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Abstract: In this article, we propose a multiple objective optimization based approach for the short term 
scheduling of batch plants to select superior solutions when compared to the single objective problem. 
Two alternate approaches to optimality, viz. lexicographic and pareto-optimality based formulations are 
considered here. We demonstrate the suitability of lexicographic optimization for the case when the 
importance associated with the objectives is known a priori. Next, we also show the practicality of the 
pareto-optimization based approach when an explicit precedence ordering of the objectives is not known. 
Case studies involving the objectives of make-span minimization and profit maximization problem are 
considered here in the discrete state task network representation of (Kondili et al., 1993), to demonstrate 
the practicality of the above approaches, towards deciding on operating schedules. 

 

1. INTRODUCTION 

The short term scheduling of batch plants is important from 
the viewpoint of chemical industry as it allows the production 
of a wide range of products even in small amounts within the 
same production facility. Moreover, such plants can be 
operated over a wide range of operating conditions for diverse 
product specifications. These scenarios are frequently found 
in the manufacture of specialty materials, pharmaceutical, 
polymers, bio-chemicals and food products. This has led to a 
considerable attention being given to the short term 
scheduling of batch plants in literature. The classifications of 
batch plants have been done on various criteria and are 
categorized into multi-product or multi-purpose batch plants, 
sequential or network represented processes. In addition, the 
batch plants can also have different storage policies such as 
Zero Wait, Finite Intermediate Storage, No Intermediate 
Storage, and Unlimited Intermediate Storages.  Further, the 
schedules for batch operation policies are classified based on 
time representation. Broadly, there have been two approaches 
on the representation of time in batch scheduling. The 
discrete-time state task network (STN) representation was 
presented by (Kondili et al., 1993) while continuous time 
representations were proposed by (Zhang and Sargent, 1996) 
and (Mockus and Reklaitis, 1997). The discrete time 
formulation requires prior knowledge of the time horizon and 
this horizon is further divided into smaller time intervals such 
that their length equals to the greatest common factor of the 
processing times. The processing times of all the tasks are 
assumed to be constant over the scheduling horizon thereby 
allowing the determination of the length of time interval. The 
drawbacks of this representation include the requirement of 
the processing time to be constant and also the fact that these 
may prove computationally expensive when the length of the 
time interval becomes very small. One important advantage of 
the discrete-time representation is its reference grid against 

which all the operations competing for shared resources can 
be positioned and thus facilitating easier modeling of the 
problem. On the other hand, the continuous time 
representations are considered to be more accommodative in 
nature but these have been reported to be computationally 
expensive for larger problems as their LP relaxation gets poor 
due to the large number of big-M constraints. Many different 
objectives have been considered in literature for the short term 
scheduling problem such as the maximization of profit, the 
minimization of make-span, the minimization of production 
cost and the maximization of total sales. An important 
characteristic of these scheduling problems is that there are 
multiple optimal solutions which can be exploited to satisfy 
more than one objective. A detailed discussion on the various 
aspects of the scheduling of batch plants can be found in the 
state-of-the-art review article (Mendez et al., 2006). Most of 
the work in literature has focused on efficiently solving the 
scheduling problem for longer horizons with the help of either 
decomposition techniques or hybrid techniques (Jain and 
Grossmann, 2001), and (Maravelias and Grossmann, 2003). 

As mentioned earlier, the solution space of the batch 
scheduling problem is characterized by computational 
complexity, multiple objectives as well as existence of 
multiple solutions. In this paper, we approach the batch 
scheduling problem from a multiple objective optimization 
perspective. Specifically, we analyze the optimality in the 
presence of multiple objectives, in a lexicographic and pareto-
optimal sense. When the precedence ordering of the 
objectives are explicitly known to the designer, lexicographic 
optimization methods help to suitably reflect these choices 
and generate optimal solution(s) that represent sequential 
satisfaction of the objectives. Here we propose to exploit these 
methods to analyze the quality of the optimal solution under 
different known precedence ordering of the batch scheduling 
objectives mentioned above. For the case when the designer 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15849 10.3182/20080706-5-KR-1001.4168



 
 

     

 

has no particular preference for any of these objectives, it is 
important to analyze the trade-offs that exists between these 
objectives, in a pareto-optimal sense that looks at all non-
inferior solutions. In this paper we consider both the above 
approaches towards solving the short-term scheduling 
problem. We assess the suitability of both these methods 
using the discrete STN based formulation (Kondili et al., 
1993). 

The following section gives a brief overview of the discrete 
STN model. The next section is on multi-objective 
optimization wherein we present the lexicographic based and 
the ε -constraint based multi-objective formulations for the 
batch scheduling problem. This is followed by a benchmark 
case study from the literature on which the proposed strategies 
are demonstrated. 

2. MATHEMATICAL FORMULATION 

This section contains the necessary mathematical formulations 
that are used for the succeeding discussions. In this article, we 
adopt the following nomenclature for the various parameters 
and variables. 

2.1  Nomenclature 

Indices 
i  task 
j  unit 
n  time point 
s  state 
Sets 
F set of feeds 
I  set of processing task 
J  set of units 
N  total number of time points 
P set of products 
S  set of states 
IT set of intermediates 
Known Parameters 

max
iB  maximum capacity for task  i in suitable unit 
min
iB  minimum capacity for task  i in suitable unit 

FC  cost of the feed F 

PC  cost of the product P 

sC  cost of the state S 
H horizon period 

0
sST  initial available amount of state s 
max

sST  maximum storage capacity of state s 

i , jU  task unit suitability matrix i.e., i , jU 1= if the ith task 
is suitable to be processed in unit j or zero otherwise. 

iτ  processing time for task i in suitable unit in 
timepoints 

i ,sρ  proportion of state s produced or consumed  
 
 

Variables 
Binary Variable 

i ,nW  binary variable, equals one to indicate the 
processing of task i at time point n and zero 
otherwise. 

Continuous Variable 
s
i ,nb  amount of material started processing for task i at 

time point n 
s ,nst   amount of state s at time point n 

2.2 Constraints 

A batch scheduling problem involves the determination of the 
time at which a task is to be started and the amount of 
material that gets processed in each task at every time-point. 
The following sets of constraints are similar to that in (Kondili 
et al., 1993) and helps in the determination of the schedules 
and batch sizes. This model additionally considers task 
decoupling (Ierapetritou and Floudas, 1998) wherein if a task i 
can be performed in two units j and j’, then an artificial task 
(i’) is included such that the task i takes place in unit j and the 
task i’ takes place in unit j’. This task decoupling helps in 
handling the unit dependent processing time for a task in a 
straight forward manner. 
 i , j i ,n

i I
U W 1 j,n

∈

≤ ∀∑  (1) 

 i , j i ,N
i I

U W 0 j
∈

= ∀∑  (2) 

 ( )
in 1

i , j i ,n i ,n i ,n
i I n n

U W 1 M 1 U W j,n
τ+ −

′ ′ ′
′ ′∈ =

− ≤ − ∀∑ ∑  (3) 

 
i

i ,s i i ,s

s s
s ,n s ,n 1 i ,n i ,s i ,n i ,s

i: 0 , n i: 0

st st b b

s,n 1

τ
ρ τ ρ

ρ ρ− −
> < <

= + +

∀ >

∑ ∑
 (4) 

 
i ,s

0 s
s ,1 s i ,1 i ,s

i: 0
st ST b s

ρ

ρ
<

= + ∀∑  (5) 

 max
s ,n sst ST s,n≤ ∀  (6) 

 min s max
i ,n i i ,n i ,n iW B b W B i,n≤ ≤ ∀  (7) 

 i , j i ,n i
i I n

U W N 1 jτ
∈

≤ − ∀∑∑  (8) 

 i ,n i
n

W N 1 iτ ≤ − ∀∑  (9) 

 s
i ,n i ,nW b i,n≤ ∀  (10) 

Constraint (1) ensures that only one task is being processed in 
a unit at a given time-point. Constraint (2) ensures that no task 
is being started at the end of the horizon. Constraint (3) 
ensures that the operation is non-pre-emptive i,e., no other 
task can start in an unit until the current task has finished. 
Constraint (4) and (5) conserve the mass balance at any time-
point and the first time-point respectively. Constraint (6) 
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bounds the amount of state at any time to be within the 
maximum storage capacity. Constraint (7) ensures that the 
amount of material that is being processed in any unit at any 
given point is bounded by the upper and lower capacities of 
that unit. Constraint (8) and (9) are tightening constraints and 
do not affect the optimality of the solution. Constraint (10) 
makes sure that a task in a unit takes place at any time if only 
the amount of material processed in that unit is greater than 
zero. This constraint also does not affect the optimality of the 
results but avoids redundant results ( )s

i ,n i ,nW 1 and b 0= = . 
However, this constraint can be neglected for those tasks 
which have min

iB 0> . It should be noted the above set of 
constraints do not consider constraints on utilities and 
demands. These factors can be appropriately incorporated and 
have been eliminated here for the sake of simplicity. 
However, the rest of the article will still hold irrespective of 
the inclusion of such criteria. 

2.3 Objective Function 

As mentioned earlier, we consider the twin objectives of 
maximization of profit and the minimization of the make-
span. These requirements can be mathematically represented 
by the following equations. 

Minimization of the make-span: We need to include the 
following constraint to the set of constraints from (1) to (10) 
so as to accommodate this criterion. 

 ( )i ,n iW n ms i,nτ+ ≤ ∀  (11) 

The above constraint ensures that the continuous variable ms  
take the value of the maximum time of all the tasks that get 
processed. Since, make-span involves the minimization of the 
maximum time, the objective function can be written as 

 Min ms  (12) 

Maximization of the Profit: Profit is the difference between 
the revenue produced by sales and the amount spent on the 
production and can be given by 

 
( )

( )0
P s ,N F s s ,N

s P IT s F

N

s s ,n
s n 1

Max Profit C st C ST st

C st

∈ ∪ ∈

=

= − −

−

∑ ∑

∑∑
 (13) 

The first term on the RHS corresponds to the amount of 
revenue realized by selling the products while the second term 
indicates the amount of money spent on the feed with the third 
term indicating the amount of money spent on the storage. 
The above expression does not account for the equipment 
setup costs and the manpower costs. However, these can be 
included if necessary. 

In the following discussions, Formulation I will indicate the 
maximization of the profit and will include the objective 
function in (13) and the set of constraint from (1) to (10).  
Formulation II will indicate the minimization of the make-

span and will include the constraint set from (1) to (11) with 
the objective function as in (12). 

3. MULTI-OBJECTIVE OPTIMIZATION 

First, we present the lexicographic optimization procedure 
that helps in the determination of schedules with minimum 
make-span without reducing the maximum profit that can be 
derived from the plant. This is followed by the ε -constraint 
based multi-objective optimization approach to determine the 
pareto-fronts. 

31 Lexicographic Optimization 

In this section, we address the issue of selecting a promising 
solution to the short term scheduling problem from the set of 
multiple optimal solutions (obtained for any of the single 
objective problem). The determination of such a solution is 
important because the designer would like to select a solution 
that is optimal to as many objectives as possible. For example, 
a designer would like to maximize the profit and as well like 
to minimize the make-span. The traditional way of solving the 
maximization of profit (or the minimization of the make-span) 
does not guarantee satisfaction of both of these criteria. The 
solution may be optimal with respect to the maximization of 
profit but the solution need not be the best as there may be 
another solution which can have the same optimal profit and 
yet have a smaller make-span. A naïve way to address this 
issue would be to determine all the optimal solutions for the 
primary objective (in this case, maximization of the profit) 
and select the solution which has a better secondary objective 
(for example the least make-span). However, this would 
require the determination of all the possible optimal solutions 
involving the construction of integer cuts and may prove 
computationally expensive. Another approach would be to 
solve a subsequent optimization problem with the secondary 
objective such that the solution to this problem is optimal not 
only for the secondary problem but is also optimal to the 
primary problem. In multi-objective optimization literature, 
this procedure is known as lexicographic optimization. 
Lexicographic optimization (or preemptive optimization) is a 
special form of multi objective optimization that characterizes 
trade-offs between the various objectives which are given a 
precedence ordering. The primary objective has the highest 
priority followed by decreasing priorities on subsequent 
objectives. The philosophy in this approach is that even a 
marginal improvement in a higher precedence objective is 
considered more valuable than an arbitrarily large 
improvement in a lower ranked objective. It can be noted that 
the lexicographic optimization requires the specification of a 
precedence level between these objectives as primary and 
secondary objective and hence lexicographic optimization is 
useful if the designer has an explicit knowledge of the 
precedence level. 

In the following analysis, we assume that the maximization of 
the profit is a primary criterion and the minimization of the 
make-span is a secondary criterion. However, this precedence 
is completely arbitrary and depends on the need of the 
designer. The need of lexicographic optimization can be 
understood from the Figure 1. Let 1f represent the 
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maximization of the profit and 2f  represent the minimization 
of the make-span. If we were to solve the problem of 
maximization of profit, we can get either point A or point B. 
This is because both A and B have the same optimal solution 
but it can be seen that point A is a better solution to point B as 
it has a smaller make-span than point B. Thus, it is necessary 
to have a strategy to handle these issues. The following two-
step procedure will address this issue and thereby uncover 
potentially useful solutions. 

Step 1: Solve Formulation I for a given horizon to determine 
the maximum profit denoted as maxP  . 

Step 2: Solve Formulation II along with the following 
additional constraint to obtain a better solution (if any) which 
will make the same amount of profit in a smaller horizon than 
H. 

( )
( )

N
0 max

P s ,N F s s ,N s s ,n
s P IT s F s n 1

C st C ST st C st P
∈ ∪ ∈ =

− − − =∑ ∑ ∑∑  (14) 

The solution obtained in Step 2 is also an optimal solution to 
Step 1 and this solution can be uncovered in Step 1 if all the 
multiple optimal solutions are determined. It can be seen that 
the solution of Step 2 will be superior (if not the same) to Step 
1 for it will have the maximum possible profit in the given 
horizon and will also schedule the tasks such that they are 
completed in the earliest possible time. The determination of 
such points may not have been possible if the problem was 
solved as in Step 1 alone. This two-step approach has been 
demonstrated on the benchmark problem (Kondili et al., 
1993) in a subsequent section. 

Remark: It may be possible that there are multiple-optimal 
solutions even to the Step 2. In such cases, the designer can 
add any other criteria in a similar manner such that the 
optimality of the solution to Step 1 and Step 2 is preserved 
and is yet superior to other solutions in the third objective. 

3.2 Determination of Pareto-optimal front 

In lexicographic optimization, we had assumed that an 
explicit ordering between the various objectives is known a 
priori. However, it may not be possible for the designer to 
always suggest an explicit precedence level. For example, a 
designer may not able to prioritize between the make-span 
and the profit. In such scenarios, it would be beneficial to 
determine the trade-offs between these conflicting objectives. 
Such trade-offs are termed as pareto-optimal fronts in the 
multi-objective literature. The pareto-optimal front (Deb, 
2001) is a collection of the set of non-dominated solutions. A 
solution is said to be non-dominated if it is feasible and there 
is no other feasible solution which has better values for all of 
the objectives. In this section, we use the ε constraint based 
method (Deb, 2001) to determine the pareto-points to study 
the tradeoffs between the twin objectives of profit 
maximization and minimization of the make-span. The ε -
constraint method involves posing all the objectives except 
one into constraints. For example, if there are M objectives, 
the solution of the following problem will yield a pareto-
point.  

 

( )
( )
( )
( )

( ) ( )

Min ,

Subject to , 1, 2,..,  and 

0, 1,2,.., ;

0, 1,2,.., ;

, 1,2,.., ;

m m

j

k

L U
i i i

f

f m M m

g j J

h k K

x x x i n

μ

ε μ≤ = ≠

≥ =

= =

≤ ≤ =

x

x

x

x

 (15) 

In the above formulation, fμ  indicates the thμ  objective and  

mε  indicates the minimum performance required on the 
thm objective whereas ( )g x and ( )h x  indicate the inequality 

and equality constraints respectively. The complete pareto-
front can be obtained by solving the above problem with 
different performance criteria. An important advantage of 
using this method over other methods is that it helps in the 
determination of non-convex pareto-fronts. However, the 
application of the above traditional strategy to problems with 
multiple solutions suffers from a severe drawback that it can 
lead to sub-optimal pareto-front. To understand this, consider 
the scenario in Figure 1 wherein one of the objectives has 
multiple solutions. Let us assume that the objectives 1f   and   

2f  need to be minimized and we minimize 1f   with a 
performance criteria on 2f  i.e.., 2 2f ε≤ . Under this 
circumstance, the solution to the problem in (15) may be 
either A or B. But, it is clear that B is not a pareto-optimal 
solution when compared to A as the solution A has a better 
objective function value ( )2f   than B. 

 

 

 

 

 

 

 

 

Fig.  1.  Issues in ε constraint method. 

This can be avoided by solving a secondary problem similar 
to the Step 2 of the lexicographic formulation. Now, we 
present the steps needed to determine the optimal pareto-front 
between the two objectives of maximization of profit and 
minimization of the make-span. 

Step 1: Assume a minimum amount of desired profit ( )mP  
and solve Formulation II along with the following constraint. 

 
( )

( )0
P s ,N F s s ,N

s P IT s F

mN

s s ,n
s n 1

C st C ST st

P
C st

∈ ∪ ∈

=

⎛ ⎞− − −
⎜ ⎟
⎜ ⎟ ≥
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑

∑∑
 (16) 

f2a f2b 

f1*

f2≤ε2

f2 

f1
A B 
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Let the minimum make-span be *
mms . 

Step 2: Solve Formulation I with the following constraint to 
determine the maximum profit that can be obtained. 

 ( ) *
i ,n i mW n ms i,nτ+ ≤ ∀  (17) 

It can be seen that the constraint in (17) is similar to that in 
Equation (11) and ensures that the optimality obtained for 
make-span in Step 1 is maintained in Step 2 also. Let the 
maximum profit obtained in Step 2 be *

mP . Now, the point 

( )* *
m mP ,ms corresponds to one point on the pareto-front while 

the complete pareto-front can be obtained as shown in Step 3. 

Step 3: Solve Steps 1 and 2 in sequence for different values of  
( )mP  to obtain the complete pareto-front. 

In most circumstances, the profit increases with an increase in 
the make-span. This is because the amount of material (and 
hence the profit) keeps increasing as the make-span increases. 
Hence, it would be better to evaluate the trade-offs between 
the make-span and the profit obtained for every unit of the 
make-span instead of profit made during the entire make-
span. This can be easily obtained from the set of solutions  
( )* *

m mP ,ms  and the pareto-front can be determined from the set 

( )* * *
m m mms ,P / ms  by a straight-forward post-optimality 

analysis. 

4. CASE STUDY 

In this section, we show the application of the lexicographic 
and the multi-objective optimization approach for the discrete 
STN benchmark example of (Kondili et al., 1993). The STN 
network with five tasks and nine states is as shown in Figure 
2. It also contains the processing times (in hrs) and the 
proportion of the state produce and consumed. 

 
Fig.  2.  STN representation of the Case Study. 

 
The equipments available and their processing capacities for a 
batch are listed in Table 1. 

 

Table 1. Data for unit suitability and capacities 

Unit Tasks Suitable Capacity (kg) 
Heater Heating 100 
Reactor 1 Reactions 1,2 &3 80 
Reactor 2 Reactions 1,2 &3 50 

Still Separation 200 
It can be seen that the total number of tasks increases to eight 
due to the task decoupling. The available storage capacities of 
the intermediate states are given as follows 

Hot A 100 kg 
Intermediate AB 200 kg 
Intermediate BC 150 kg 
Impure E 100 kg 

The feed and products are considered to be having unlimited 
storage capacity. The cost of the products P1 and P2 is 10 
units/kg and the feed stocks are assumed to have zero cost. 
Additionally, we penalize the excess production of 
intermediates at the end of the horizon by -1. These data are 
similar to that considered (Kondili et al., 1993). We would be 
referring to this set of data as Case I and Case II would consist 
of the same data except that the storage of intermediate BC 
will be zero. 

Table 2 shows the results for the maximization of the profit 
for 3 different horizons. 

Table 2. Results for the maximization of profit 

Horizon 
(hr) 

Maximization of Profit 
(unit) 

5 442 
10 2744.375 
15 4723.083 

It has to be noted that for the above cases, the complete 
horizon is scheduled. Next we solve the same problem by the 
proposed two-step lexicographic approach and the results are 
as shown in Table 3. 

Table 3. Minimization of the makespan in sequence with 
maximization of the profit  

Horizon 
(hr) 

Maximization of Profit 
(unit) 

Minimization of the 
Make Span 

(hr) 
5 442 4 

10 2744.375 10 
15 4723.083 15 

 

From Table 3, it can be seen that a better schedule is obtained 
for the horizon 5. It is to be noted that the profit remains at 
442 and yet the make-span is reduced to 4 hours. This is 
because the Formulation I requires an apriori specification of 
the horizon and on the specification of the horizon, the 
formulation only maximizes the profit without considering the 
make-span. It uses the complete horizon without any 
consideration towards minimizing the make-span. A similar 
behavior can also be observed for the Case II. Thus it can be 
seen that this procedure helps to uncover promising solutions. 
We now demonstrate the determination of pareto-optimal for 
Case I. Table 4 shows the various trade-offs that were 
obtained for different levels of desired profit.  

Table 4. Trade-offs between Profit and Make-span  
for Case I 

 
Pm *

mms  *
mP  
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200 4 442 
443 6 754 
741 7 1682.41 
1683 8 1829.75 
1830 9 2315 
2316 10 2744.375 
2745 11 3199.719 
3200 12 3602.875 
3603 13 3970.833 
3971 14 4254.167 
4255 15 4723.083 
4724 16 5123.208 
5124 17 5491.167 

Figure 3 shows the above points with respect to the profit per 
hour and the make-span in hours. It can be seen that the 
pareto-front comprises of all the points except D and J. This is 
because the point D is inferior to point C as its make-span is 
larger than point C and yet its profit per hour is lees than C. 
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Fig.  3.  Trade-offs between make-span and profit per hour for 

Case I. 
 

Similar arguments also hold for the Case II in Figure 4. The 
points a, c, d, g, h, j, and k form the pareto-front whereas the 
remaining points are dominated solutions. 

6. CONCLUSIONS 

In this work, we have demonstrated the benefits of multi-
objective optimization over the single-objective optimization 
framework for the short-term scheduling of batch plants. We 
have presented techniques to solve the multi-objective 
optimization both with known and unknown precedence level 
in the objectives. Future extensions of this work can include 
the solution of a single optimization problem with the 
lexicographic pattern instead of solving two separate 
problems. However, this could have computational issues as 
the make-span minimization problem has been reported to 
have a weak LP relaxation due to its min-max nature. Hence it 
would be interesting to see the behavior of problems that 
combine both the maximization of profit and minimization of 
the make-span in a single objective.  
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Fig.  4.  Trade-offs between make-span and profit per hour for 

Case II. 
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