposed observer-based control laws for
uncertain stochastic time-delay systems in terms of LMIs
if the measured matrix C if full row rank.

However, the above-mentioned reports are all for deter-
ministic systems, but not for stochastic systems. The study
of stochastic systems is very important in both theoretical
and practical senses, since many practical systems can be
modeled by stochastic differential equations (Mao [1997]).

In this paper, we will deal with observer-based robust H∞
control for a class of Itô-type stochastic delay systems with
nonlinear perturbations. Based on Lyapunov-Krasovskii
method and singular value decomposition (SVD) tech-
nique, an observer-based controller is designed by means of
a strict linear matrix inequality (LMI) if the control matrix
B is full column rank. For all admissible nonlinear per-
turbations, the desired controller ensures that the closed-
loop system is robustly stochastically asymptotically sta-
ble in the mean square with a prescribed H∞ disturbance
attenuation level γ > 0. The effectiveness of the method
is illustrated by a numerical example.

Notations: Throughout this paper, the notations are stan-
dard. P > 0 (P < 0) means that the matrix P is posi-
tive (negative) definite and symmetric; ‖ · ‖ refers to the
Euclidean norm; diag{A1, A2, ..., An} denotes a diagonal
matrix with diagonal elements A1, A2, ..., An. E{·} repre-
sents the expectation operator. (Ω,F,P) is a probability
space, where Ω is the sample space, F is the σ-algebra of
subsets of Ω, and P is the probability measure on F. The
symmetric term in a symmetric matrix is denoted as ∗.
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2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following system



dx(t) = [Ax(t) + A1x(t− d) + f(t, x(t))
+g(t, x(t− d)) + Bu(t) + Bvv(t)]dt
+[Ex(t) + E1x(t− d)]dw(t)

y(t) = Cx(t) + C1u(t) + C2v(t)
z(t) = Dx(t)
x(θ) = φ(θ), ∀θ ∈ [−d, 0]

(1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the
measurement vector, z(t) ∈ Rq is the regulated output,
u(t) ∈ Rm is the input vector and v(t) ∈ Rl is the
disturbance input. d > 0 is the delay. A, A1, B, Bv, E,
E1, C, C1, C2, D are known real matrices with compatible
dimensions. The initial condition function is given by
φ(·), where φ(·) is a continuously differentiable function
on [−d, 0]. w(t) is a scalar Wiener process defined on
(Ω,F,P) satisfying E{dw(t)} = 0, E{dw(t)2} = dt. The
functions f(t, x(t)), g(t, x(t − d)) are unknown nonlinear
perturbations satisfying the following Lipschitz condition.
Assumption 1. It is assumed that f(t, 0) = 0, g(t, 0) = 0
for all x, y ∈ Rn

‖ f(t, x)− f(t, y) ‖ ≤ ‖ F (x− y) ‖,
‖ g(t, x)− g(t, y) ‖ ≤ ‖ G(x− y) ‖, (2)

where F , G ∈ Rn×n are known real constant matrices.
Definition 2. For the admissible nonlinear perturbations
(2), system (1) with u(t) = 0, v(t) = 0 is said to be
robustly stochastically stable in the mean square, if for
any scalar ε > 0 there exists a scalar σ(ε) > 0 such that

E{‖x(t)‖2} < ε, ∀t > 0
when

sup
−h≤s≤0

E{‖φ(s)‖2} < σ(ε).

Additionally, system (1) with u(t) = 0, v(t) = 0 is said to
be robustly stochastically asymptotically stable in in the
mean square, if

lim
t→∞

E{‖x(t)‖2} = 0.

Assumption 3. It is assumed that system (1) is control-
lable and observable.

Now, we consider a full-order observer-based controller for
system (1) as follows




dx̂(t) = [Ax̂(t) + A1x̂(t− d) + fx̂ + gx̂

+Bu(t)]dt + L[y(t)− ŷ(t)]dt
+[Ex̂(t) + E1x̂(t− d)]dw(t)

ŷ(t) = Cx̂(t) + C1u(t) + C3v(t)
u(t) = −Kx̂(t)

(3)

where x̂(t) ∈ Rn is the estimate of x(t), ŷ(t) ∈ Rm is
the observer output, L ∈ Rn×p and K ∈ Rm×n are the
observer and controller gains to be designed, respectively.
C3 is a known real matrix with appropriate dimensions.

For the sake of simplicity, the following denotations are
adopted in this paper

f = f(t, x(t)),
fx̂ = f(t, x̂(t)),
g = g(t, x(t− d)),

gx̂ = g(t, x̂(t− d)).

(4)

Introduce the estimated error vector e(t) = x(t) − x̂(t),
and the augmented vector ξ(t) = [xT (t) eT (t)]T , then
the corresponding closed-loop augmented system is




dξ(t) = [Āξ(t) + Ā1ξ(t− d) + f̄ + ḡ + B̄vv(t)]dt
+[Ēξ(t) + Ē1ξ(t− d)]dw(t)

z(t) = D̄ξ(t)
(5)

where

Ā =
[

A + BK −BK
0 A− LC

]
,

Ā1 =
[

A1 0
0 A1

]
, B̄v =

[
Bv

Bv − L(C2 − C3)

]
,

f̄ =
[

f
f − fx̂

]
, ḡ =

[
g

g − gx̂

]
,

Ē =
[

E 0
0 E

]
, Ē1 =

[
E1 0
0 E1

]
,

D̄ = [ D 0 ] .

(6)

Define the following performance index

J = E{
∫ ∞

0

[zT (t)z(t)− γ2vT (t)v(t)]dt} (7)

where γ > 0 is a given scalar indicating the disturbance
attenuation level.

The objective of this paper is to design an observer-based
controller with the form of (3) such that system (5) is
robustly stochastically asymptotically stable in the mean
square with a prescribed level of disturbance attenuation
γ > 0 (i.e. J < 0), for all admissible nonlinear perturba-
tions (2).

The following lemma will be very useful to obtain the main
result.
Lemma 4. Let P1 ∈ Rn×n be a symmetric matrix, B ∈
Rn×m be full column rank (i.e. rank(B) = m ≤ n) with
the following singular value decomposition (SVD) form

B = U

[
S
0

]
V T , (8)

then there exists a matrix P̂1 ∈ Rm×m such that P1B =
BP̂1 if and only if

P1 = U

[
P̂11 0
0 P̂22

]
UT (9)

where U ∈ Rn×n, V ∈ Rm×m are unitary matrices, and
S ∈ Rm×m, P̂11 ∈ Rm×m, P̂22 ∈ R(n−m)×(n−m).

Proof: This proof is similar to that of Lemma 3 in Ho and
Lu [2003]. If rank(B) = m ≤ n, then it has SVD as in the
form of (8).

The matrix equality P1B = BP̂1 can be rewritten as

P1U

[
S
0

]
V T = U

[
S
0

]
V T P̂1,

P1U

[
S
0

]
= U

[
S
0

]
V T P̂1V = U

[
SV T P̂1V

0

]
.

If

P1 = U

[
P̂11 P̂12

P̂T
12 P̂22

]
UT ,
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where P̂11 ∈ Rm×m, P̂12 ∈ Rm×(n−m), P̂22 ∈ R(n−m)×(n−m),
then we have

P1U

[
S
0

]
= U

[
P̂11 P̂12

P̂T
12 P̂22

] [
S
0

]

= U

[
P̂11S

P̂T
12S

]
= U

[
SV T P̂1V

0

]
.

Thus, P̂12 = P̂T
12 = 0, and P1 satisfies (9). Moreover,

P1B = U

[
P̂11SV T

0

]
= BP̂1 = U

[
SV T P̂1

0

]
,

P̂11SV T = SV T P̂1, and

P̂1 = V S−1P̂11SV T , P̂−1
1 = V S−1P̂−1

11 SV T . (10)

3. MAIN RESULTS

In this section, we will design observer-based H∞ con-
troller for the system (1) by using strict LMI approach.
Theorem 5. Consider system (1) with rank(B) = m ≤ n
and its SVD as in the form of (8). For a given scalar
γ > 0, if there exist positive scalars ε1, ε2, matrices Y ∈
Rm×n, Z ∈ Rn×p and positive definite symmetric matrices
P̂11 ∈ Rm×m, P̂22 ∈ R(n−m)×(n−m), P2, Q1, Q2, R1, R2 ∈
Rn×n satisfying P1 = U

(
P̂11 0
0 P̂22

)
UT > 0 and

Γ =
[

Γ1 Γ2

∗ Γ3

]
< 0 (11)

where

Γ1 =



M1 −BY P1A1 0
∗ M2 0 P2A1

∗ ∗ −Q1 0
∗ ∗ ∗ −Q2




Γ2 =




ET P1 0 P1 0 P1 0 P1Bv

0 ET P2 0 P2 0 P2 P2Bv − Z(C2 − C3)
ET

1 P1 0 0 0 0 0 0
0 ET

1 P2 0 0 0 0 0




Γ3 = −diag{P1, P2, ε1I, ε1I, ε2I, ε2I, γ2I}
M1 = P1A + AT P1 + BY + Y T BT + DT D

+Q1 + ε1F
T F + ε2G

T G,
M2 = P2A + AT P2 − ZC − CT ZT

+Q2 + ε1F
T F + ε2G

T G.
(12)

then (3) is an observer-based H∞ controller of system (1),
the corresponding controller and observer gain matrices
are given by

K = V S−1P̂−1
11 SV T Y,

L = P−1
2 Z.

(13)

Proof: Choose the Lyapunov-Krasovskii functional candi-
date as

V (t, ξt) = V1(t, ξt) + V2(t, ξt) (14)
where

V1(t, ξt) = ξT (t)Pξ(t),

V2(t, ξt) =
∫ t

t−d

ξT (s)Qξ(s)ds,
(15)

with

P =
[

P1 0
0 P2

]
> 0, Q =

[
Q1 0
0 Q2

]
> 0. (16)

In view of Itô differential rule (Mao [1997]), the stochastic
differential of V (t, ξt) with respect to t along system (5)
(with v(t) = 0) gives

dV (t, ξt) = LV (t, ξ(t))dt

+ 2ξT (t)P [Ēξ(t) + Ē1ξ(t− d)]dw(t),
(17)

where

LV (t, ξt) = 2ξT (t)P [Āξ(t) + Ā1ξ(t− d) + f̄ + ḡ]
+[Ēξ(t) + Ē1ξ(t− d)]T

×P [Ēξ(t) + Ē1ξ(t− d)]
+ξT (t)Qξ(t)− ξT (t− d)Qξ(t− d).

It follows from Assumption 1 that

‖ f ‖ ≤ ‖ Fx(t) ‖,
‖ f − fx̂ ‖ ≤ ‖ Fe(t) ‖,

‖ g ‖ ≤ ‖ Gx(t) ‖,
‖ g − gx̂ ‖ ≤ ‖ Ge(t) ‖

(18)

and

f̄T f̄ ≤ ξT (t)F̄ ξ(t),
ḡT ḡ ≤ ξT (t)Ḡξ(t),

(19)

where

F̄ =
[

FT F 0
0 FT F

]
, Ḡ =

[
GT G 0

0 GT G

]
. (20)

It is clear that for any scalars ε1 > 0, ε2 > 0
LV (t, ξt) ≤ LV (t, ξt) + ε1(ξT (t)F̄ ξ(t)− f̄T f̄)

+ε2(ξT (t)Ḡξ(t)− ḡT ḡ)
≤ θT (t)Φθ(t)

(21)

where θT (t) = [ξT (t) ξT (t− d) f̄T ḡT ] and

Φ =




Φ11 Φ12 P P
∗ Φ22 0 0
∗ ∗ −ε1I 0
∗ ∗ ∗ −ε2I


 (22)

with

Φ11 = ĀT P + PĀ + Q + ĒT PĒ + ε1F̄ + ε2Ḡ,

Φ12 = PĀ1 + ĒT PĒ1,

Φ22 =−Q + ĒT
1 PĒ1.

By stochastic stability theory (Mao [1997]), if Φ < 0 then
LV (t, ξt) < 0, which inplies that system (5) is robustly
stochastically asymptotically stable in the mean square.

Employing Schur complement lemma (Boyd et al. [1994]),
Φ < 0 is equivalent to

Φ0 =




M0 PĀ1 ĒT P P P
∗ −Q ĒT

1 P 0 0
∗ ∗ −P 0 0
∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ −ε2I


 < 0 (23)

where M0 = ĀT P + PĀ + Q + ε1F̄ + ε2Ḡ.

According to Lemma 4, for any matrix rank(B) = m,
U, S and V can be easily obtained via SVD (8). For any
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symmetric matrix P1 ∈ Rn×n, there exists a matrix P̂1 ∈
Rm×m such that P1B = BP̂1 with P̂1 = V S−1P̂11SV T ,
which implies P1BK = BP̂1K.

Substituting (6) and (20) into (23) and setting

P̂1K = Y,
P2L = Z,

(24)

result in

∆ =
[

∆1 ∆2

∗ ∆3

]
< 0 (25)

where

∆1 =



M3 −BY P1A1 0
∗ M4 0 P2A1

∗ ∗ −Q1 0
∗ ∗ ∗ −Q2




∆2 =




ET P1 0 P1 0 P1 0
0 ET P2 0 P2 0 P2

ET
1 P1 0 0 0 0 0
0 ET

1 P2 0 0 0 0




∆3 =− diag{P1, P2, ε1I, ε1I, ε2I, ε2I}
M3 =P1A + AT P1 + BY + Y T BT

+ Q1 + ε1F
T F + ε2G

T G,

M4 =M2.

(26)

It can be seen that ∆ < 0 is implied by Γ < 0. Therefore,
system (5) is robustly stochastically asymptotically stable
in the mean square for all admissible nonlinear perturba-
tions if Γ < 0. The controller and observer gain matrices
can be determined as, from (24)

K =P̂−1
1 Y = V S−1P̂−1

11 SV T Y,

L =P−1
2 Z.

(27)

On the other hand, for any nonzero v(t), the stochastic
differential of the (14) along system (5) is

dV (t, ξt) =LVv(t, ξt)dt

+2ξT (t)P [Ēξ(t) + Ē1ξ(t− d)]dw(t)
(28)

where

LVv(t, ξt) = 2ξT (t)P [Āξ(t) + Ā1ξ(t− d)
+f̄ + ḡ + B̄vv(t)]
+[Ēξ(t) + Ē1ξ(t− d)]T

×P [Ēξ(t) + Ē1ξ(t− d)]
+ξT (t)Qξ(t)− ξT (t− d)Qξ(t− d).

It can be followed that for any scalars ε1 > 0, ε2 > 0
LVv(t, ξt) ≤ LVv(t, ξt) + ε1(ξT (t)F̄ ξ(t)− f̄T f̄)

+ε2(ξT (t)Ḡξ(t)− ḡT ḡ)
≤ θT

v (t)Φθv(t)
(29)

where θT
v (t) = [ξT (t) ξT (t− d) f̄T ḡT vT (t)] and

Φ0 =




Φ11 Φ12 P P PB̄v

∗ Φ22 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ 0


 (30)

with Φ11,Φ12,Φ22 defined in (22).

Noting the zero initial condition and the asymptotic mean-
square stability, for any nonzero v(t), we have

E{
∫ ∞

0

LVv(t, ξt)dt} = E{
∫ ∞

0

dV (t, ξt)} = 0,

and

J = E{
∫ ∞

0

[zT (t)z(t)− γ2vT (t)v(t)]dt}

= E{
∫ ∞

0

[zT (t)z(t)− γ2vT (t)v(t) + LVv(t, ξt)]dt}

≤ E{
∫ ∞

0

θT
v (t)Ψθv(t)dt}

(31)
where

Ψ = Φ0 + diag{D̄T D̄, 0, 0, 0, 0, 0,−γ2I}. (32)

Applying Lemma 4 and Schur complement lemma again,
it can be deduced that Ψ < 0 is equivalent to Γ < 0.

Thus, if Γ < 0, then Ψ < 0 and J < 0, which guarantees
system (5) robustly stochastically asymptotically stable in
the mean square with a specified disturbance attenuation
level γ. This means that the observer-based controller (3)
is a robust H∞ controller of the system (1). The controller
and observer gain matrices are constructed by (13). The
proof is completed. ¥
Remark 6. If the control matrix B is full column rank,
i.e. rank(B) = m ≤ n, then we can develop a robust H∞
controller by means of strict LMI for system (1) shown as
Theorem 5. The condition that B is full column rank can
be satisfied in many practical situations.
Remark 7. It should be pointed out that the results of Lien
[2005a,b] are expressed by means of LMIs with the matrix
equality P1B = BP1. The LMI with some matrix equality,
which can be solved by free software SCILAB, can not be
solved directly by Matlab LMI Toolbox.
Remark 8. If the augmented vector is chosen as η(t) =
[x̂T (t) eT (t)]T , we have the following augmented system




dη(t) = [Ãη(t) + Ã1η(t− d)
+f̃ + g̃ + B̃v(t)]dt

+[Ẽη(t) + Ẽ1η(t− d)]dw(t)
z(t) = D̃η(t)

(33)

where

Ã =
[

A + BK LC
0 A− LC

]
, Ã1 =

[
A1 0
0 A1

]
,

B̃v =
[

0
Bv

]
, f̃ =

[
fx̂

f − fx̂

]
,

g̃ =
[

gx̂

g − gx̂

]
, Ẽ =

[
E 0
0 E

]
,

Ẽ1 =
[

E1 0
0 E1

]
, D̃ = [ D 0 ] .

(34)

Then we can obtain the corresponding result, which is
formulated in terms of an LMI if the matrix C is full row
rank. The details are omitted here.
Remark 9. It should be noted that the LMI (11) is inde-
pendent on the matrix C1, because it is eliminated by the
form of the observer (3).
Remark 10. Theorem 5 is delay-independent. By adopting
the method provided in Chen et al. [2004], Xia et al. [2007],
Gershon et al. [2007], Chen and Xue [2008], Chen et al.
[2008], we can obtain delay-dependent result that may be
less conservative than Theorem 5.
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4. NUMERICAL EXAMPLE

In this section, a numerical example will be provided to
demonstrate the effectiveness of the presented approach
in Section 3.
Example 11. Consider system (1) with the following pa-
rameters

A =

[ 1.5 1 −2
2 −2 1.5
1 0.6 −3

]
, A1 =

[ 1.6 1.2 −1
1.1 1.8 2
−3 1.5 1

]
,

B =

[ 1 0.5
0.5 1
−0.5 1

]
, Bv =

[ 0.2 −0.8
0.6 0.5
−0.2 0.3

]
,

C =
[

1 1.2 0.5
2 1 0.5

]
,

E = E1 = I, F = G = 0.1I.

(35)

It is obvious that the control matrix B is full column
rank. The minimal disturbance attenuation level for this
example is γmin = 0.0002, by solving the LMI (11). When
γ = 0.5, the controller and observer gains are given by

K =
[−12.5853 1.1061 5.0746

2.4897 −6.0522 −6.3558

]
,

L =

[−247.6303 126.3515
−143.6455 165.8887
45.5314 14.3938

]
.

(36)

5. CONCLUSIONS

Observer-based H∞ control for a class of stochastic delay
systems with nonlinear perturbations has been addressed
in this paper. Base on Lyapunov-Krasovskii approach
and SVD technique, an observer-based H∞ controller
has been designed. The designed controller ensures the
closed-loop augmented system is robustly stochastically
asymptotically stable in the mean square with a prescribed
disturbance attenuation level γ for all admissible nonlinear
perturbations. If B is full column rank, then the existence
of such controller can be presented in terms of a strict
LMI. The effectiveness of the result has been shown by an
illustrative example.
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