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Abstract: This paper considers the synchronization problem for four identical nonlinear
systems coupled with time-delay. We have already studied the synchronization problem for
bidirectional two coupled systems with delays and derived sufficient conditions to synchronize
the systems. In this paper, these approaches are extended for four identical chaotic systems
unidirectionally or bidirectionally coupled using state or output feedback with time-delays.
Firstly, we show, using the small-gain theorem, that trajectories of coupled strictly semi-passive
systems converge to a bounded region. Then we derive sufficient conditions for synchronization of
coupled systems. The derived conditions are based on the delay-dependent Lyapunov-Krasovskii
approach, and the criteria are obtained in the form of linear matrix inequalities (LMIs). The
effectiveness of the derived conditions is illustrated by numerical examples.

1. INTRODUCTION

Synchronization phenomena are of interest to researchers
in applied physics, biology, social science, engineering( Pec-
ora and Carroll (1990.); Strogatz and Stewart (1993.);
Nijmeijer and Mareels (1997); Pikovsky et al. (2001)).
More recently, applications of these phenomena to engi-
neering have also been considered and analyzed via control
theory (Huijberts et al. (2007); Nijmeijer and Rodriguez-
Angeles (2003); Oguchi and Nijmeijer (2005); Pogromsky
et al. (2002)) . On the other hand, in practical situations,
time-delays caused by signal transmission affect the be-
havior of coupled systems. It is therefore important to
study the effect of time-delay in existing synchronization
schemes. Although the effect of time-delay in the synchro-
nization of coupled systems has been investigated both
numerically and theoretically by a number of researchers,
these works concentrate on synchronization of systems
with a coupling term typically described by K(xi(t− τ)−
xj(t − τ)) or K(Cxi(t − τ) − Cxj(t − τ))( Amano et al.
(2006)) and there are few results for the case in which the
coupling term is described by K(xi(t) − xj(t − τ)). The
former requires that each system has a feedback with the
same length of time-delay as the transmittal delay, while
the latter does not need such a delayed feedback. For the
latter case, however, as the coupling term does not vanish
when the systems synchronize, even if uncoupled each
system is bounded, the coupled systems are not necessarily
bounded. Therefore the synchronization problemin this
case needs further study. We have already considered the
problem for two chaotic systems bidirectionally coupled
with the coupling term K(xi(t) − xj(t − τ)) and derived
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sufficient conditions for synchronization (Yamamoto et al.
(2007); Oguchi et al. (2007)).

In this paper we consider synchronization of identical
chaotic systems unidirectionally or bidirectionally coupled
using state or output feedback described by K(Cxi(t) −
Cxj(t − τ)). First, we introduce the notion of strict semi-
dissipativity and show the boundedness of trajectories
of coupled systems provided that each system is strictly
semi-passive. Then we derive sufficient conditions for syn-
chronization of the systems coupled unidirectionally or
bidirectionalyl by using the stability criterion for delay
systems.

2. PRELIMINARIES

Throughout this paper, ‖ · ‖ denotes the Euclidean norm.

For a vector function v(t) : [0,∞) → R
n, if ‖v‖∞ �

supt≥0 ‖v(t)‖ < ∞, then we denote v ∈ Ln
∞.

In the following subsections, we review some results de-
rived in our previous work (Yamamoto et al. (2007)).

2.1 Semi-passivity and semi-dissipativity

Consider the nonlinear system

ẋi(t) = fi(xi, ui) , yi(t) = Cixi (t ≥ 0) (1)

with state xi ∈ R
n, input ui ∈ R

p, output yi ∈ R
m,

fi : R
n × R

p → R
n and Ci ∈ R

m×n.

According to semi-passivity as defined in Pogromsky et al.
(2002), we introduce strict semi-passivity and strict semi-
dissipativity as follows.

Definition 1. (strict semi-passivity). Assume that p = m.
System (1) is said to be strictly semi-passive, if there exist
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a C1-class function Vi : R
n → R, class-K∞ functions αi(·)

and αi(·) satisfying

αi(‖xi‖) ≤ Vi(xi) ≤ αi(‖xi‖)

V̇i(xi) ≤ −Hi(xi) + yT
i ui

for all xi ∈ R
n, ui ∈ R

m, yi ∈ R
m, where the function

Hi(xi) satisfies the following condition:

‖xi‖ ≥ ηi ⇒ Hi(xi) ≥ 0

for a positive real number ηi.

Definition 2. (strict semi-dissipativity). System (1) is said
to be strictly semi-dissipative with respect to the supply
rate wi(ui, yi), if there exist a C1-class function Vi : R

ni →
R and class-K∞ functions αi(·) and αi(·) satisfying

αi(‖xi‖) ≤ V (xi) ≤ αi(‖xi‖) (2)

V̇i(xi) ≤ wi(ui, yi) − Hi(xi) (3)

for all xi ∈ R
n, ui ∈ R

p, yi ∈ R
m, where the function H(xi)

satisfies
‖xi‖ ≥ ηi ⇒ Hi(xi) ≥ 0 (4)

for some positive real number ηi.

Remark 3. The system is strictly semi-passive if the sup-
ply rate wi(ui, yi) = yT

i ui for all ui ∈ R
m.

For a strictly semi-dissipative system, the following lemma
can be proved in a similar way as the argument of
the input-to-state stability (ISS) in Isidori (1999). For
later use, we decompose ui into li blocks such as ui =

col(ui1, . . . , uili) with uij ∈ R
pj and

∑li
j=1 pj = p, and

consider the case of yi(t) = xi(t).

Lemma 4. Suppose that system (1) is strictly semi-

dissipative with respect to w(ui, yi) ≤
∑li

j=1 βij(‖uij‖)

where αi ∈ K∞ and βij ∈ K, i.e. there exist a C1-class
function Vi : R

n → R such that

αi(‖xi‖) ≤ Vi(xi) ≤ αi(‖xi‖) (5)

V̇i(xi) ≤ −αi(‖xi‖) − Hi(xi) +

li
∑

j=1

βij(‖uij‖) (6)

where Hi(xi) satisfies property (4), then the trajectories
xi(t) of the system (1) satisfy the following inequality for
any uij ∈ L

pj

∞ and the initial state xi0.

lim sup
t→∞

‖xi(t)‖ ≤ max
1≤j≤li

{γij(lim sup
t→∞

‖uij(t)‖), ρi(ηi)} (7)

where

ρi(·) = α−1
i ◦ αi(·), (8)

γij(·) = α−1
i ◦ αi ◦ α−1

ij ◦ κβij(·) (j = 1, . . . , li) (9)

with
∑li

j=1 αij(·) = αi(·) and κ > 1.

2.2 Small-gain theorem

Now, we consider the case in which the two systems are
coupled by the following inputs containing time-delay,

u11(t) =y2(t − τ) = C2x2(t − τ)

u21(t) =y1(t − τ) = C1x1(t − τ).
(10)

where τ is a constant delay and the initial conditions of xi

for i = 1, 2 are respectively given by

xi(θ) = φi(θ) (−τ ≤ θ ≤ 0)

xi(0) = φi(0) = x0i
(11)

where φi : [−τ, 0] → R
n. In addition, we suppose that each

system (1) is strictly semi-dissipative. Then from Lemma
4, each system satisfies the properties (7).

Define class-K functions as
π12(r) = γ11(σmax(C2) · r)

π21(r) = γ21(σmax(C1) · r)
(r ≥ 0) (12)

where γij(·) are defined by (9) and σmax(·) denotes the
maximum singular value of a matrix.

Then we obtain the following lemma.

Lemma 5. For two coupled systems (1) with coupling term
(10), if the functions π12(·) and π21(·) in (12) satisfy

π12 ◦ π21(r) < r for all r > 0, (13)

then the trajectories x1(t) and x2(t) satisfy

lim sup
t→∞

‖x1(t)‖ ≤ max{ζ1, π12(ζ2)} (14)

lim sup
t→∞

‖x2(t)‖ ≤ max{ζ2, π21(ζ1)} (15)

where ζi = max2≤j≤li{γij(lim supt→∞(‖uij‖), ρi(ηi)} for
any inputs uij ∈ L

pj

∞.

This lemma can be also extended for systems with time-
varying delays (Oguchi et al. (2007)).

3. 4-COUPLED SYSTEMS

We consider four identical systems:

Σi :







ẋi(t) = Axi + f(xi) + Bui

yi(t) = Cxi (t ≥ 0)

xi(θ) = φi(θ) (−τ ≤ θ ≤ 0)

(16)

for i = 1, . . . , 4, where xi ∈ R
n, ui ∈ R

m, yi ∈ R
m, A ∈

R
n×n, B ∈ R

n×m and C ∈ R
m×n. In addition, f : R

n ×
R

m → R
n is Lipschitz continuous and φi : [−τ, 0] → R

n

with τ > 0.

Now we assume that each system (16) is strictly semi-
passive and these systems are coupled by the following
controller

ui(t) =
4

∑

j=1,j �=i

Kij(yi(t) − yj(t − τij)) (17)

where the time-delays 0 < τij ≤ τ are constants. This
description includes the following two cases which will be
considered later.

(i) K21 = K32 = K43 = K14 ≤ 0 and Kij = 0
(ii) Kij = Kji ≤ 0 , τij = τji

The former means that the network has an unidirectional
ring structure and the latter that the coupling for each
system is bidirectional. In addition, if m = n and C is
nonsingular, the coupling represents a full state coupling.
While, if m < n, it is an output coupling. Here we
formulate synchronization of coupled systems as follows.

Definition 6. If there exist a positive real number r such
that the trajectories xi(t) of the systems (16) with initial
conditions φi such that ‖φi − φj‖c ≤ r satisfy ‖xi(t) −
xj(t)‖ → 0 as t → ∞ for all i, j, then the coupled
systems (16) and (17) are asymptotically synchronized.

The goal of this work is to derive conditions for coupled
systems (16) and (17) to synchronize asymptotically. In
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Fig. 1. An unidirectional ring network
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Fig. 2. A bidirectional coupled system

this paper, we investigate synchronization conditions for
unidirectionally or bidirectionally coupled systems to be
synchronized asymptotically.

3.1 Boundedness of Coupled Systems

We show under suitable assumptions the boundedness of
the coupled systems (16) and (17). Firstly, we consider the
case m = n. In addition, we assume the nonsingularity of
the matrix C. Note that strictly semi-passive systems with
coupling term (17) are strictly semi-dissipative. From the
property, we obtain the following result by using Lemma
4.

Theorem 7. Define class-K functions as

πij(r) := γij(σmax(C)r)

for r ≥ 0, where γij are defined in Lemma 4. If the
functions πij(·) satisfy

πij(r) < r for all r > 0,

then the trajectories of the coupled systems converge to
the bounded set

Ω = {x ∈ R
n|‖xi‖ ≤ ρ(η)}. (18)

Remark 8. If the coupling gains satisfy K21 = K32 =
K43 = K14 ≤ 0 and Kij = 0 for others, the coupled system
has an unidirectional ring network structure. In this case,
the functions γij are identical, and the above condition is
simplified as π(r) < r for all r > 0.

Next, we consider the case of output coupling, that is
m < n. Then we assume that CB is non-singular.

From the non-singularity of CB, the system (16) can be
transformed to the following normal form Lozano et al.
(2000).

ẏi(t) = a(yi, zi) + CBui (19)

żi(t) = q(yi, zi) (20)

for i = 1, 2, 3, 4, where zi ∈ R
n−m and

[

yT
i zT

i

]T
= Φxi for

a nonsingular matrix Φ �
[

CT NT
]T

with N ∈ R
(n−m)×n

such that NB = 0 and the functions a : R
m×R

n−m → R
m

and q : R
m × R

n−m → R
n−m are Lipschitz continuous.

żi(t) = q(yi, zi)

ẏi(t) = a(yi, zi) + CBui

yiui

zi

Fig. 3. Decomposition of each system

Here the first equation can be recognized as a system with
with input vT

i = (uT
i , zT

i ) and output yi. At this point, we
assume that

• The system (19) is strictly semi-dissipative with re-
spect to the supply rate w(vi, yi) ≤ βy(‖zi‖) + yT

i ui,
where βy ∈ K, i.e. there exist a positive definite C1-
class functions Vy, class K∞ functions αy, αy and ǫy

satisfying

αy(‖yi‖) ≤ Vy(yi) ≤ αy(‖yi‖)

V̇y(yi) ≤ −ǫy(‖yi‖) − Hy(yi) + βy(‖zi‖) + yT
i ui

(21)

for all yi ∈ R
m, ui ∈ R

m, zi ∈ R
n−m, where the

function Hy(yi) satisfies that Hy(yi) ≥ 0 if ‖yi‖ ≥ ηy

for some positive real number ηy.
• The system (20) is strictly semi-dissipative with re-

spect to the supply rate w(yi, zi) ≤ βz(‖yi‖), where
βz ∈ K, i.e. there exist a positive definite C1-class
functions Vz , class K∞ functions αz, αz and αz sat-
isfying

αz(‖zi‖) ≤ Vz(zi) ≤ αz(‖zi‖)

V̇z(zi) ≤ −αz(‖zi‖) − Hz(zi) + βz(‖yi‖)

for all zi ∈ R
n−m, yi ∈ R

m, where the function Hz(zi)
satisfies that Hz(zi) ≥ 0 if ‖zi‖ ≥ ηz for some positive
real number ηz .

Substituting (17) for (21), we obtain

V̇y(yi) ≤ −ǫy(‖yi‖) − Hy(yi) + βy(‖zi‖) + yT
i ui

≤ −αi(‖yi‖) − Hy(yi) + βy(‖zi‖)

+

4
∑

j=1,j �=i

βij(‖yj,τij
‖)

where αi(r) = ǫy(r) − 1
2

∑4
j=1,j �=i λmax(Kij)r

2 and

βij(r) = − 1
2λmin(Kij)r

2.

Then, by applying controller (17), from lemma 4, we know
that

lim sup
t→∞

‖yi(t)‖ ≤ max
1≤j≤4,j �=i

{γy(lim sup
t→∞

‖zi‖),

γij(lim sup
t→∞

‖yj‖), ρy(ηy)}

lim sup
t→∞

‖zi(t)‖ ≤max{γz(lim sup
t→∞

‖yi‖), ρz(ηz)}

hold, where
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ρy(·) = α−1
y ◦ αy(·), γy(·) = ρy ◦ α−1

y ◦ κβy(·),

ρz(·) = α−1
z ◦ αz(·), γz(·) = ρz ◦ α−1

z ◦ κβz(·),

γij(·) = ρy ◦ α−1
ij ◦ κβij(·), αy(r) +

4
∑

j=1,j �=i

αij(r) = αi(r)

and αij(r) = 1
3 (ǫy(r) − αy(r)) − 1

2λmax(Kij)r
2 such that

αij ∈ K∞.

Then we obtain the following theorem.

Theorem 9. For all r > 0 and i, j(1 ≤ i < j ≤ 4), if

γy ◦ γz(r) < r and γij(r) < r (22)

hold, then the trajectories of the system (16) converge to
the set

Ω � {xi ∈ R
n | ‖yi‖ ≤ sy and ‖zi‖ ≤ sz} (23)

where sy � max{ρy(ηy), γy ◦ ρz(ηz)},

sz � max{ρz(ηz), γz ◦ ρy(ηy)}.

4. SYNCHRONIZATION

In this section, we derive conditions for synchronization of
the coupled systems (16) with (17).

Define the synchronization error e(t) as

e(t) := [e12(t)
T , e13(t)

T , e14(t)
T ]T (24)

with e12(t) = x1(t) − x2(t), e13(t) = x1(t) − x3(t),
e14(t) = x1(t) − x4(t). Then limt→∞ ‖e(t)‖ → 0 means all
systems asymptotically synchronize. Therefore we consider
a condition in which the dynamics of e has e = 0 as
an asymptotically stable equilibrium. In general, however,
the dynamics of e does not have e = 0 as a solution for
arbitrary coupling gains and delays in (17). In order to
give the network a symmetric structure, we consider the
following two cases:

(i) Unidirectional coupling: K21 = K32 = K43 =
K14 ≤ 0 and Kij = 0, τij = τ

(ii) Bidirectional coupling: K12 = K34 := K1, K13 =
K24 := K2, K23 = K41 := K3 and τ12 = τ34 := τ1,
τ13 = τ24 := τ2, τ23 = τ41 := τ3

In these cases, the dynamics of the error e(t) has e = 0
as an equilibrium solution. Therefore the synchronization
problem for these cases can be reduced to the stability
problem of the origin of the error dynamics.

4.1 Unidirectional Coupling

To begin with, we consider the case in which the network
has an unidirectional ring structure. For this case, the
synchronization error dynamics is given by

ė(t) = A0(x1)e(t) + A1e(t − τ) (25)

where A0(x1) = I⊗Â(x1) with Â(x1) = A+BKC+D(x1)

for D(x1) �

(

∂f(x)
∂x

)

|x=x1
and A1 is defined as

A1 =

[

0 0 BKC
−BKC 0 BKC

0 −BKC BKC

]

in which ⊗ denotes the Kronecker product.

If e = 0 is asymptotically stable, e(t) asymptotically
converges to zero and synchronization is accomplished.

Therefore the synchronization problem can be reduced
to the stability problem for the above retarded system.
By using the Lyapunov-Krasovskii theorem, we obtain the
following synchronization condition.

Theorem 10. For all x1 ∈ Ω given by (18) or (23), if
there exist positive definite matrices P, Q, Z ∈ R

3n×3n and
matrices Y, W ∈ R

3n×3n satisfying the following LMI, then
e = 0 of the error dynamics is asymptotically stable.









Γ11 Γ12 −τY τAT
0 Z

ΓT
12 Γ22 −τW τAT

1 Z
−τY T −τWT −τZ 0
τZA0 τZA1 0 −τZ









< 0 (26)

where

Γ11 = PA0 + AT
0 P + Y + Y T + Q

Γ12 = PA1 − Y + WT , Γ22 = −Q − W − WT

As the LMI (26) is affine with respect to the system
matrices A0(x1) and A1, this result can be extended to
a stability criterion for the polytopic systems.

Since x1 is bounded, each element of D(x1) is also
bounded. As a result, the approximated error dynamics
(25) can be rewritten by the following polytopic system:

ė(t) =

m
∑

i=1

piA
i
0e(t) + A1e(t − τ)

where Ai
0 = A0 + Di are constant matrices and pi(x1) ∈

[0, 1] are polytopic coordinates satisfying the convex sum
property

∑m

i=1 pi(x1) = 1. Using the “vertex systems”,
we can obtain the following polytopic linear differential
inclusion (PLDI)

ė(t) ∈ Co
{

A1
0e(t)+A1e(t − τ), · · · , Am

0 e(t) + A1e(t − τ)
}

(27)

where Co denotes a convex hull. Therefore we can obtain
the following stability criterion.

Theorem 11. Consider the PLDI (27). If there exist pos-
itive definite matrices P, Qi, Z ∈ R

3n×3n and matrices
Y i, W i ∈ R

3n×3n for i = 1, . . . , m satisfying the following
LMI, then e = 0 of the error dynamics is asymptotically
stable.









Γ11 Γi
12 −τY i τAT

0 Z
ΓiT

12 Γi
22 −τW i τAT

1 Z
−τY iT −τW iT −τZ 0
τZA0 τZA1 0 −τZ









< 0 (28)

where

Γi
11 = PA0 + AT

0 P + Y i + Y iT + Qi

Γi
12 = PA1 − Y i + W iT , Γi

22 = −Qi − W i − W iT

Using Theorem 11, we can check the stability of e = 0 by
solving the finite number of LMIs.

Example 12. Consider a network of 4 coupled Lorenz
systems.

ẋi(t) =

[

σ(xi2 − xi1)
rxi1 − xi2 − xi1xi3

−bxi3 + xi1xi2

]

+ Bui , yi = Cxi (29)

where σ = 10, r = 28, b = 8/3 and BT = C. At this
stage, we assume that m = 3 and C = I3×3 and the
coupled system forms an unidirectional ring network with
K21 = K32 = K43 = K14 < 0, Kij = 0 and τij = τ in
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(17). Now, take a storage function V (x̃i) = 1
2 x̃T

i x̃i, where

x̃i = [xi1 xi2 xi3 − σ − r]
T
. Then the derivative along the

trajectory of each system is given by

V̇ (x̃i) = −α(‖x̃i‖) − H(x̃i) + β(‖x̃jτ‖)

for (i, j) ∈ {(1, 4), (2, 1), (3, 2), (4, 3)}, where the functions
α(·), β(·) and H(x) are defined as α(‖x̃i‖) = (k

2 + ǫ)‖x̃i‖
2,

β(‖x̃i‖) = k
2‖x̃i‖

2 and

H(x̃i) =(σ − ǫ)x̃2
i1 + (1 − ǫ)x̃2

12

+ (b − ǫ)(x̃13 −
b − 2ǫ

2(b − ǫ)
(σ + r))2 −

b2(σ + r)2

4(b − ǫ)
,

and 0 < ǫ < 1. Then γij(·) is given by

γij(r) =

√

κk
2

(k/2 + ǫ)
r, (30)

where κ >1. Since C=I, π(·) = γ(·). Therefore, setting κ
sufficiently close to 1, π(r) < r holds for all r > 0 and
any finite number k > 0. Furthermore, for ǫ = 0.01, the
minimum η satisfying H(x̃i) ≥ 0 is given by η = 39.4 and
ρ(·) is the identity map. So the bounded set is estimated
by

Ω = {x̃i ∈ R
3|‖x̃i‖ ≤ 39.4}

and each trajectory xi(t) converges to the set Ω. Setting
k = 30 and τ = 0.01, the LMI criterion is satisfied for all
x1 ∈ Ω. Figure 4 shows that the norm of e(t) converges
to zero and synchronization is achieved, and Figure 5
shows that the coupled systems behave chaotically under
synchronization.

4.2 Bidirectional Coupling

Next we derive a synchronization condition for bidirection-
ally coupled systems. In a similar way as the unidirectional
coupling case, the error dynamics is given by

ė(t) = Ã0(x1)e(t) +

3
∑

j=1

Ãje(t − τj)

where Ã0(x1) = I⊗Â(x1) with Â(x1) = A+B(
∑3

j=1 Kj)C+

D(x1) and Ãj for j = 1, 2, 3, are defined as

Ã1 =

[

Λ1 0 0
Λ1 0 −Λ1

Λ1 −Λ1 0

]

, Ã2 =

[

0 Λ2 −Λ2

0 Λ2 0
−Λ2 Λ2 0

]

Ã3 =

[

0 −Λ3 Λ3

−Λ3 0 Λ3

0 0 Λ3

]

where Λi = BKiC.

Then the synchronization condition is given by the follow-
ing theorem.

Theorem 13. For all x1 ∈ Ω given by (18) or (23), if there
exist a positive definite matrix P ∈ R

3n×3n satisfying
the following LMI, then e = 0 of the error dynamics is
asymptotically stable.





ĀT P + PĀ J12 J13

JT
12 −J22 0

JT
13 0 −J33



 < 0 (31)

where Ā = Ã0(x1)+
∑

3

i=1
ÃT

i
, J12 = [Ã0(x1)T P, ÃT

1
P , ÃT

2
P, ÃT

3
P ],

J22 = 1

τ1+τ2+τ3

diag{P, P, P, P}, J13 = [PÃ1, P Ã2, P Ã3],

and J33 = 1

4
diag{ 1

τ1

P, 1

τ2

P, 1

τ3

P}.
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Fig. 4. The norm of the error ‖e(t)‖
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Fig. 5. Behavior of the state x1

This LMI criterion can be also rewritten by using PLDI:

ė(t) ∈ Co
{

Ã1
0e(t)+

3
∑

j=1

Ãje(t − τj), · · · ,

Ãm
0 e(t) +

3
∑

j=1

Ã1e(t − τj)
}

(32)

Theorem 14. If there exist a positive definite matrix P ∈
R

3n×3n satisfying the following LMIs, then e = 0 of the
error dynamics is asymptotically stable.





ĀiT P + PĀi J12 J13

JT
12 −J22 0

JT
13 0 −J33



 < 0, i = 1, . . . , m (33)

where Āi = Ãi

0
+

∑3

i=1
ÃT

i
, J12 = [ÃiT

0
P, ÃT

1
P , ÃT

2
P, ÃT

3
P ],

J22 = 1

τ1+τ2+τ3

diag{P, P, P, P}, J13 = [PÃ1, P Ã2, P Ã3],

and J33 = 1

4
diag{ 1

τ1

P, 1

τ2

P, 1

τ3

P}.

Example 15. Consider four Lorenz systems (29) bidirec-
tionally coupled using output feedback with delays. For
(29), we assume that BT = C = [0 1 0; 0 0 1].

For real numbers k1, k2, k3 > 0, set coupling gains Kj as
K1 = −k1I2×2, K2 = −k2I2×2 and K3 = −k3I2×2 and
time-delays τ1 = τ3 = 2 × 10−3 and τ2 = 5 × 10−3.

Now letting ỹi = [xi2, xi3−r]T and zi = xi1, define storage

functions Vy(ỹi) � 1
2 ỹT

i ỹi and Vz(zi) � 1
2z2

i . Then the
derivative of Vy(ỹi) along the trajectory of (29) satisfies
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V̇y(ỹi) ≤ −αi(‖ỹi‖) − Hy(ỹi) +

4
∑

j=1,j �=i

βij(‖ỹj,τij
‖)

where αi(·) =
∑3

j=1 αij(·), αij(r) =
(

ǫ
3 −

λmax(Kij)
2

)

r2,

βij(r) = −
λmin(Kij)

2 r2 and

Hy(ỹi) = (1 − ǫ)ỹ2
i1 + (b − ǫ)ỹ2

i2 + brỹi2

with ǫ = 0.01. Here, the minimum ηy satisfying Hy(ỹi) ≥ 0
is 28.9. Similarly, for the function Vz(zi),

V̇z(zi) ≤ −αz(‖zi‖) + βz(‖ỹi‖)
holds, where αz(r) = σ

2 r2 , βz(r) = σ
2 r2. This means

that the system of zi is strictly dissipative with respect
to βz(‖ỹi‖) and therefore ηz = 0. In addition, from the
definitions of the storage functions Vy(ỹi) and Vz(zi),
ρy(r) = ρz(r) = r for any r ≥ 0. As a result, γij is given
by

γij(r) =

√

κkl

2
kl

2 + ǫ
3

r , l ∈ {1, 2, 3}

and satisfies (22) with κ sufficiently close to 1. Further-
more, γz(r) = r for any r ≥ 0 and since βy(‖z‖) = 0,
γy(r) = 0 which means (22) holds. Finally, we obtain
sy = sz = ηy = 28.9. Therefore, from Theorem 9, the
trajectories xi(t) converge to the set

Ω = {xi ∈ R
3|(x2

i2 + (xi3 − r)2)
1

2 ≤ 28.9 and ‖xi1‖ ≤ 28.9}.

Setting k1 = 28, k2 = 20 and k3 = 28, the LMI condition
holds for all x1 ∈ Ω. Figure 6 shows the behavior of x1(t).
In this figure, the cylinder denotes the estimated boundary
of the set Ω. We know that the trajectories converge to
the set Ω. Figure 7 shows the behavior of the norm of e(t).
Since the norm converges to zero, the synchronization of
these systems is perfectly accomplished.

5. CONCLUSION

In this paper, we have considered conditions for syn-
chronization of four nonlinear systems unidirectionally
or bidirectionally coupled using state feedback or output
feedback with time-delays cased by the signal exchange.
For systems unidirectionally or bidirectionally coupled, we
showed the boundedness of the strictly semi-dissipative
systems by the small-gain theorem and estimated the
region to which all trajectories converge. Then, for the
coupled systems with symmetric structures, we derived
sufficient conditions for synchronization of the systems
by the Lyapunov-Krasovskii theorem. Finally, we like to
mention that the boundedness of the trajectories of the
coupled systems is global property but the stability of
the origin of the error dynamics is local property along
the trajectory of system 1 due to the derivation process.
Therefore, the derivation of the global condition for syn-
chronization should be addressed in our future work.
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