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1. INTRODUCTION

Model reduction by balanced truncation is well-known
technoque. It is one of the best algorithms in the sense that
it has a nice physical interpretation and that it preserves
stability. Furthermore, error bounds exist. The method
is well-studied for various systems, ranging from classical
input/state/output systems to positive real, and bounded
real systems (see Antoulas (2004), Chen et al. (1995),
Opdenacker et al. (1988)). However in the behavioral
context, there are still very few papers investigating this
subject, see Willems et al. (2002); Rapisarda et al. (2003);
Weiland (1991).

This paper aims to investigate this topic for the class of
dissipative system behaviors. We show that dissipativity
is preserved by reduction by balanced truncation; more-
over, we provide an error bound. We work with driving
variable representations. The main reason for this choice
is that this class is still more general than the class of
input/state/output representations, but no a priori input-
output partition needs to be made. Furthermore, driving
variable representations are state representations, having
the advantage that truncation of the states can be per-
formed.

Notation and background material. Throughout the
paper we will denote by R (iR, C) the space of real (pure
imaginary, complex) number. We denote by C∞(R, Rw) the
set of infinitely often differentiable functions from R to Rw,
with D(R, Rw) the subspace of C∞(R, Rw) consisting of all
compactly supported functions, with Lloc

2 (R, Rw) the set
of all Lebesgue measurable functions w from R to Rw for
which the integral

∫
Ω
‖w‖2dt is finite for all compact sets

Ω ⊂ R.

We introduce now the definition of dissipativity of the
system.

Definition 1. Let B ∈ Lw
contr and Σ = Σ> ∈ Rw×w

be nonsingular. B is called Σ-dissipative if and only if∫
R w>Σwdt ≥ 0 for all w ∈ B ∩ D(R, Rw). B is called

strictly Σ-dissipative if and only if there exists ε > 0 such
that

∫
R w>Σwdt ≥ ε

∫
R w>wdt for all w ∈ B∩D(R, Rw); B

is called strictly Σ-dissipative on R− if there exists ε > 0
such that

∫
R− w>Σwdt ≥ ε

∫
R− w>wdt for all w ∈ B ∩

D(R−, Rw).

A subset B ⊂ Lloc
2 (R, Rw) defines a linear differential

system if there exists a polynomial matrix R ∈ Rw×w[ξ]
such that B = {w ∈ Lloc

2 (R, Rw) | R(d/dt)w = 0}. We
denote with Lw the set of linear differential systems with
w external variables.

We call B ∈ Lw controllable if for all w1, w2 ∈ B, there
exists a T ≥ 0 and a w ∈ B such that w(t) = w1(t) for
t < 0 and w(t + T ) = w2(t) for t ≥ 0. We denote the
controllable elements of Lw by Lw

contr.

There are a number of important integer invariants as-
sociated with behaviors. The integer invariants associated
with a linear differential behavior B are the number of
inputs, denoted m(B), the number of outputs, denoted
p(B), and the dimension of a minimal state variable for B,
equivalently called the McMillan degree of B and denoted
with n(B).

Driving variable representations. Let A ∈ Rn×n, B ∈
Rn×m, C ∈ Rw×n, D ∈ Rw×m be constant real matrices. The
equations

d

dt
= Ax + Bv, w = Cx + Dv. (1)

represent the behavior
BDV (A,B,C, D) := {(w, x, v) | (1) holds}.

This behavior is called the full behavior represented by (1).
If we eliminate x and v, then we get the external behavior
defined by
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BDV (A,B, C, D)ext := {w | ∃x, v such that

(w, x, v) ∈ BDV (A,B,C, D)}.
It is well-known that for any given B ∈ Lw there exist
real constant matrices A,B,C, D such that (see Weiland
(1991))

B = BDV (A,B, C, D)ext.

In this case we call BDV (A,B,C, D) a driving vari-
able representation of B. If n and m are minimal over
all such driving variable representations, then we call
BDV (A,B,C, D) a minimal driving variable representa-
tion. BDV (A,B,C, D)ext can be shown to be controllable
if and only if the pair (A,B) is controllable.

Characterization of dissipativity of behaviors in
driving variable representations.
Proposition 2. Let B ∈ Lw

contr with DV-representation
BDV (A,B,C, D) and Σ = Σ> ∈ Rw×w nonsingular.
Assume that m(B) = σ+(Σ), where m(B) is the number of
inputs of B, σ+(Σ) is the number of positive eigenvalues
of Σ. Then the following statements are equivalent.

(1) B is Σ-dissipative on R−.
(2) There exists a positive semidefinite solution P =

P> ∈ Rn×n of the following LMI[
A>P + PA− C>ΣC PB − C>ΣD

B>P −D>ΣC −D>ΣD

]
≤ 0. (2)

(3) All of solutions of LMI (2) are positive semidefinite,
or equivalently, there exist P− ≥ 0 and P+ ≥ 0 such
that for any real solution P of the LMI (2) we have
0 ≤ P− ≤ P ≤ P+.

(4) There exists a positive definite solution 0 < P =
P> ∈ Rn×n of the LMI (2).

(5) All solutions of LMI (2) are positive definite, i.e. there
exist P− > 0 and P+ > 0 such that for any real
solution P of the LMI (2) we have 0 < P− ≤ P ≤ P+.

In addition, if D>ΣD > 0 then any of the above state-
ments is equivalent to

6) There exists a positive definite solution 0 < P =
P> ∈ Rn×n of the following Algebraic Riccati Equa-
tion (ARE)

A>P + PA− C>ΣC+

(PB − C>ΣD)(D>ΣD)−1(B>P −D>ΣC) = 0(3)

7) All solutions of ARE (3) are positive definite, more-
over the minimal solution P− and the maximal so-
lution P+ of the ARE (3) coincide with those of the
LMI (2).

Proof. 1) ⇔ 2) is proved in (Willems et al., 1991,
Theorem 8.4.5) and 2) ⇔ 3) ⇔ 4) ⇔ 5) ⇔ 6) ⇔ 7)
are proved in (Willems et al., 1998, Theorem 6.4).
Remark 3. We can also formulate Proposition 2 for the
case that B is Σ-dissipative on R+ by replacing all of the
words “positive” by “negative” in all of items 2) to 7).
Proposition 4. Let B ∈ Lw

contr with driving variable repre-
sentation BDV (A,B, C, D) and Σ = Σ> ∈ Rw×w nonsin-
gular. Then the following statements are equivalent.

(1) B is strictly Σ-dissipative on R− (or R+, respec-
tively).

(2) D>ΣD > 0 and there exists a positive definite
antistabilizing (negative definite stabilizing) solution
of ARE (3).

Proof. See Ha et al. (2006).

2. Σ-NORMALIZATION

The idea of Σ-normalization originates from the con-
cept normalized coprime factorization in Hoffmann et al.
(1996). In the following lemma we prove that the strictly
dissipative behaviors that we are interested in allow a Σ-
normalized representation.
Lemma 5. Assume that B ∈ Lw

contr is strictly Σ-dissipative
on R− and m(B) = σ+(Σ). Then there exist a minimal
driving variable representation BDV (Ā, B̄, C̄, D̄) of B
such that Ā is asymptotically stable and Ḡ>(−s)ΣḠ(s) =
I, where Ḡ(s) := D̄ + C̄(sI − Ā)−1B̄.

Proof. Let BDV (A,B, C, D) be a minimal driving vari-
able representation of B. We first show that the ARE (3)
has a stabilizing and antistabilizing solution P− and P+,
respectively, and both of them are positive definite. Indeed,
since B is strictly Σ-dissipative on R−, it follows that
(see Ha et al. (2006)) the following Hamiltonian matrix,
denoted by H,[

A− B(D
>

ΣD)
−1

D
>

ΣC B(D
>

ΣD)
−1

B
>

C
>

ΣC − C
>

ΣD(D
>

ΣD)
−1

D
>

ΣC −(A− B(D
>

ΣD)
−1

D
>

ΣC)
>

]
has no eigenvalues on the imaginary axis. Therefore the
smallest and largest solution P− and P+ of the ARE
(3) are stabilizing and antistabilizing, respectively. On
the other hand, since B is strictly Σ-dissipative on R−,
P+ > 0. Taking ito account the condition m(B) = σ+(Σ),
by Proposition 2, we can conclude that all solutions of the
ARE (3) are positive definite. Hence, 0 < P− < P+.

Set F := (D>ΣD)−1(B>P− − D>ΣC). Since P− is a
stabilizing solution, A + BF is asymptotically stable. On
the other hand, D>ΣD > 0 and therefore there exists a
nonsingular R such that D>ΣD = R>R. Now by applying
the feedback v = Fx + R−1v̄ we get

ẋ = (A + BF )︸ ︷︷ ︸
=:Ā

x + BR−1︸ ︷︷ ︸
=:B̄

v̄ = Āx + B̄v̄

w = (C + DF )︸ ︷︷ ︸
=:C̄

x + DR−1︸ ︷︷ ︸
=:D̄

v̄ = C̄x + D̄v̄.

Since state feedback does not change the behavior B, this
also generates a minimal representation BDV (Ā, B̄, C̄, D̄)
of B. It is not difficult to check that Ḡ>(−s)ΣḠ(s) = I,
the required condition of lemma.

A representation satisfying the two conditions in Lemma
5 is called a Σ-normalized driving variable representation
of B. Σ-normalized representations have some nice prop-
erties. This is elaborated in the following lemma.
Lemma 6. Assume that B ∈ Lw

contr is strictly Σ-dissipative
on R− and m(B) = σ+(Σ). Then the Σ-normalized driving
variable representation BDV (Ā, B̄, C̄, D̄) of B constructed
in the proof of Lemma 5 satisfies the following conditions:

(1) Ā>P− + P−Ā− C̄>ΣC̄ = 0,
(2) B̄>P− − D̄>ΣC̄ = 0,
(3) D̄>ΣD̄ = I,
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Proof. The conditions 1, 2 and 3 can be verified by
straightforward computation.
Remark 7. The equation in the first item in Lemma 6
looks similarly to Lyapunov equation defining the observ-
ability gramian. This leads to a notion of Σ-observability
gramian: M is called Σ-observability gramian which is the
unique solution of equation Ā>M + MĀ − C̄>ΣC̄ = 0.
When Σ = I, Σ-observability gramian concides with ob-
servability gramian.

The above lemma suggests that the controllability and
Σ-observability gramians are related to the maximal and
minimal solutions of ARE (3).
Lemma 8. Assume that B ∈ Lw

contr is strictly Σ-dissipative
on R− and m(B) = σ+(Σ). Assume that BDV (Ā, B̄, C̄, D̄)
is the Σ-normalized driving variable representation of B
contructed in the proof of Lemma 5. Then

(1) M = P−,
(2) W = (P+ − P−)−1,

where M is Σ-observability gramian, (the unique solution
of Ā>M + MĀ − C̄>ΣC̄ = 0), and W is controllability
gramian, (the unique solution of ĀW +WĀ>+B̄B̄> = 0).

Proof. 1) follows from Lemma 6.

2) Using facts Ā>P− + P−Ā = C̄>ΣC̄, B̄>P− = D̄>ΣC̄
and D̄>ΣD̄ = I from Lemma 6, we get

(P+ − P−)Ā + Ā>(P+ − P−)

+(P+ − P−)B̄B̄>(P+ − P−)

= P+Ā + Ā>P+ − P−Ā− Ā>P−

+(P+B̄ − P−B̄)(B̄>P+ − B̄>P−)

= P+Ā + Ā>P+ − C̄>ΣC̄

+(P+B̄ − C̄>ΣD̄)(D̄>ΣD̄)−1(B̄>P+ − D̄>ΣC̄)

= 0, (since P+ is solution of ARE (3)).
Therefore,

Ā(P+ − P−)−1 + (P+ − P−)−1Ā> + B̄B̄> = 0,

Hence (P+ − P−)−1 = W , the unique solution of the
Lyapunov equation ĀW + WĀ> + B̄B̄> = 0.

3. Σ-BALANCED TRUNCATION

Assume that B ∈ Lw
contr is strictly Σ-dissipative on R−

and m(B) = σ+(Σ). Let BDV (A,B, C, D) be a minimal
driving variable representation of B and let P− and P+

be the minimal and maximal solutions of the ARE (3)
respectively. Then the eigenvalues of P−P−1

+ are real, pos-
itive, strictly less than one and similarity invariants with
respect to state transformations. Their positive square
roots are called the Σ-characteristic values of B. Let
1 > σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

n > 0 denote the n eigenvalues
of P−P−1

+ . Then there exists a similarity transformation
which transforms both P−1

+ and P− to the diagonal form
P−1

+ = P− = diag(σ1, σ2, . . . , σn) =: Π. The new system is
then said to be in Σ-balanced coordinates.

Pick k < n such that σk > σk+1 and partition Π into

Π =
[

Π1 0
0 Π2

]

where Π1 = diag(σ1, . . . , σk), Π2 = diag(σk+1, . . . , σn).
Partition A, B and C comformably with the partitioning
of Π:

A =
[

A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C = [ C1 C2 ] .

By truncating and retaining the first k states of the original
model, we can then define a reduced order behavior B̂ by
B̂ := BDV (A11, B1, C1, D)ext. In the following, we inves-
tigate the balanced truncation method for Σ-normalized
representations. Starting with a Σ-normalized driving vari-
able representation, transforming into Σ-balanced coordi-
nates results in a Σ-normalized driving variable represen-
tation as well.
Theorem 9. Assume that B ∈ Lw

contr is strictly Σ-
dissipative on R− and m(B) = σ+(Σ). Let BDV (A,B,C, D)
be a Σ-normalized driving variable representation of B.
Then after balancing, we obtain BDV (Ā, B̄, C̄, D̄) in Σ-
balanced coordinates and this is also a Σ-normalized driv-
ing variable representation of B.

Proof. This result follows from the fact that the transfer
matrix associated with the driving variable representation
does not change under coordinate transformation.

From now on, for a given B, we will work with a
Σ-normalized minimal driving variable representation
BDV (Ā, B̄, C̄, D̄) which is in Σ-balanced coordinates, that
is in these coordinates P−1

+ = P− = diag(σ1, σ2, . . . , σn) =
Π.
Lemma 10. Assume that BDV (Ā, B̄, C̄, D̄) is a Σ-normalized
minimal driving variable representation of B. In Σ-
balanced coordinates, the Σ-observability gramian M and
controllability gramian W are given by

(1) M = Π = diag(σ1, . . . , σn),
(2) W = (Π−1 −Π)−1 = diag( σ1

1−σ2
1
, . . . , σn

1−σ2
n
).

Proof. This is a consequence of Lemma 8.

Looking at Lemma 10 from a different point of view,
Σ-balanced coordinates can be viewed as coordinates in
which the Lyapunov equations have solutions in diagonal
form. Indeed, we have

Ā>Π + ΠĀ + C̄>ΣC̄ = 0,

Ā(Π−1 −Π)−1 + (Π−1 −Π)−1Ā> + B̄B̄> = 0.

Next, we take a look at the reduced order behavior B̂ =
BDV (Ā11, B̄1, C̄1, D̄)ext obtained by truncation of the
driving variable representation BDV (Ā, B̄, C̄, D̄). Our aim
is to be able to conclude that dissipativeness is preserved
after reduction.
Theorem 11. Assume that B ∈ Lw

contr is strictly Σ-
dissipative on R− and m(B) = σ+(Σ). Let BDV (Ā, B̄, C̄, D̄)
be a Σ-normalized driving variable representation of B, in
Σ-balanced coordinates. Then σ(Ā11) ⊂ C− ∪ iR. We also
have: σ(Ā11) ⊂ C− if and only if (Ā11, B̄1) is controllable.

Proof. Since BDV (Ā, B̄, C̄, D̄) is a Σ-normalized driving
variable representation of B and is in Σ-balanced coordi-
nates, we have

Ā(Π−1 −Π)−1 + (Π−1 −Π)−1Ā> + B̄B̄> = 0.

It follows that
Ā11Θ11 + Θ11Ā

>
11 + B̄1B̄

>
1 = 0,
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where Θ11 := (Π−1
11 − Π11)−1. Let λ be an eigenvalue of

Ā11 and v 6= 0 be a corresponding left eigenvector, i.e.
v∗Ā11 = v∗λ. Premultiplying the above equation with v∗

and postmultiplying by v we obtain
2Re(λ)(v∗Θ11v) + v∗B̄1B̄

>
1 v = 0.

Since v∗B̄1B̄
>
1 v ≥ 0 and v∗Θ11v > 0, it follows that

Re(λ) ≤ 0. We will show that Re(λ) < 0 if and only
if (Ā11, B̄1) is controllable. In fact, if Re(λ) = 0, then
v∗B̄1B̄

>
1 v = 0, or v∗B̄1 = 0. Therefore v∗(Ā11−λI B̄1) =

0, which contradicts controllability of (Ā11, B̄1). Con-
versely, assume σ(Ā11) ⊂ C− but (Ā11, B̄1) is not con-
trollable. Then there exists v 6= 0 and an eigenvalue λ of
Ā11 such that v∗Ā11 = λv∗ and v∗B̄1 = 0. In the same
way as above we obtain 2Re(λ)v∗Θ11v = v∗B̄1B̄

>
1 v = 0,

which yields a contradiction. We conclude that (Ā11, B̄1)
is controllable.

Next, we claim that balanced truncation preserves Σ-
normalized representation.
Theorem 12. Assume that B ∈ Lw

contr is strictly Σ-
dissipative on R− and m(B) = σ+(Σ). Let BDV (Ā, B̄, C̄, D̄)
be a Σ-normalized driving variable representation of B,
in Σ-balanced coordinates. Assume that σ(Ā11) ⊂ C−.
Then the balanced truncation BDV (Ā11, B̄1, C̄1, D̄) is a
Σ-normalized representation of B̂, and is in balanced co-
ordinates.

Proof. It is easily checked that Ḡ>11(−s)ΣḠ11(s) = I,
where Ḡ11(s) := D̄ + C̄1(sI − Ā11)−1B̄1.

It turns out that balanced truncation also preserves strict
dissipativeness of systems.
Theorem 13. Assume that B ∈ Lw

contr is strictly Σ-
dissipative on R− and m(B) = σ+(Σ). Assume that
σ(Ā11) ⊂ C−. Then the reduced order behavior B̂ ob-
tained above is controllable, and strictly Σ-dissipative on
R−.

Proof. By Proposition 4, B is Σ-strictly dissipative on R−
if and only if D>ΣD > 0 and the antistabilizing solution
P+ of ARE (3) is positive definite. Strict dissipativity also
implies that the Hamiltonian matrix H[

A− B(D
>

ΣD)
−1

D
>

ΣC B(D
>

ΣD)
−1

B
>

C
>

ΣC − C
>

ΣD(D
>

ΣD)
−1

D
>

ΣC −(A− B(D
>

ΣD)
−1

D
>

ΣC)
>

]
has no eigenvalues on the imaginary axis. Therefore there
exist stabilizing and antistabilizing solutions P− and P+.
It is true that σ(A + B(D>ΣD)−1(B>P− − D>ΣC)) =
σ−(H) and σ(A + B(D>ΣD)−1(B>P+ − D>ΣC)) =
σ+(H).

Without loss of generality, we assume that B is in Σ-
normalized driving variable representation BDV (A,B, C, D).
Then after balancing, by Theorem 9 we obtain that
BDV (Ā, B̄, C̄, D̄) is in Σ-balanced coordinates and also
a Σ-normalized driving variable representation of B. The
reduced model BDV (Ā11, B̄1, C̄1, D̄) obtained after trun-
cation has Ā11 aymptotically stable. Therefore the reduced
ARE:

Ā>11P̂ + P̂ Ā11 − C̄>1 ΣC̄1 + (P̂ B̄1 − C̄>1 ΣD̄)

(D̄>ΣD̄)−1(B̄>1 P̂ − D̄>ΣC̄1) = 0
has the stabilizing solution Π11. This implies that this
ARE also has an antistablizing solution, say P̂+. Since

P̂+ > Π11 > 0, by Proposition 4 again, B̂ is strictly Σ-
dissipative on R−.

In order to provide a physical meaning of balanced trun-
cation, let us introduce concepts of available storage and
required supply of the dissipative system. Vav(x0) is avail-
able storage, or the maximum amount of energy that can
be extracted from the system over any possible trajectories
which has initial state x0 at time zero. In (Willems et al.,
1991, Theorem 8.4.2), Vav(x0) = x>0 P−x0, hence the im-
portance of each components of the state x0 (importance
in the sense that: we want to extract as much as possible
energy from each components of x0) is proportional to P−.
This point of view suggests that we should re-order the
components of the state in the way proportional to P−. On
the other hand, in (Willems et al., 1991, Theorem 8.4.2),
Vreq(x0) = x>0 P+x0 is required supply, or the minimum
amount energy that has to be supplied to the system
in order to drive the system to state x0 at time zero
over any possible trajectories. We again introduce new
concept of importance of each components (importance
in the sense that: we want to reduce as much as possible
energy that bring the system to each components of x0). In
this case, the importance of each components is inversely
proportional to P+, hence we should re-order the compo-
nents of the state in the way inversely proportional to P+.
The idea of balanced coordinates is that to re-order the
components of the state which meet both requirements,
that means we bring to the new system such that the first
component require the least energy to supply but has the
most ernergy to extract, the second component has more
energy to supply and less ernergy to extract than the first
one, the third can be compared with the second and so on.
Likewise, the first component is the most inportant, the
second component is less important than the first one and
so on... Since we want to keep the important components,
the tail n−k components of the state have to be truncated.

4. ERROR BOUND

4.1 A one-step error bound

For driving variable representations, G(s) = D + C(sI −
A)−1B is the transfer function from the driving variable
v to the manifest variable w. We will now investigate
[G(−s)> − Ĝ(−s)>]Σ[G(s) − Ĝ(s)], where Ĝ(s) = D +
C1(sI−A11)−1B1 is the transfer function from the driving
variable to the manifest variable in the driving variable
representation of the reduced order behavior.

The following result gives an estimate of a one-step error
bound. One-step means that we truncate only one state
variable, i.e., the McMillan degree of the to be reduced
model is reduced by one.
Theorem 14. Assume that BDV (A,B,C, D) is a Σ-normalized,
Σ-balanced driving variable representation of B. Let Ĝ(s)
be the transfer matrix from the driving variable to the
manifest variable of the reduced order behavior obtained
from the orginial one by truncating one state variable.
Then for all ω ∈ R we have:

−[G(−iω)− Ĝ(−iω)]>Σ[G(iω)− Ĝ(iω)] ≤ 4σ2
n

1− σ2
n

I. (4)
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Proof. We introduce the “error system”, E(s) := G(s)−
Ĝ(s). By straightforward computation, E(s) = C(s)(sI −

A(s))−1B(s) =
[

A(s) B(s)
C(s) 0

]
, where

A(s) := A22 + A21(sI −A11)−1A12,

B(s) := B2 + A21(sI −A11)−1B1,

C(s) := C2 + C1(sI −A11)−1A12.

Assume that M and W are partitioned comformably with
Π as

M =
[

M1 0
0 M2

]
,W =

[
W1 0
0 W2

]
.

It is not difficult to verify that

A(−s)>M2 + M2A(s)− C(−s)>ΣC(s) = 0, (5)

A(s)W2 + W2A(−s)> + B(s)B(−s>) = 0. (6)
In our case, M2 = σn, W2 = σn

1−σ2
n

since we truncate only
one state variable. Transforming equation (5) we get

σnA(−s)> + σnA(s)− C(−s)>ΣC(s) = 0

⇔ σn[−sI −A(−s)>] + σn[sI −A(s)]

= −C(−s)>ΣC(s)

⇔ σn[−sI −A(−s)>]−1 + σn[sI −A(s)]−1 =

−[−sI −A(−s)>]−1C(−s)>ΣC(s)[sI −A(s)]−1

⇔ σnB(−s)>[−sI −A(−s)>]−1B(s) +

σnB(−s)>[sI −A(s)]−1B(s) =

−B(−s)>[−sI −A(−s)>]−1C(−s)> Σ

C(s)[sI −A(s)]−1B(s)

⇔ σnR(−s)> + σnR(s) = −E(−s)>ΣE(s), (7)
where R(s) := B(−s)>[sI − A(s)]−1B(s) and E(s) =
C(s)(sI − A(s))−1B(s) as above. Similary, with equation
(6) we get

σn

1− σ2
n

R(−s)> +
σn

1− σ2
n

R(s) = R(−s)>R(s). (8)

Now, from (7) and (8)

−E(−s)>ΣE(s) = σnR(−s)> + σnR(s)

= 2σnR(−s)> + 2σnR(s)− (1− σ2
n)R(−s)>R(s)

=
4σ2

n

1− σ2
n

I −

[√
1− σ2

nR(−s)> − 2σn√
1− σ2

n

I

]
[√

1− σ2
nR(s)− 2σn√

1− σ2
n

I

]
.

Replacing s = iω, we get

−E(−iω)>ΣE(iω)

=
4σ2

n

1− σ2
n

I −

[√
1− σ2

nR(iω)− 2σn√
1− σ2

n

I

]>
[√

1− σ2
nR(iω)− 2σn√

1− σ2
n

I

]

≤ 4σ2
n

1− σ2
n

I.

5. APPLICATIONS

In this section, we consider the bounded real balancing of
input/state/output systems. Consider the equations{

ẋ = Āx + B̄u
y = C̄x + D̄u

(9)

With (A,B) controllable and (C,A) observable. These
equations represent the input-state-output system
Bi/s/o := {(u, y, x) | there exists x such that (9) holds}

In turn, the external behavior of this input-state-output
system is the input-output system B given by

B = {(u, y) | there exists x such that (9) holds}
B is said to be strictly bounded real if it is strictly Σ-
dissipative on R−, with Σ given by

Σ =
(

Im 0
0 −Ip

)
.

In Opdenacker et al. (1988), a bounded real balanced
truncation scheme is introduced and an L∞ error bound is
provided. Let H(s) := D̄ + C̄(sI − Ā)−1B̄ be the transfer
function from input u to output y of original system and
Ĥ(s) be the transfer function of the reduced order model.
In Opdenacker et al. (1988) the following error bound
formula is derived:

‖H(s)− Ĥ(s)‖∞ ≤ 2
n∑

i=k+1

σi,

where σi, i = 1 . . . n are the Σ-characteristic values of B.

Now we use the theory of Σ-balancing developed in this
paper to investigate this model from a different angle.
Note that B also has a driving variable representation

BDV

(
Ā, B̄,

[
0
C̄

]
,

[
I
D̄

])
.

We will perform the three following steps: 1) Σ-normalization,
2) Σ-balancing and truncation, 3) investigation of the error
bound.

1) Σ-normalization: Apply the feedback v = Fx +
R−1v̄, where F := (I − D̄>D̄)−1(B̄P− + D̄>C̄) and
I − D̄>D̄ = R>R. Then the new, Σ-normalized, driving
variable representation BDV (A,B,C, D) of B is given by:

A := Ā + B̄F = Ā + B̄(I − D̄>D̄)−1(B̄P− + D̄>C̄),

B := B̄R−1,

C :=
[

0
C̄

]
+

[
I
D̄

]
F

=
[

(I − D̄>D̄)−1(B̄P− + D̄>C̄)
C̄ + D̄(I − D̄>D̄)−1(B̄P− + D̄>C̄)

]
,

D :=
[

I
D̄

]
R−1 =

[
R−1

D̄R−1

]
.

2) Σ-balancing and truncation: Using the algorithm shown
in Section 3, we obtain the reduced order behavior B̂ which
again strictly bounded real (by Theorem 13). The driving
variable representation BDV (A11, B1, C1, D) of B̂ is Σ-
normalized (by Theorem 12).
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3) Investigating the error bound: Consider the Σ-
normalized driving variable representation BDV (A,B, C, D)
for B obtained in step 1), and let BDV (A11, B1, C1, D) be
the driving variable representation of the reduced order
system obtained in 2). Denote by G(s) and Ĝ(s) the trans-
fer matrix from driving variable to manifest variable of
BDV (A,B,C, D) and BDV (A11, B1, C1, D), respectively.
Partition

G(s) =
(

G1(s)
G2(s)

)
,

where G1(s) is the transfer matrix from v to u and G2(s)
the transfer matrix from v to y. Likewise, let Ĝ1(s) and
Ĝ2(s) be the transfer matrices from the driving variable
to û and ŷ, respectively. Assume now that we truncate one
step. Theorem 14 says that

−[G(−iω)− Ĝ(−iω)]>Σ[G(iω)− Ĝ(iω)]

=−
((

G1(−iω)
G2(−iω)

)
−

(
Ĝ1(−iω)
Ĝ2(−iω)

))>
(

Im 0
0 −Ip

) ((
G1(iω)
G2(iω)

)
−

(
Ĝ1(iω)
Ĝ2(iω)

))
=−[G1(−iω)− Ĝ1(−iω)]>[G1(iω)− Ĝ1(iω)]

+[G2(−iω)− Ĝ2(−iω)]>[G2(iω)− Ĝ2(iω)]

≤ 4σ2
n

1− σ2
n

I.

This implies

[G2(−iω)− Ĝ2(−iω)]>[G2(iω)− Ĝ2(iω)]

≤ 4σ2
n

1− σ2
n

I + [G1(−iω)− Ĝ1(−iω)]>[G1(iω)− Ĝ1(iω)].

This implies that if we ’drive’ both B and B̂ with the same
driving variable trajectory v ∈ L2(R), with corresponding
input trajectories u, û ∈ L2(R) and y, ŷ ∈ L2(R) for B and
B̂, respectively, then we have

‖y − ŷ‖2
2 ≤

4σ2
n

1− σ2
n

‖v‖2
2 + ‖u− û‖2

2,

which means that the squared L2-norm of the difference
of the outputs of the two systems does not exceed the sum
of the squared L2-norm of the difference of the inputs and
a term depending on σn and the squared L2-norm of the
driving variable. If the driving variable v is taken such that
the two inputs u and û are the same, then we obtain

‖y − ŷ‖2
2 ≤

4σ2
n

1− σ2
n

‖v‖2
2.

This formula is valids for one-step truncation only. It turns
out that in the case that we truncate k state variables,
using the triangular inequality we get

‖y − ŷ‖2
2 ≤

n∑
i=k+1

4σ2
i

1− σ2
i

‖v‖2
2.

Here, the driving variable v should be such that the inputs
of al ith order truncations (i = 0, 1, 2, . . . , k) are the same.

6. CONCLUSIONS

We close this paper with some conclusions:

(1) A new balanced truncation method based on normal-
ized representation has been presented. Dissipative-
ness is preserved after reduction and an one-step error
bound formula is discussed.

(2) In the future we intend to find algorithms to reduce
the model from output nulling representation to out-
put nulling representation.
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