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Abstract: This paper is concerned with robust H∞ control for uncertain stochastic time-
delay systems with norm-bounded parametric uncertainties. Based on an integral inequality
and slack matrix technique, delay-dependent bounded real lemma (BRL) and the condition
for the existence of robust H∞ controller are presented. For all the admissible parametric
uncertainties, the designed controller guarantees the resulting closed-loop system is robustly
mean-square asymptotically stable with a prescribed H∞ disturbance attenuation level. The
results are formulated in terms of linear matrix inequalities (LMIs). Both model transformation
and cross terms bounding techniques are avoided in the derivations. Two numerical examples
are provided to show the advantage of the proposed method.

1. INTRODUCTION

Time delays may occur in many practical systems and
they may cause instability and poor performance to the
systems. Analysis and synthesis of time-delay systems have
been received considerable attention in the past decade,
see Cao and Xue [2005], Chen et al. [2007, 2008a], de Souza
and Li [1999], Fridman and Shaked [2002, 2003], Gao et al.
[2007], Gao and Wang [2003], Gu et al. [2003], Han [2005],
Han and Yue [2007], He et al. [2007, 2004], Jiang and Han
[2007], Lin et al. [2006], Moon et al. [2001], Richard [2003],
Suplin et al. [2006], Zhang et al. [2005] and the references
therein.

On the other hand, stochastic modeling and control play
important roles in many industrial fields. During the past
years, increasing efforts have been made on the study
of stochastic systems with time delays. LMI techniques
have been applied to obtain delay-dependent stability
conditions for uncertain stochastic delay systems, see for
example Yue and Won [2001], Mao [2002], Yue et al. [2003],
Yue and Han [2005], Chen et al. [2005], Xu et al. [2005],
Chen et al. [2008a,b,c], and the references therein. Robust
H∞ control problems for uncertain stochastic continuous-
and discrete-time systems with delays have been addressed
in Xu and Chen [2002, 2004], Xu et al. [2006] and Xu et al.
[2004], respectively. These designed controllers guarantee
that the closed-loop systems are robustly mean-square
asymptotically stable for all admissible uncertainties with
specified H∞ disturbance attenuation degrees. L2 − L∞
filtering for such systems has been stated in Gao et al.
[2006]. However, the approaches of Xu and Chen [2002,
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2004], Xu et al. [2004, 2006], Gao et al. [2006] are all
independent on the delays.

Based on Lyapunov-Krasovskii method, Chen et al. [2004]
has provided delay-dependent approach to develop con-
trollers by the descriptor transformation together with
estimation for cross terms. Most recently, based on free-
weighting matrix method, some delay-dependent results
have been reported by Xu et al. [2005], Yue and Han
[2005], Chen et al. [2008b,c]. In Xia et al. [2007], the
authors have discussed delay-dependent L2 −L∞ filtering
for stochastic delay systems by introducing some slack
matrices. Based on input-output method, delay-dependent
H∞ control and filtering for uncertain time-delay systems
with state-multiplicative noises have been presented in
Gershon et al. [2007]. By this approach, the system is
transformed into a deterministic one without delay.

In this paper, Lyapunov-Krasovskii theory is used to deal
with delay-dependent robust H∞ control for a class of
stochastic time-delay systems with norm-bounded uncer-
tainties. Based on a stochastic integral inequality (inte-
gral inequality method for deterministic delayed systems,
please see Han [2005], Zhang et al. [2005], Jiang and Han
[2007] etc.) and slack matrix technique, delay-dependent
BRL and the condition for the existence of robust H∞
controller are established in terms of LMIs. The designed
controller ensures that the resulting closed-loop systems
is robustly mean-square asymptotically stable with a pre-
scribed H∞ disturbance attenuation level. We avoid the
use of any model transformations and bounding techniques
for cross terms. The effectiveness of our approaches is
verified by two illustrative examples.

Notations: Throughout this paper, the notations are fairly
standard. The superscripts “T” and “-1” stand for the
transpose and the inverse of a matrix; | · | denotes the Eu-
clidean norm; Rn is n-dimensional Euclidean space; Rn×m

is the set of all n ×m real matrices; diag{A1, A2, ..., An}
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represents a diagonal matrix with diagonal elements
A1, A2, ..., An; P > 0 (P < 0) means that the matrix P
is positive (negative) definite and symmetric. E{·} denotes
the expectation operator. (Ω,F ,P) is a probability space,
where Ω is the sample space, and F is a σ-algebra of
subsets of Ω. The symmetric term in a symmetric matrix
is denoted as ∗.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following system



dx(t) =[A(t)x(t) + A1(t)x(t− h)
+ B(t)u(t) + Bvv(t)]dt

+ [H(t)x(t) + H1(t)x(t− h)
+ Hvv(t)]dw(t)

z(t) = Cx(t) + Du(t)
x(θ) = ψ(θ), ∀θ ∈ [−h, 0]

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is
the control input, v(t) ∈ Rq is the disturbance input,
z(t) ∈ Rp is the controlled output. h > 0 is the delay. ψ(·)
here is the initial condition assumed to be continuously
differentiable on [−h, 0]. It is assumed that w(t) is a scalar
Wiener process defined on the probability space (Ω,F ,P)
satisfying E{dw(t)} = 0, E{dw2(t)} = dt. In (1),

A(t) =A + ∆A,

A1(t) =A1 + ∆A1,

B(t) =B + ∆B,

H(t) =H + ∆H,

H1(t) =H1 + ∆H1,

(2)

and A,A1, B,H, H1, C, D are known real constant ma-
trices with compatible dimensions, ∆A, ∆A1, ∆B, ∆H,
∆H1 are time-varying parametric uncertainties, which can
be described by
[ ∆A ∆A1 ∆B ∆H ∆H1 ] = LF (t) [ E1 E2 E3 E4 E5 ] ,

(3)
where L,E1, E2, E3, E4, E5 are constant matrices with
compatible dimensions, and F (t) is an unknown and time-
varying matrix function satisfying FT (t)F (t) ≤ I.
Definition 1. System (1) with u(t) = 0, v(t) = 0 is
said to be robustly mean-square stable for all admissible
uncertainties (3), if for any scalar ε > 0 there exists a
scalar σ(ε) > 0 such that

E{| x(t) |2} < ε, ∀t > 0
when

sup
−h≤s≤0

E{|ψ(s)|2} < σ(ε).

Additionally, system (1) with u(t) = 0, v(t) = 0 is said to
be robustly mean-square asymptotically stable, if

lim
t→∞

E{|x(t)|2} = 0.

holds for any initial conditions.
Definition 2. System (1) with u(t) = 0 is said to be
robustly mean-square asymptotically stable with a pre-
scribed H∞ disturbance attenuation level γ for all ad-
missible uncertainties (3), if it is robustly mean-square
asymptotically stable in the sense of Definition 1 and J < 0
under zero initial conditions, where J is a performance
index which is defined as

J = E{
∫ ∞

0

[|z(t)|2 − γ2|v(t)|2]dt}. (4)

The objective of this paper is to design a memoryless state
feedback controller u(t) = Kx(t) for system (1) such that
the resulting closed-loop system is robustly mean-square
asymptotically stable with a prescribed H∞ disturbance
attenuation level γ (i.e. J < 0).

To derive our main results, the following two lemmas are
necessary.
Lemma 3. (Xie [1996]) Let Φ be a given symmetric matrix,
H and G are matrices with approximate dimensions,
then for all F (t) satisfying FT (t)F (t) ≤ I, the following
inequality

Φ + HF (t)G + GT FT (t)HT < 0

holds if and only if there exists a scalar ε > 0 such that

Φ + εHHT + ε−1GT G < 0.

Denoting
y(t)dt = dx(t) (5)

then by Newton-Leibniz formula, the following holds al-
ways ∫ t

t−h

y(α)dα = x(t)− x(t− h). (6)

Moreover, we can obtain the following lemma.
Lemma 4. For any constant symmetric positive definite
matrix R ∈ Rn×n, a positive scalar h > 0, and the vector
function y(t) ∈ Rn such that the following integrals are
well defined, then there holds

−h

∫ t

t−h

yT (s)Ry(s)ds ≤ ξT (t)Rξ(t), (7)

where ξT (t) = [xT (t) xT (t− h)]T and

R =
[−R R

RT −R

]
.

Proof Similar to Lemma 2 of Han [2005], (7) can be
deduced easily by Jensen’s inequality (Gu et al. [2003]).
Remark 5. In lemma 4, y(t) is not equivalent to ẋ(t) in
the deterministic systems (for instances Han [2005], Zhang
et al. [2005], Jiang and Han [2007]), due to the existence
of the stochastic perturbation dw(t). Lemma 4 reduces to
Proposition 3 of Han [2005] if the stochastic perturbation
dw(t) = 0.

3. MAIN RESULTS

In this section, the delay-dependent robust H∞ control
problem of system (1) will be discussed by means of
standard LMI approach. First, we will establish a delay-
dependent stochastic BRL for system (1).

3.1 Stochastic BRL

Theorem 6. For all admissible uncertainties (3), system
(1) is robustly mean-square asymptotically stable with a
prescribed H∞ disturbance attenuation level γ, if there ex-
ist positive definite symmetric matrices P, Q, R ∈ Rn×n,
matrix S ∈ Rn×n and positive scalars ε1, ε2 satisfying the
following LMI
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Ω =




Ω11 Ω12 AT S PBv HT P PL 0 CT

∗ Ω22 AT
1 S 0 HT

1 P 0 0 0
∗ ∗ Ω33 ST Bv 0 ST L 0 0
∗ ∗ ∗ −γ2I HT

v P 0 0 0
∗ ∗ ∗ ∗ −P 0 PL 0
∗ ∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




< 0,

(8)
where

Ω11 =PA + AT P + Q−R + ε1E
T
1 E1 + ε2E

T
4 E4,

Ω12 =PA1 + R + ε1E
T
1 E2 + ε2E

T
4 E5,

Ω22 =−Q−R + ε1E
T
2 E2 + ε2E

T
5 E5,

Ω33 =h2R− S − ST .

Proof: Choose the Lyapunov-Krasovskii functional candi-
date as

V (t, xt) = V1(t, xt) + V2(t, xt) + V3(t, xt), (9)
where

V1(t, xt) = xT (t)Px(t),

V2(t, xt) =
∫ t

t−h

xT (α)Qx(α)dα,

V3(t, xt) = h

∫ 0

−h

∫ t

t+β

yT (α)Ry(α)dαdβ,

with P > 0, Q > 0, R > 0.

Then by Itô differential formula (Mao [1997]), the stochas-
tic differential dV (t, xt) along the trajectories of system (1)
with u(t) = 0, v(t) = 0 is

dV (t, xt) = LV (t, xt)dt + 2xT (t)Pg(t)dw(t), (10)
where g(t) = H(t)x(t) + H1(t)x(t− h),

LV (t, xt) =2xT (t)P [ A(t)x(t) + A1(t)x(t− h) ]
+ gT (t)Pg(t) + LV2(t, xt) + LV3(t, xt),

with

LV2(t, xt) = xT (t)Qx(t)− xT (t− h)Qx(t− h), (11)
and by Lemma 4

LV3(t, xt) = h2yT (t)Ry(t)− h

∫ t

t−h

yT (α)Ry(α)dα

≤ h2yT (t)Ry(t)− ξT Rξ(t).
(12)

where ξ(t) and R are defined in Lemma 4.

Notice the definition (5) and system (1) with u(t) =
0, v(t) = 0, the following is true for any matrix S ∈ Rn×n

0 =2yT (t)ST {g(t)dw(t)
+ [A(t)x(t) + A1(t)x(t− h)− y(t)]dt}. (13)

From (10) and (13)

dV (t, xt) =LṼ (t, xt)dt

+ 2[xT (t)P + yT (t)ST ]g(t)dw(t)
(14)

where
LṼ (t, xt) =LV (t, xt)

+ 2yT (t)ST [A(t)x(t) + A1(t)x(t− h)− y(t)]
≤[ξT (t) yT (t)]Θ[ξT (t) yT (t)]T

(15)

and

Θ =




Θ11 Θ12 AT (t)S
∗ Θ22 AT

1 (t)S
∗ ∗ h2R− S − ST


 (16)

with
Θ11 =PA(t) + AT (t)P −R + Q + HT (t)PH(t),
Θ12 =PA1(t) + R + HT (t)PH1(t),
Θ22 =−Q−R + HT

1 (t)PH1(t).

If Θ < 0, which implies LṼ (t, xt) < 0, then the stochastic
system (1) is robustly mean-square asymptotically stable
by Definition 1 and the stochastic stability theory (Mao
[1997]).

Invoking Schur complements (Gu et al. [2003]), Θ < 0 is
equivalent to

Λ =




Λ11 Λ12 AT (t)S HT (t)P
∗ Λ22 AT

1 (t)S HT
1 (t)P

∗ ∗ h2R− S − ST 0
∗ ∗ ∗ −P


 < 0 (17)

where
Λ11 =PA(t) + AT (t)P + Q−R,

Λ12 =PA1(t) + R,

Λ22 =−Q−R.

Λ < 0 holds if and only if

∆ =




∆11 ∆12 AT S HT P
∗ Λ22 AT

1 S HT
1 P

∗ ∗ h2R− S − ST 0
∗ ∗ ∗ −P




+




PL
0

SL
0


F (t)




ET
1

ET
2
0
0




T

+




ET
1

ET
2
0
0


FT (t)




PL
0

SL
0




T

+




0
0
0

PL


F (t)




ET
4

ET
5
0
0




T

+




ET
4

ET
5
0
0


FT (t)




0
0
0

PL




T

<0
(18)

where Λ22 is defined in (17), and

∆11 =PA + AT P + Q−R,

∆12 =PA1 + R.

Applying Lemma 3 and Schur complements to ∆ < 0 yield

Ω̂ =




Ω11 Ω12 AT S HT P PL 0
∗ Ω22 AT

1 S HT
1 P 0 0

∗ ∗ Ω33 0 SL 0
∗ ∗ ∗ −P 0 PL
∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ −ε2I




< 0, (19)

which is implied by Ω < 0.

Then, Ω < 0 will ensure the robust mean-square asymp-
totic stability of system (1).

Furthermore, the stochastic differential dV (t, xt) along the
trajectories of system (1) with u(t) = 0 is
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dV (t, xt) =LVv(t, xt)dt

+ 2xT (t)P [g(t) + Hvv(t)]dw(t),
(20)

where
LVv(t, xt) =2xT (t)P [ A(t)x(t) + A1(t)x(t− h) + Bvv(t) ]

+ [g(t) + Hvv(t)]T P [g(t) + Hvv(t)]
+ LV2(t, xt) + LV3(t, xt),

with LV2(t, xt),LV3(t, xt) defined in (11) and (12).

By (1) and (5), the following holds for any matrix S ∈
Rn×n

0 =2yT (t)ST {g(t)dw(t) + [A(t)x(t)
+ A1(t)x(t− h) + Bvv(t)− y(t)]dt}. (21)

It follows by (20) and (21)

dV (t, xt) =LṼv(t, xt)dt + 2[xT (t)P + yT (t)ST ]
× [g(t) + Hvv(t)]dw(t)

(22)

where

LṼv(t, xt) ≤ζT (t)Θ̂ζ(t) (23)

and ζT (t) = [ξT (t) yT (t) vT (t)]

Θ̂ =




Θ11 Θ12 AT (t)S PBv + HT (t)PHv(t)
∗ Θ22 AT

1 (t)S HT
1 (t)PHv(t)

∗ ∗ Ω33 ST Bv

∗ ∗ ∗ HT
v (t)PHv(t)


 . (24)

Under zero initial condition and the mean-square asymp-
totic stability, we have by Itô formula,

J =E{
∫ ∞

0

[|z(t)|2 − γ2|v(t)|2]dt}

=E{
∫ ∞

0

[|z(t)|2 − γ2|v(t)|2 + LṼv(t)]dt}

≤E{
∫ ∞

0

ζT (t)Θvζ(t)dt}

(25)

where

Θv =




Θ11 + CT C Θ12 AT (t)S PBv + HT (t)PHv(t)
∗ Θ22 AT

1 (t)S HT
1 (t)PHv(t)

∗ ∗ Ω33 ST Bv

∗ ∗ ∗ −γ2I + HT
v (t)PHv(t)


 .

(26)

Following the similar lines as in the previous part of this
proof, it can be verified that Θv < 0 is equivalent to Ω < 0.

Therefore, we can conclude that if LMI (8) holds, then
system (1) will be robustly mean-square asymptotically
stable with a specified H∞ disturbance attenuation level
γ. This completes the proof. ¥
Remark 7. The existence of the positive definite symmet-
ric term hyT (t)Ry(t), which is shown as hẋT (t)Rẋ(t) in
the deterministic delay systems (Han [2005], Zhang et al.
[2005], Jiang and Han [2007]), drives us to introduce
the free matrix S in (16). If S = 0, (16) becomes to

Θ =
( Θ11 Θ12 0
∗ Θ22 0
0 0 hR

)
, and Θ < 0 is infeasible. Therefore,

the slack matrix S is introduced, which can make it to be
solvable.
Remark 8. Neither model transformation nor cross term
estimating technique is employed in Theorem 6. Therefore,
Theorem 6 is expected to be less conservative.

3.2 Robust H∞ Control

We now investigate the problem of H∞ controller design
for system (1) based on Theorem 6 as follows.
Theorem 9. Given scalars λ, h > 0, γ > 0, for all admissi-
ble uncertainties (3), if there exist positive scalars δ1, δ2,
positive definite symmetric matrices X, Q̄, R̄ ∈ Rn×n and
matrix Y ∈ Rm×n satisfying (27) (shown at the top of the
next page), where

Υ11 =AX + XAT + BY + Y T BT + Q̄− R̄ + δ1LLT ,

Υ12 =A1X + R̄,

Υ22 =− Q̄− R̄,

Υ13 =λ(XAT + Y T BT ) + δ1λLLT ,

Υ33 =h2R̄− 2λX + δ1λ
2LLT ,

Υ55 =−X + δ2LLT ,

Υ16 =XCT + Y T DT ,

Υ17 =XET
1 + Y T ET

3 ,

then u(t) = Kx(t) is a robust H∞ controller of system
(1). Moreover, the controller gain is constructed by K =
Y X−1.

Proof: Let S = ST = λP , where λ is a tuning parameter.
Replacing A, E1 and C by AK = A+BK, EK = E1+E3K
and CK = C + DK in (8), respectively, we have

Ξ =




Ξ11 Ξ12 λAT
KP PBv HT P PL 0 CT

K

∗ Ω22 λAT
1 P 0 HT

1 P 0 0 0
∗ ∗ Ξ33 λPBv 0 λPL 0 0
∗ ∗ ∗ −γ2I HT

v P 0 0 0
∗ ∗ ∗ ∗ −P 0 PL 0
∗ ∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




< 0

(28)
where

Ξ11 =PAK + AT
KP + Q−R

+ ε1E
T
KEK + ε2E

T
4 E4,

Ξ12 =PA1 + R + ε1E
T
KE2 + ε2E

T
4 E5,

Ξ33 =h2R− 2λP.

Taking a congruent transformation to the above inequality
(28) by diag{P−1, P−1, P−1, I, P−1, I, I, I}, and setting

X = P−1, Q̄ = XQX,

R̄ = XRX, Y = KX,
(29)

result in (30) (shown at the top of the next page), where

Π11 =AX + XAT + BY + Y T BT + Q̄− R̄

+ ε1(E1X + E3Y )T (E1X + E3Y ) + ε2XET
4 E4X,

Π12 =A1X + R̄

+ ε1(E1X + E3Y )T E2X + ε2XET
4 E5X,

Π22 =− Q̄− R̄ + ε1XET
2 E2X + ε2XET

5 E5X,

Π33 =h2R̄− 2λX.

Taking δi = εi(i = 1, 2), then it can be proved that Π < 0
is equivalent to the LMI (26) by some simple manipu-
lations. Thus, the controller gain can be determined as
K = Y X−1 by (28). The proof is completed. ¥
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Υ =




Υ11 Υ12 Υ13 Bv XHT Υ16 Υ17 XET
4

∗ Υ22 λXAT
1 0 XHT

1 0 XET
2 XET

5
∗ ∗ Υ33 λBv 0 0 0 0
∗ ∗ ∗ −γ2I HT

v 0 0 0
∗ ∗ ∗ ∗ Υ55 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −δ1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −δ2I




< 0 (27)

Π =




Π11 Π12 λXAT
K Bv XHT L 0 XCT

K

∗ Π22 λXAT
1 0 XHT

1 0 0 0
∗ ∗ Π33 λBv 0 λL 0 0
∗ ∗ ∗ −γ2I HT

v 0 0 0
∗ ∗ ∗ ∗ −X 0 L 0
∗ ∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




< 0, (30)

4. ILLUSTRATIVE EXAMPLES

In this section, the effectiveness of our method will be
demonstrated by two numerical examples.
Example 10. Consider the following system (Chen et al.
[2004])

A =
[

0 0
0 1

]
, A1 =

[−1 −1
0 −0.9

]
, B =

[
0
1

]
,

Bv =
[

1
1

]
,Hv =

[
0.1
0.2

]
, C = [ 0 1 ] , D = 0.1,

L =
[

0.2
0.2

]
, E1 = E2 = E4 = E5 = 0.2I.

(31)

The delay-independent method of Xu and Chen [2002]
is not applicable to this example. If h = 0.3, then the
minimum disturbance attenuation level by Chen et al.
[2004] is γmin = 1.65 (with δ = 0.8). However, applying
Theorem 9 we can obtain γmin = 1.1339 when λ = 1, and
the following solutions

X =
[

3.3150 0.7277
0.7277 1.4629

]
,

Y = [−2.4027 −2.5734 ] ,

Q̄ =
[

1.3552 1.0794
1.0794 0.8890

]
,

R̄ =
[

3.0601 0.2355
0.2355 1.2327

]
,

δ1 = 20.1076, δ2 = 27.1985.

Then, the corresponding controller is given by

u(t) = Kx(t) = [−0.3802 −1.5700 ]x(t).

When λ = 0.1, the minimum disturbance attenuation level
is γmin = 0.0001.
Example 11. Consider the stochastic time-delay system
(1) with (Gershon et al. [2007])

A =
[

0 1
−1 −0.4

]
, A1 =

[
0 0.1

−0.1 −0.04

]
,

B =
[

0
1

]
, Bv =

[
1
−1

]
,

H =
[

0 0.3
−0.2 −0.04

]
,H1 =

[
0 0.18

−0.09 −0.15

]
,

C =
[−0.5 4

0 0

]
.

(32)

It can be seen that minimum disturbance attenuation level
by Xu and Chen [2002] and Gershon et al. [2007] are
γmin = 4.855 and γmin = 4.5822, respectively. Compared
with these results, we can obtain γmin = 3.5155 (λ =
0.1, h = 0.5) and the following gain matrix

K = [ 4.0321 −19.4478 ] .

It is shown by Examples 10 and 11, that the presented
method of this paper is much less conservative than the
existing ones in the literature.

5. CONCLUSIONS

A stochastic bounded real lemma (BRL) and a robust H∞
controller in terms of linear matrix inequalities (LMIs)
for uncertain stochastic time-delay systems have been
presented in this paper. The delay-dependent results are
obtained based on an integral inequality and slack matrix
technique. Neither model transformation and cross terms
bounding techniques is involved. Our method is less con-
servative than the exiting ones in the literature, which has
been shown by two numerical examples.
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