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Abstract: This paper is concerned with the mixed H2/H∞ control problem via static output
feedback control. The main purpose of this paper is to give an iterative method for finding
a sub-optimal static output-feedback controller for the mixed H2/H∞ control problem. The
contribution of this paper is to derive a gradient of the H2 cost function. Using this gradient,
we propose a gradient method for H2 and mixed H2/H∞ control problems. Numerical examples
show the efficiency of our methods.

Keywords: Optimization based controller synthesis, Robust controller synthesis

1. INTRODUCTION

One of major requirements for designing control systems
is to achieve optimal performance and robust stabilization
against uncertainty simultaneously. Since H2 and H∞
norms are measures for these requirements such control
systems can be designed through the so-called mixed H2/
H∞ control problem which is an important example of
multi-objective control problem. On the other hand some
practical limitations, e.g., we can only measure part of
state variables, make us use an output-feedback controller.
Hence, the output-feedback mixed H2/H∞ control prob-
lem is very important control problem from a point of view
of practical applications. However, it is difficult to obtain
the globally optimal solution, because this control problem
is described as bilinear matrix inequality (BMI) problem.

Recently, many sub-optimization methods for multi-
objective control problems have been proposed Chilali
et al. [1996]—Shimomura [2005]. One well-known technique
is to fix some variables so as to reduce BMI problems to
LMI problems. Another well-known technique is to use
common Lyapunov variables at the expense of conser-
vatismChilali et al. [1996]—Scherer et al. [1997]. Moreover,
some techniques using non-common Lyapunov variables
are proposed Ebihara and Hagiwara [2004]—Shimomura
[2005]. However there is no efficient method for obtaining
the globally optimal solution of multi-objective contorl
problems and there are few methods which guarantee the
properties of obtained controller.

In this paper, we tackle the mixed H2/H∞ controller
design with static output feedback. The purpose of this
paper is to give a sub-optimization method for this control
problem. The main contribution of this paper is to derive
a gradient of the H2 cost function. Using the gradient, we
propose an iterative method for the mixed H2/H∞ control
problem, which guarantees that the obtained controller is
? This work was supported by Grant-in-Aid for Scientific Research
19760294.

a locally optimal controller or on the boundary of the H∞
norm constarint. Numerical examples show the efficiency
of our methods.

The following notations are used in this paper: A (p, q)-
th element of a matrix M is shown as Mpq. He{M} and∙
A ∗
BT C

¸
denote M + MT and the symmetric matrix∙

A B
BT C

¸
, respectively.

2. PROBLEM FORMULATION

In this paper, consider the following LTI system:⎧⎪⎨⎪⎩
ẋ(t) = Ax(t) +Bu(t) +B1w1(t) +B2w2(t),
z1(t) = C1x(t) +D1u(t),
z2(t) = C2x(t) +D2u(t),
y(t) = Cx(t),

(1)

where x is the plant state, wi(i = 1, 2) are any exogenous
inputs, u is the control input, zi(i = 1, 2) are the perfor-
mance outputs, and y is the measured output. Throughout
this paper, the following assumptions are made:

(1) (A,B,C) is stabilizable and detectable.
(2) DT

2 D2 = I.

Let us consider the static output-feedback controller:

u(t) = Ky(t). (2)

Via the output feedback control low the closed-loop system
is described as(

ẋcl(t) = Aclxcl(t)B1w1(t) +B2w2(t),
z1(t) = Ccl1xcl(t),
z2(t) = Ccl2xcl(t),

(3)

where

Acl := A+BKC, Ccli := Ci +DiKC, (i = 1, 2). (4)
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For this system we define the mixed H2/H∞ control
problem as follows.

The mixed H2/H∞ control problem 1: Given an
achievable H∞ norm bound γ, find a controller that satis-
fies

min
K
kTz2w2(K)k2 s.t. kTz1w1(K)k∞ < γ, (5)

where k · k2 and k · k∞ denote the H2 and H∞ norms,
respectively, and Tziwi (i = 1, 2) denote the closed-loop
transfer functions from wi to zi.

3. PRELIMINARIES

For kTz2w2(K)k2 and kTz1w1(K)k∞ the following lemmas
hold Boyd et al. [1994].

Lemma 1. (H2 norm optimization) For kTz2w2(K)k2, the
following statements hold:

(1) K stabilizes the closed-loop sysytem (3) and mini-
mizes kTz2w2(K)k2.

(2) K = K∗2 , where K
∗
2 is the solution of the problem

inf trace Q s.t.∙
−Q ∗
V B2 −V

¸
< 0 (6)

He{V Acl}+ CTcl2Ccl2 < 0, (7)

Q > 0, V > 0 (8)

where

Acl := A+BKC, Ccl2 := C2 +D2KC. (9)

(3) K = K∗2 , where K
∗
2 is the solution of

inf J(K) := kTz2w2(K)k22 = trace
¡
BT2 GB2

¢
, (10)

s.t. He{GAcl}+ CTcl2Ccl2 = 0. (11)

Lemma 2. (H∞ norm constraint) For kTz1w1(K)k∞ the
following statements hold:

(1) K stabilizes the closed-loop sysytem (3) and achieves
kTz1w1(K)k∞ < γ.

(2) There exists X which satisfies∙
He{AclX}+B1BT1 ∗

Ccl1X −γ2I

¸
< 0, X > 0. (12)

Using Lemmas 1-(2) and 2-(2), the mixed H2/H∞ control
problem 1 can be often described as follows:

Mixed H2/H∞ control problem 2 : Given an achiev-
able H∞ norm bound γ, find a controller that satisfies

inf
K
trace Q s.t. (6), (7), (8), and (12). (13)

Since there are bilinear terms in (7) and (12), the mixed
H2/H∞ control problem 2 is a bilinear matrix inequality
(BMI) problem. In general, it is difficult to obtain the
globally optimal solution of BMI problem. Hence, many
researchers have proposed interesting sub-optimization
methods for such BMI problems Chilali et al. [1996]—
Shimomura [2005]. Classically, the next iterative method
which uses the property that BMI’s become LMI’s with
some variables fixed is used for obtaining a sub-optimal

solution:

Classical Iterative Method

Step 1 Find K0 which achieves kTz1w1(K0)k∞ < γ and
let i := 0.

Step 2 Letting K := Ki, find V and X which are the
solutions of (13) and let them be Vi and Xi, respectively.

Step 3 Letting V := Vi and X = Xi, find K which
satisfies (13) and let it be Ki+1.

Step 4 If kTz1w1(Ki+1)k∞ < γ and kTz2w2(Ki)k2 >
kTz2w2(Ki+1)k2 then let i := i + 1 and go to Step 2.
Otherwise let Ka = Ki and exit.

However this method has a critical drawback such that
Ki can not improve the H2 norm of Tz2w2 in some cases,
i.e., kTz2w2(Ki)k2 is not so lower than kTz2w2(K0)k2.
On the other hand, various different methods for mixed
H2/H∞ control problems have been proposed Kami and
Nobuyama [2002] — Shimomura [2005]. However there are
few papers which guarantee the properties of the obtained
controller. The purpose of this paper is to propose an
iterative method for the mixed H2/H∞ control problem
with output feedback control, which guarantees that the
obtained controller is a locally optimal controller or on the
boundary of the H∞ norm constraint.

4. GRADIENT METHOD FOR THE H2 CONTROL
PROBLEM

In this section, we derive the gradient of the H2 cost
function J(K) with respect to the controller variable K.
Using the gradient, we propose a gradient method for the
H2 control problem.

4.1 Gradient of the H2 cost function

The next theorem gives a gradient othe H2 cost function
J(K):

Theorem 3. Let K be a stabilizing controller. Then the
partial differentiation of J(K) with respect to Kpq is given
as follows:

∂J(K)

∂Kpq
= 2trace(MY ), (14)

M := (GB + CT2 D2 + C
TKT )EpqC, (15)

where Epq :=
∂K

∂Kpq
, i.e., Epq is the matrix such that (p, q)-

th element is equal to 1 and the others are equal to 0, and
G and Y are solutions of the Lyapunov equations (11) and

He{AclY }+B2BT2 = 0, (16)

respectively.

Proof: From (10),
∂J(K)

∂Kpq
is given as follows:

∂J(K)

∂Kpq
= trace

µ
BT2

∂G

∂Kpq
B2

¶
. (17)

For obtaining
∂G

∂Kpq
differentiating (11) with respect to

(p, q)-th element of K to get the following Lyapunov
equation:
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He

½
∂G

∂Kpq
Acl +M

¾
= 0. (18)

Since K is the stabilizing controller,
∂G

∂Kpq
is given by

∂G

∂Kpq
=

∞Z
0

eA
T
cltHe{M}eAcltdt. (19)

Substituting (19) in (17) to get

∂J(K)

∂Kpqj
= trace

⎛⎝BT2 ∞Z
0

eA
T
cltHe{M}eAcltdtB2

⎞⎠
= trace

⎛⎝He{M} ∞Z
0

eAcltB2B
T
2 e

ATcltdt

⎞⎠
= 2trace (MY ) , (20)

where

Y :=

∞Z
0

eAcltB2B
T
2 e

AT
cltdt, (21)

and since Acl is stable Y is the unique solution of (16).

4.2 A Gradient method for the H2 control problem

Using (14), the (p, q)-th element of a descent direction ∆K
is defined as

∆Kpq := −2trace(MY ). (22)

Then, a gradient method for the H2 control problem is
propsed as follows:

Algorithm 1: Gradient Method for the H2 control
problem

Step 1 Find K0 which stabilizes the closed-loop system
(3) and let i := 0. For example, an exterior-point
approach Kami and Nobuyama [2004] can be used for
finding K0.

Step 2 Get Gi and Yi which are the solutions of

He{GiAcli}+ CTcl2iCcl2i = 0, (23)

and

He{AcliYi}+B2BT2 = 0, (24)

respectively, where

Acli = A+BKiC,Ccl2i = C2 +D2KiC. (25)

Step 3 Caliculate the partial derivative of J(K) with
respect to Kpq via (14) and define the descent direction
∆K via (22). If ∆K is a zero matrix then let K∗ := Ki

and exit. Otherwise go to the next step.
Step 4 Let Ki+1 := Ki + di∆K, where di > 0 is a step
size which is the solution of

min
d
kTz2w2(Ki + d∆K)k2. (26)

Let i := i+ 1 and go to Step 2.

Lemma 4. Algorithm 1 has the next property:

(1) J(Ki) ≥ J(Ki+1) holds i.e., kTz2w2(Ki)k2 is mono-
tonically decreasing.

(2) K∗ is a loccaly optimal solution of the H2 control
problem.

Proof : Obvious from the construction of Algorithm 1.

Remark 1 It is difficult to get the globally optimal
solution of the problem (26), because the search area
for di is not bounded. Therefore, when Algorithm 1 is
implemented we limit the search area of di to 0 ≤ di ≤ d̄,
where d̄ > 0 is a prescribed upper bound of di, i.e., the
next problem is solved by grid search instead of (26):

min
0≤di≤d̄

kTz2w2(Ki + d∆K)k2. (27)

Remark 2 In the case that C = I, i.e., K is static state
feedback controller, K∗ is the globally optimal solution
of the H2 control problem, because a stationary point of
J(K) is unique.

5. A GRADIENT METHOD FOR THE MIXED
H2/H∞ CONTROL PROBLEM

In this section, we extend Algorithm 1 to an iterative
method for the mixed H2/H∞ control problem. The key
idea of the extention is to choose Ki+1 on the descent
direction so as to achieve the H∞ norm constraint.

An iterative method for the mixed H2/H∞ control prob-
lem is propsed as follows:

Algorithm 2: Gradient Method for the mixed H2/
H∞ control problem

Step 1 Find K0 which achieves kTz1w1(K)k∞ < γ and let
i := 0. For example, an exterior-point approach Kami
and Nobuyama [2004] can be used for finding K0.

Step 2 Get Gi and Yi which are the solutions of (23) and
(24), respectively.

Step 3 Caliculate the partial derivative of J(K) with
respect to Kpq by (14) and define the descent direction
∆K via (22). If ∆K is a zero matrix then let K∗ := Ki

and exit. Otherwise go to the next step.
Step 4 Let Ki+1 := Ki + di∆K, where di > 0 is a step
size which is the solution of

min
d
kTz2w2(Ki + d∆K)k2 s.t.

kTz1w1(Ki + d∆K)k∞ < γ. (28)

Step 5 For sufficiently small ε1 and ε2, if |di| < ε1 and
kTz1w1(Ki+1)k∞ > γ − ε2, then let K

∗ := Ki+1 and
exit. Otherwise let i := i+ 1 and go to Step 2.

Lemma 5. Algorithm 2 has the next property:

(1) J(Ki) ≥ J(Ki+1) holds i.e., kTz2w2(Ki)k2 is mono-
tonically decreasing.

(2) Ki(i = 0, 1, 2, · · ·) achieve the H∞ norm constraint,
i.e., kTz1w1(Ki)k∞ < γ.

(3) If Algorithm 2 stops at Step 2, then K∗ is a loccaly
optimal solution of the mixed H2/H∞ control prob-
lem.

(4) If Algorithm 2 stops at Step 5, then K∗ is on the
boundary of the H∞ norm constaint of the mixed
H2/H∞ control problem.
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Proof : Obvious from the construction of Algorithm 2.

Remark 3 From the same reason as described in Remark
1, when Algorithm 2 is implemented we limit the search
area of di to 0 ≤ di ≤ d̄, i.e., the next problem is solved
by grid search instead of (28):

min
0≤d≤d̄

kTz2w2(Ki + d∆K)k2 s.t.

kTz1w1(Ki + d∆K)k∞ < γ. (29)

Remark 4 In the case that C = I, i.e., K is static state-
feedback controller, K∗ satisfies a necessary condition for
K to be the globally optimal solution of the mixed H2/
H∞ control problem Kami and Nobuyama [2003].

6. NUMERICAL EXAMPLES

To demonstrate the efficency of Algorithms 1 and 2, we
consider two examples: one is output feedback case and
the other is state feedback case. For both examples we
consider the unconstrained H2 control problem and the
mixed H2/H∞ control problem.

6.1 Example 1: output feedback case

Let’s consider the following state space matrices:

A =

∙
0 1

−0.5 −0.2
¸
, B =

∙
0
1

¸
, B1 =

∙
0 0
−1 −1

¸
,

B2 =

∙
0
1

¸
, C1 =

∙
0.2 0
0 0.1

¸
, D1 =

∙
0
0

¸
,

C2 =

∙
1 0
0 0

¸
, D2 =

∙
0
1

¸
, C = [ 1 0 ] , γ = 1.

For this example, the globally optimal H2 value of the
unconstrained H2 control problem is 1.7579, and we set
d̄ = 0.5.

Figures 1 shows behaviours of kTz2w2(Ki)k2 as a function
of iteration number i on Classical iterative method and
Algorithm 1. This figure shows that kTz2w2(Ki)k2 is mono-
tonically decreasing as i increases and converges to the
globally optimal H2 value while Classical iterative method
cannot improve kTz2w2(Ki)k2.
Figures 2 and Figure 3 show behaviours of kTz2w2(Ki)k2
and kTz1w1(Ki)k∞ as a function of iteration number i on
Algorithm 2, respectively. Figure 2 also show a behaviour
of kTz2w2(Ki)k2. Figures 2 shows that kTz2w2(Ki)k2 is
monotonically decreasing as i increases while Classical
iterative method cannot improve kTz2w2(Ki)k2. Figure 3
shows that kTz1w1(Ki)k∞ reaches the H∞ norm bound as
i increases, which implies that the obtained controller is
on the boundary of the H∞ norm constraint.

6.2 Example 2: state feedback case

Let’s consider the system shown by figure 4, where m1 =
m2 = 1 and the spring constant k is an uncetain parameter
which satisfies 1 ≤ k ≤ 1.5. Moreover, a coefficient matrix
of a control input includes 10% uncertainty. Then the
state-space matrices of this system and the uncertainty
structure are given as follows:

Fig. 1. kTz2w2(Ki)k2 on Algorithm 1 for Example 1

Fig. 2. kTz2w2(Ki)k2 on Algorithm 2 for Example 1

Fig. 3. kTz1w1(Ki)k∞ on Algorithm 2 for Example 1

Fig. 4. Two-mass and one-spring system.

A =

⎡⎢⎣ 0 0 1 0
0 0 0 1

−1.25 1.25 0 0
1.25 −1.25 0 0

⎤⎥⎦ , B =
⎡⎢⎣ 005
0

⎤⎥⎦

B1 =

⎡⎢⎣ 0 0
0 0

−0.25 1
0.25 0

⎤⎥⎦ , B2 =
⎡⎢⎣ 000
5

⎤⎥⎦
C1 =

∙
1 −1 0 0
0 0 0 0

¸
, C2 =

∙
0 0.2 0 0
0 0 0 0

¸
D1 =

∙
0

0.5

¸
, D2 =

∙
0
1

¸
, C = diag(1, 1, 1, 1).

∆A := Bw1∆(t)C1,

∆(t) := diag(δ1(t), δ2(t)), |δi(t)| < 1(i = 1, 2).
Then the condition for robust stability against ∆(t) is
given as kTz1w1(K)k∞ < 1. For this example, the globally
optimal H2 value of the unconstrained H2 control problem
is 1.4036, and we set d̄ = 0.5.

Figures 5 shows behaviours of kTz2w2(Ki)k2 as a function
of iteration number i on Classical iterative method and
Algorithm 1. Figures 2 and Figure 3 show behaviours of
kTz2w2(Ki)k2 and kTz1w1(Ki)k∞ as a function of iteration
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Fig. 5. kTz2w2(Ki)k2 on Algorithm 1 for Example 2

Fig. 6. kTz2w2(Ki)k2 on Algorithm 2 for Example 2

Fig. 7. kTz1w1(Ki)k∞ on Algorithm 2 for Example 2

Table 1. Comparison with the obtained H2
norms

Method kTzw(Σ)k2
Common Lyapunov Variables (Initial controller) 2.4153

Classica Method 2.4153

Shimomura [2005] 2.0703

Shimomura and Fujii [2005] 1.4498

Kami and Nobuyama [2003] 1.4948

Proposed method 1.4939

number i on Algorithm 2, respectively. From these figures
the same result as described in Example 1 is obtained, i.e.,

• kTz2w2(Ki)k2 is monotonically decreasing as i in-
creases in Algorithms 1 and 2 while Classical iterative
method cannot improve kTz2w2(Ki)k2.

• Algorithm 2 gives a contrtller on the boundary of the
H∞ norm constraint.

Table 1 shows H2 norms of the closed-loop system via
the controllers obtained by Common Lyapunov Variables,
Classical iterative method, Shimomura [2005], Shimo-
mura and Fujii [2005], Kami and Nobuyama [2003], and
Algorithm 2. Table 1 shows that the controller obtained
by Algorithm 2 achieves lower H2 norm than Common
Lyapunov Variables, Classical iterative method, and Shi-
momura [2005] and achieves the almost same H2 norm as
those obtained by Shimomura and Fujii [2005] and Kami
and Nobuyama [2003]

7. CONCLUSION

In this paper, we consider the H2 and mixed H2/H∞
control problems with static output feedback. Firstly, we
derived a partial differentiation of the H2 cost function.
Secondly, we proposed a gradient method for the H2

control problem. This method guarantees that the ob-
tained controller is a locally optimal solution of the H2
control problem. Next, we modified the method to the
mixed H2/H∞ control. This method guarantees that the
obtained controller is a a locally optimal solution or on
the boundary of the H∞ norm constaint of the mixed H2/
H∞ control problem. Finally, we gave numerical examples
which showed the efficiency of the proposed methods.
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