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Abstract: An output-feedback controller has been recently proposed that has the following
features: (1) it is an inner-loop controller so that it can be added on the existing closed-loop
system working in harmony with a pre-designed (possibly non-robust) outer-loop controller, (2)
it robustifies the closed-loop system in a way that the uncertain plant under external disturbance
becomes a nominal plant without any disturbance, (3) it recovers the trajectory of the nominal
closed-loop system in time domain. However, it is restricted to the single-input-single-output
systems. In this paper, we extend this result for a class of multi-input-multi-output (MIMO)
linear systems having the same number of inputs and outputs. The used tools in this synthesis
are the singular perturbation theory and the multi-variable circle criterion.
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1. INTRODUCTION

Designing efficient controllers to compensate the effect of
model uncertainties and external disturbances in control
systems has been a central problem in control society,
and powerful results are available in the literature. For
example, naming only a few, H2/H∞ control [Doyle et al.,
1989], sliding mode control [Utkin, 1992], adaptive con-
trol [Narendra and Annaswamy, 1989, Ioannou and Sun,
1995], backstepping [Krstić et al., 1995], etc. Although
these methods proved their efficiency in many applica-
tions, they mainly focus on the stability of the uncertain
system (robust stability), while little can be addressed on
the ‘transient’ performance. In other words, they don’t
guarantee that the nominal time-trajectory (the trajectory
of the closed-loop system without uncertainties) can be
recovered.

Recently, an output-feedback controller has been proposed
in [Back and Shim, 2007] which guarantees not only the ro-
bust stability, but also the robust transient performance in
the sense that the controller recovers the nominal transient
trajectory, under the plant uncertainties and the external
disturbances. This recovery is approximate in general, but
the error in this approximation can be made arbitrarily
small. In addition, the controller also guarantees exact
tracking when references and disturbances are constant.
Moreover, it is an inner-loop controller so that it can
be added on the existing closed-loop system working in
harmony with a pre-designed (possibly non-robust) outer-
loop controller.

There are also some results on the nominal transient re-
covery in the literature. The work [Freidovich and Khalil,
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2006] considers the single-input-single-output (SISO) case
with linear nominal model, and the paper [Chakrabortty
and Arcak, 2007] studies the multi-input-multi-output
(MIMO) case with state feedback. Compared to these
results, the work [Back and Shim, 2007] is an output feed-
back controller and the nominal model can be nonlinear
systems, which is quite general.

In this paper, we extend the work [Back and Shim,
2007] for a class of MIMO linear systems having the
same number of inputs and outputs. Extension to MIMO
case could have been easy if the input gain matrix is
nonsingular and has no uncertainty because, if so, the
plant could be made just a collection of SISO systems by
redefining the inputs. For example, for the system ẋ = Gu
with x ∈ Rm, u ∈ Rm, and nonsingular G ∈ Rm×m, the
input u = G−1v yields ẋ = v, which is a collection of m
independent systems ẋi = vi. However, if G is not known
perfectly, getting G−1 becomes impossible, which makes
the problem hard. In this paper, we overcome this problem
by employing the multi-variable circle criterion so that a
MIMO extension of [Back and Shim, 2007] is possible.

The extension proposed in this paper also serves a MIMO
extension of a particular control method that is known as
‘disturbance observer (DOB)’ approach [Ohnishi, 1987],
which has been widely applied in the industrial applica-
tions (see, for example, Umeno and Hori [1993], Eom et al.
[2001], Guvenc and Guvenc [2002], Bohn et al. [2004],
Ryoo et al. [2004]), because the controller in [Back and
Shim, 2007] is based on the DOB approach, and the MIMO
extension of the DOB approach has rarely been discussed
in the literature.

Notation: Throughout the paper, 0k denotes the zero
vector in Rk, and Ik denotes the k×k identity matrix. For
two column vectors a and b, we use [a; b] := [aT , bT ]T for
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convenience. The notation blockdiag{A1, . . . , Ak} stands
for a block diagonal matrix, whose (i, i)-th block is Ai
while the others are zero. When ai’s are scalar, we simply
write diag{a1, . . . , ak} for the diagonal matrix. Euclidean
norm of a vector is denoted by | · |. C− represents the open
left-half complex plane.

2. PROBLEM FORMULATION

We consider a multi-input-multi-output linear system
which is put in the following Byrnes-Isidori normal form
[Isidori, 1995]:

ż = Sz + Px

ẋ = Ax+B(F [z;x] +G(u+ d))
y = Cx,

(1)

where u ∈ Rm is the control input, d ∈ Rm is the unknown
disturbance, y ∈ Rm is the output, and x ∈ Rr and
z ∈ Rn−r are the states of the system such that

x = [x1; . . . ;xm], xi := [xi1 · · · xiri ]T ∈ Rri
with r = r1 + · · ·+rm. The matrices A ∈ Rr×r, B ∈ Rr×m,
and C ∈ Rm×r are given by

A = blockdiag{A1, . . . , Am}, Ai :=
[
0ri−1 Iri−1

0 0Tri−1

]
,

B = blockdiag{B1, . . . , Bm}, Bi :=
[
0ri−1

1

]
,

C = blockdiag{C1, . . . , Cm}, Ci :=
[
1 0Tri−1

]
.

In fact, the MIMO linear systems that have the vector
relative degree {r1, . . . , rm} can always be converted into
the above normal form (see Isidori [1995]).

It is assumed that S, P , F , and G are unknown, which
are elements of known matrix sets, S, P, F , and G,
respectively.
Assumption 1. The sets S, P, F , and G are bounded.
In particular, for the uncertain input gain matrix G,
there exist symmetric positive definite matrices G− :=
diag{g−1 , . . . , g−m} and G+ := diag{g+

1 , . . . , g
+
m} such that

0 < G− < G+ and that
(Gν −G−ν)TΠ2(Gν −G+ν) ≤ 0, ∀ν ∈ Rm, ∀G ∈ G,

(2)
where Π = diag{π1, . . . , πm} := 2(G+ + G−)−1. In
addition, the disturbance signal d(t) is at least C2, and
d(t) and ḋ(t) are bounded with a known bound ld such
that |d(t)| ≤ ld. �
Remark 1. Assumption 1 can be extended in such a way
that GK replaces the matrix G, where K is any nonsin-
gular matrix. This is possible because the input u and the
disturbance d can be considered to be K−1u† and K−1d†

with new input u† and disturbance d†, without loss of
generality. With the matrix K, the order, the sign, and
the magnitude of inputs can also be adjusted to satisfy
Assumption 1. �

We now consider a disturbance-free nominal plant of (1):
˙̄z = S̄z̄ + P̄ x̄

˙̄x = Ax̄+B(F̄ [z̄; x̄] + Ḡur)
ȳ = Cx̄,

(3)

where S̄ ∈ R(n−r)×(n−r), P̄ ∈ R(n−r)×r, Ḡ ∈ Rm×m, and
F̄ ∈ Rm×n are the nominal parameters of S, P , G, and F ,
respectively.

It is assumed that an (dynamic) output feedback outer-
loop controller C is designed a priori for the nominal plant
(3), which is represented by

ċ = Γ(c, ȳ, yr), c ∈ Rl,
ur = γ(c, ȳ, yr), ur ∈ Rm,

(4)

where Γ and γ are C2 functions, and yr is a vector of
reference command.
Assumption 2. The considered class of reference command
yr(t) is a C2 function, and yr(t) and ẏr(t) are bounded such
that yr(t) ∈ Syr where Syr is a known compact set. For
those reference command yr(t), the nominal closed-loop
system (3) and (4) has the following properties:

(1) the solution [z̄(t); x̄(t); c(t)] of (3) and (4) evolves in
a bounded, connected, and open set U ⊂ Rn+l if
the initial condition [z̄(0); x̄(0); c(0)] is located in a
compact set S ⊂ U ,

(2) each solution [z̄(t); x̄(t); c(t)] initiated in S is locally
asymptotically stable.

�

The item (2) in Assumption 2 is generally met by the usual
tracking/regulation controller C. The next one is our last
assumption.
Assumption 3. The plant (1) is of minimum phase, that
is, S is Hurwitz for all S ∈ S. �

By Assumption 3, the system ż = Sz + Px is input-to-
state stable. Let Ux and Uz be the projections of the set
U to the x and z plane, respectively. Then, define Z as
a bounded set where all feasible solutions z(t) reside with
z(0) ∈ Uz for all x(t) ∈ Ux.

In this paper, we design an inner-loop controller of the
form

χ̇ =
[
χ̇1

χ̇2

]
=
[
Υ1(χ, y, ur)
Υ2(χ, y, ur)

]
= Υ(χ, y, ur)

u = υ(χ, y, ur)
(5)

where χ1 ∈ Rn−r and χ2 ∈ R2r, such that the real closed-
loop system 1

ż = Sz + Px

ẋ = Ax+B(F [z;x] +G(υ(χ,Cx, γ(c, Cx, yr)) + d))
ċ = Γ(c, Cx, yr)
χ̇ = Υ(χ,Cx, γ(c, Cx, yr))

behaves like the nominal closed-loop system (3) and (4) de-
spite of the model uncertainties and external disturbances.
In particular, we are interested in a transient performance
recovery, that is, the states [x(t); c(t)] of the real solution
[z(t);x(t); c(t);χ(t)] remain close to their nominal counter-
part [xN (t); cN (t)] where the states [zN (t);xN (t); cN (t)]
are the solution of the nominal closed-loop system (3)
and (4), with the initial condition [zN (0);xN (0); cN (0)] =
[χ1(0);x(0); c(0)].

1 Note that when the outer-loop controller (4) is considered in the
real closed-loop system with (5), ȳ should be replaced by y, which is
evident and will be applied without explicit mentioning throughout
the paper.
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3. MAIN RESULTS

3.1 Design of the Inner-loop Controller

We present the design procedure of the inner-loop con-
troller (5) in this subsection, with a precise statement
of the transient performance recovery achieved by the
proposed controller.

First, let ai = [ai0 ai1 · · · ai,ri−1]T , i = 1, . . . ,m. For
each i, choose ai1, . . . , ai,ri−1 such that all the roots of
the equation

sri−1 + ai,ri−1s
ri−2 + · · ·+ ai1 = 0 (6)

are in C−. When ri = 1, there is nothing to choose.

For each i, with ai1, . . . , ai,ri−1 fixed, we choose ai0 as fol-
lows. Define D(πig−i , πig

+
i ) by a closed disk in the complex

plane whose diameter is the line segment connecting the
points −1/(πig−i ) + j0 and −1/(πig+

i ) + j0. Let

Hi(s) =
1
s

ai0
sri−1 + ari−1sri−2 + · · ·+ ai1

, (7)

and find ai0 such that the Nyquist plot of Hi(s) is disjoint
from the diskD(πig−i , πig

+
i ) and does not encircle the disk.

(It is assumed that the Nyquist contour avoids the origin
counterclockwise so that the closed Nyquist contour does
not contain the pole ofHi(s) at the origin.) Such ai0 always
exists. Indeed, since Hi(s) has all poles in C− except one
pole at the origin, the Nyquist plot of Hi(s) is bounded to
the left although it is unbounded to the imaginary axis.
Hence, by reducing the value of positive ai0, the Nyquist
plot shrinks so that the disk D is located outside the closed
Nyquist plot. Note that such ai0 also guarantees that all
the roots of

sri + ai,ri−1s
ri−1 + · · ·+ ai1s+ ai0 = 0 (8)

are in C−, because the disk D contains the point −1 + j0
inside by the fact that πi = 2/(g+

i + g−i ). For later use,
define a transfer function matrix

H(s) = diag{H1(s), . . . ,Hm(s)}. (9)

Now we define saturation functions φ : Rr → Rr and
Φ : Rm → Rm as globally bounded C1 functions satisfying

φ(x) = x, ∀x ∈ Ux, and
∥∥∥∥∂φ∂x (x)

∥∥∥∥ ≤ κ0, ∀x ∈ Rr

Φ(w) = w, ∀w ∈ Sw, and
∥∥∥∥∂Φ
∂w

(w)
∥∥∥∥ ≤ 1, ∀w ∈ Rm

(10)

where κ0 is a positive constant and

Sw =
{
w ∈ Rm : w = G−1(F̄ [z̄;x]− F [z;x])

+ (G−1 −Π)Ḡγ(c, Cx, yr)− d, z ∈ Z, [z̄;x; c] ∈ U,

yr ∈ Syr , |d| ≤ ld, F ∈ F , G ∈ G
}
.

The set Sw indicates the steady-state range of the signal
w(t) to be defined in (14e), and will be clarified in Lemma
2. In fact, it is enough to have the saturation levels of φ
and Φ sufficiently large so that the saturation functions
are not active during the steady-state operation.

For i = 1, . . . ,m, let

∆τ = blockdiag{∆1τ , . . . ,∆mτ} (11)

∆iτ = diag
{

1
τ ri

,
1

τ ri−1
, . . . ,

1
τ

}
(12)

Aaiτ =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−ai0
τ ri
− ai1
τ ri−1

· · · −ai,ri−1

τ

 . (13)

The proposed inner-loop controller (5) is finally given by
˙̄z = S̄z̄ + P̄ φ(q) (14a)

q̇i = Aaiτqi +
ai0
τ ri

Biyi, i = 1, . . . ,m (14b)

ṗi = Aaiτpi +
ai0
τ ri

Biui, i = 1, . . . ,m (14c)

u = Φ(w) + ΠḠur, (14d)

where q = [q1; . . . ; qm] ∈ Rr, qi = [qi1 · · · qiri ]T ∈ Rri ,
p = [p1; . . . ; pm] ∈ Rr, pi = [pi1 · · · piri ]T ∈ Rri ,
w = [w1 · · · wm]T ∈ Rm, and

wi = pi1 − πiq̇iri + πiF̄i[z̄; q], i = 1, . . . ,m. (14e)
Here and after, we write Fi, Gi, F̄i, and Ḡi to indicate the
i-th row of F , G, F̄ , and Ḡ, respectively. Note that χ1 = z̄
and χ2 = [q; p].
Theorem 1. Let Sχ2 be a compact set for the initial condi-
tion [q(0); p(0)], S̄ be a compact set slightly smaller than S
(i.e., S̄ ⊂ S and their boundaries are disjoint), and S̄z be
the projection of S̄ into the z plane. Under Assumptions
1, 2, and 3, for a given ε > 0, there exists a τ∗ > 0 such
that, for each 0 < τ ≤ τ∗, the solution of the closed-loop
system (1), (4), and (5) denoted by [z(t);x(t); c(t);χ(t)],
initiated at [z(0);x(0); c(0);χ1(0);χ2(0)] ∈ S̄ × S̄z × Sχ2 ,
is bounded for all t ≥ 0, and satisfies that

|[x(t); c(t)]− [x̄N (t); cN (t)]| ≤ ε, ∀t ≥ 0, (15)
where [x̄N (t); cN (t)] indicates sub-states of the solution
[z̄N (t); x̄N (t); cN (t)] of the nominal closed-loop system (3)
and (4), with [z̄N (0); x̄N (0); cN (0)] = [χ1(0);x(0); c(0)]. �

3.2 Proof of Theorem 1

This subsection provides a proof of Theorem 1. At first it is
shown that the closed-loop system can be transformed into
the standard singular perturbation form (Lemma 1), and
then the stability of the fast subsystem is proved (Lemma
3) with the help of a technical result (Lemma 2). Based on
these two results, Theorem 1 is proved by employing the
Tikhonov’s theorem.

Let ξ = [ξ1; . . . ; ξm] with ξi = [ξi1 · · · ξir1 ]T ∈ Rri ,
i = 1, . . . ,m, and η = [η1; . . . ; ηm] with ηi’s and ηij ’s being
defined like ξi’s and ξij ’s. We define η[1] := [η11 · · · ηm1]T

for convenience.
Lemma 1. By the coordinates change

ξij =
ri∑
k=j

ai,k−j
ai0

qik
τ ri−k

− xij
τ ri−j

, (16a)

ηij = τ j−1
(
pij − πiq(j)iri

)
, (16b)

where j = 1, . . . , ri, and i = 1, . . . ,m, the closed-loop
system (1), (4), and (14) is written as
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ż = Sz + Px

˙̄z = S̄z̄ + P̄ φ(Tτ [ξ;x])
ẋ = Ax+Bθξ
ċ = Γ(c, Cx, yr)

(17)

and, for i = 1, . . . ,m,

τ ξ̇i = Aiξξi − τBiθiξ (18a)
τ η̇i = Aiηηi + ai0Biθiη (18b)

where
θξ = [θ1ξ · · · θmξ]T ∈ Rm, θη = [θ1η · · · θmη]T ∈ Rm

θiξ = Fi[z;x] +Gi
(
Φ(w) + ΠḠur + d

)
θiη = −πi

(
Fi[z;x] +Gi(Φ(w) + ΠḠur + d)

)
+ Φi(w) + πiḠiur

ur = γ(c, Cx, yr)
wi = ηi1 + πiF̄i[z̄; Tτ [ξ;x]]
Aiξ = Ai − [ai,ri−1 · · · ai0]TCi, Aiη = Ai −BiaTi ,

and Tτ is defined in Remark 2 below. �

Remark 2. A compact expression for (16a) is ξ = τ∆τ (Tτq−
x) where Tτ = blockdiag{T1τ , . . . , Tmτ} and

Tiτ =
1
ai0


ai0 ai1τ ai2τ

2 · · · ai,ri−1τ
ri−1

0 ai0 ai1τ
. . . ai,ri−2τ

ri−2

...
. . . . . . . . .

...
0 ai0 ai1τ
0 · · · · · · 0 ai0

 .
Therefore, q = 1

τ T
−1
τ ∆−1

τ ξ + T−1
τ x =: Tτ [ξ;x], in which

the matrix Tτ ∈ Rr×2r is well-defined for all τ including
zero. �

Proof of Lemma 1. We first consider the following trans-
formation:

q̄ij =
ri∑
k=j

ai,k−j
ai0

τk−jqik, 1 ≤ j ≤ ri, 1 ≤ i ≤ m.

In ˙̄qij coordinates, one has (for simplicity, let q̄i,ri+1 := 0)

˙̄qij =
ri−1∑
k=j

ai,k−j
ai0

τk−jqi,k+1 +
ai,ri−j
ai0

τ ri−j q̇iri

=
ri∑

k=j+1

ai,k−(j+1)

ai0
τk−(j+1)qik

+
ai,ri−j
ai0

τ ri−j
(
−

ri∑
k=1

ai,k−1

τ ri−k+1
qik +

ai0
τ ri

xi1

)
= q̄i,j+1 −

ai,ri−j
τ j

( ri∑
k=1

ai,k−1

ai0
τk−1qik − xi1

)
= q̄i,j+1 −

ai,ri−j
τ j

(q̄i1 − xi1).

(19)

With q̄ij ’s defined above, ξij ’s in (16a) are given by ξij =
(q̄ij − xij)/τ ri−j . By successively differentiating ξij , one
obtains that

τ ξ̇i = Aiξξi − τBi(Fi[z;x] +Gi(u+ d)),
which is the equation (18a).

On the other hand, by (16b), it follows that
τ η̇ij = ηi,j+1, j = 1, . . . , ri − 1.

For ηiri , we compute (for simplicity, let airi := 1)

η̇iri = −1
τ

ri∑
j=1

ai,j−1ηij −
πi
τ

ri+1∑
j=1

τ j−1ai,j−1q
(j)
iri

+
ai0
τ

(
Φi(w) + πiḠiur

)
.

Recalling q̇iri = −
∑ri
j=1

ai,j−1

τri−j+1 qij + ai0
τri xi1, one has

q
(ri+1)
iri

= −
ri∑
j=1

ai,j−1

τ ri−j+1
q
(j)
iri

+
ai0
τ ri

ẋiri .

Equivalently,
∑ri+1
j=1 τ j−1ai,j−1q

(j)
iri

= ai0ẋiri . Hence,

τ η̇iri = −ai0ηi1 − ai1ηi2 − · · · − ai,ri−1ηiri
− πiai0ẋiri + ai0

(
Φi(w) + πiḠiur

)
= −ai0ηi1 − ai1ηi2 − · · · − ai,ri−1ηiri
− πiai0

(
Fi[z;x] +Gi(Φ(w) + ΠḠur + d)

)
+ ai0

(
Φi(w) + πiḠiur

)
.

This concludes the proof of Lemma 1. 2

Remark 3. From the coordinates change in Lemma 1, the
initial conditions are related by

ξi(0) = τ∆iτ (Tiτqi(0)− xi(0))
ηi(0) = τ ri∆iτpi(0) + Tix∆iτxi(0) + Tiq∆iτqi(0),

where i = 1, . . . ,m, and Tix and Tiq are some constant
matrices. It is emphasized that with x(0), q(0), and p(0)
in a compact set, the initial condition ξ(0) and η(0) may
become unbounded for small τ . Nevertheless, it is noted
that, for sufficiently small τ ,

|ξ(0)| ≤ k∗/τ r
∗−1, |η(0)| ≤ k∗/τ r

∗
,

where r∗ := max{r1, . . . , rm} and k∗ is a constant, which
implies that the growth is of polynomial order of (1/τ). �

Note that the closed-loop system (17) and (18) is in the
standard singular perturbation form with τ being the time
separation parameter [Hoppensteadt, 1966, Khalil, 2002].
Now, we present a technical lemma without proof.
Lemma 2. Assuming that [z(t); z̄(t);x(t); c(t); yr(t)] ∈ Z×
U × Syr and |d(t)| ≤ ld, define the vector functions
η∗[1] : R→ Rm and θ∗η, ψ : Rm × R→ Rm as

η∗[1](t) := (G−1 −Π)(F̄ [z̄(t);x(t)] + Ḡur(t))

−G−1(F [z(t);x(t)] +Gd(t))
θ∗η(ν, t) := (Im −ΠG)(Φ(ν + ΠF̄ [z̄(t);x(t)]) + ΠḠur(t))

−Π(F [z(t);x(t)] +Gd(t)),
ψ(ν, t) := ν + η∗[1](t)− θ

∗
η(ν + η∗[1](t), t)

with ur(t) = γ(c(t), Cx(t), yr(t)). Then, ψ(0, t) = 0 and
ψ(ν, t) belongs to the sector [ΠG−,ΠG+], that is,

(ψ(ν, t)−ΠG−ν)T (ψ(ν, t)−ΠG+ν) ≤ 0, ∀ν ∈ Rm, ∀t ∈ R.
(20)

�

Remark 4. Assuming that the slow variables are fixed
parameters such that [z; z̄;x; c; yr] ∈ Z×U×Syr and |d| ≤
ld, the equilibrium point (ξ∗, η∗) of the fast subsystem
(18) when τ = 0 can be computed. From (18a), we
have ξ∗ = 0. Note that this results in q = x since
q = 1

τ T
−1
τ ∆−1

τ ξ + T−1
τ x, Tτ = Ir if τ = 0, and 1

τ∆−1
τ

is well-defined for τ = 0. On the other hand, from (18b),
we have η∗i2 = · · · = η∗iri = 0, i = 1, . . . ,m, and
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η∗i1 + πi
(
Fi[z;x] +Gi(Φ(w∗) + ΠḠur + d)

)
− πiḠiur − Φi(w∗) = 0, i = 1, . . . ,m,

(21)

where w∗ = [w∗1 · · · w∗m]T and w∗i = η∗i1 + πiF̄i[z̄;x].
Interestingly, this equation is the same as ψ(0, t) = 0 when
t is fixed and η∗[1] is defined as [η∗11 · · · η∗m1]T . Therefore,
η∗[1], defined in Lemma 2, is the unique solution of (21) for
1 ≤ i ≤ m. (Uniqueness follows from the sector condition
of ψ(ν, t).) �

Now we consider the behavior of the fast subsystem (18).
Let σ = t/τ . Then, in new time scale σ, the system (18)
becomes

dξi
dσ

= Aiξξi − τBiθiξ(η[1], ξ, τ, τσ)

dηi
dσ

= Aiη0ηi +Biai0
(
−ηi1 + θiη(η[1], ξ, τ, τσ)

) (22)

where Aiη0 is the same as Aiη except the fact that the
(ri, 1)-element of Aiη0 is zero. Here, by abuse of notation,
the arguments of the functions θiξ and θiη are simplified
to (η[1], ξ, τ, τσ) in order to avoid unwanted notational
burden. In fact, the slow variables z(t), z̄(t), x(t), c(t),
d(t), and yr(t), depending on t = τσ, are replaced by the
argument τσ in the functions taking these slow variables
as their arguments. Note that θiξ and θiη are globally
bounded with respect to η[1] and ξ thanks to the saturation
function Φ.

Define ξ̃(t) := ξ(t)− ξ∗(t) = ξ(t) and η̃(t) := η(t)− η∗(t),
in which ξ∗(t) = 0 and η∗i2(t) = · · · = η∗iri(t) = 0,
i = 1, . . . ,m by Remark 4, and η∗i1(t), i = 1, . . . ,m,
are given in Lemma 2 as the i-th element of η∗[1](t). For
convenience, define η̃[1] = η[1] − η∗[1].
Lemma 3. Let T > 0. Suppose that z(t) ∈ Z and
[z̄(t);x(t); c(t)] ∈ U for all 0 ≤ t ≤ T . Then, there exists
τ1 > 0 such that, for each 0 < τ ≤ τ1, the solution of (22),
initiated from any ξ(0) and η(0), satisfies∣∣∣[ξ̃(t); η̃(t)]

∣∣∣ ≤ ke−λ tτ ∣∣∣[ξ̃(0); η̃(0)]
∣∣∣+δ(τ), ∀t ∈ [0, T ] (23)

with some positive constants k and λ that are independent
of τ , and a class-K function δ. �

Proof of Lemma 3. Assume, without loss of generality,
τ < 1. The dynamics of ξ̃ and η̃ in σ time scale can be
derived as, with ′ denoting d/dσ,

ξ̃′ = Aξ ξ̃ − τBθξ(η̃[1] + η∗[1], ξ̃, τ, τσ) (24)

η̃′ = Aη0η̃ +Ba[0]

(
− η̃[1] − η∗[1]

+ θη(η̃[1] + η∗[1], ξ̃, τ, τσ)
)
− B̄(η∗[1])

′ (25)
where

B̄ := blockdiag{B̄1, . . . , B̄m}, B̄i := [1; 0ri−1],
a[0] := diag{a10, . . . , am0},
Aξ := blockdiag{A1ξ, . . . , Amξ},
Aη0 := blockdiag{A1η0, . . . , Amη0}.

For now, let us consider the following system
ξ̃′ = Aξ ξ̃ (26)
η̃′ = Aη0η̃ +Ba[0]

(
− η̃[1] − η∗[1] + θ∗η(η̃[1] + η∗[1], τσ)

)
,

(27)
where θ∗η is defined in Lemma 2. Clearly, the system (24)–
(25) is a perturbed system of (26)–(27). Hence, we first

prove the exponential stability of the system (26)–(27) and
then derive (23).

The system (26) is exponentially stable since Aξ is Hur-
witz. Hence, there exists a positive definite symmetric
matrix P such that

PξAξ +ATξ Pξ = −Ir. (28)

On the other hand, the system (27) can be viewed as a
feedback system

η̃′ = Aη0η̃ +Ba[0]u
†, y† = η̃[1] = Cη̃ (29a)

u† = −ψ(y†, τσ). (29b)
because ψ(η̃[1], τσ) = η̃[1] +η∗[1](τσ)−θ∗η(η̃[1] +η∗[1](τσ), τσ)
from Lemma 2. Noting that the transfer function matrix
from u† to y† is H(s) of (9), and that H(s)[I+G−H(s)]−1

is diagonal and Hurwitz, and [I+G+H(s)][I+G−H(s)]−1

is diagonal and strictly positive real [Khalil, 2002], by
construction, it follows from the circle criterion [Khalil,
2002, Sec. 7.1.1] that the system (27) is exponentially
stable and admits a quadratic Lyapunov function W =
η̃TPη̃ η̃, where Pη̃ is a symmetric positive definite matrix,
such that W ′ ≤ −κ|η̃|2 with κ > 0.

Note that the perturbation terms of (25) with respect to
the system (27) are Ba[0](θη(η̃[1] + η∗[1], ξ̃, τ, τσ)− θ∗η(η̃[1] +
η∗[1], τσ)) and B̄(η∗[1])

′. From the relation

|θη(η̃[1] + η∗[1], ξ̃, τ, τσ)− θ∗η(η̃[1] + η∗[1], τσ)|
= |(Im −ΠG)(Φ(η̃[1] + η∗[1] + ΠF̄ [z̄; Tτ [ξ;x]])

− Φ(η̃[1] + η∗[1] + ΠF̄ [z̄;x]))|,
it follows that there exist k1 > 0 and k2 > 0 such that
|θη(η̃[1] + η∗[1], ξ̃, τ, τσ)− θ∗η(η̃[1] + η∗[1], τσ)|
≤ ‖(Im −ΠG)‖‖ΠF̄‖

∣∣[z̄; 1
τ T
−1
τ ∆−1

τ ξ + T−1
τ x]− [z̄;x]

∣∣
≤ ‖(Im −ΠG)‖‖ΠF̄‖

(∣∣ 1
τ T
−1
τ ∆−1

τ ξ
∣∣+
∣∣(T−1

τ − I)x]
∣∣)

≤ k1|ξ|+ k2τ,

where the mean value theorem and the fact ‖(∂Φ)/(∂w)‖ ≤
1, ∀w are used in the first inequality, and the last in-
equality follows from the boundedness of

∥∥ 1
τ T
−1
τ ∆−1

τ

∥∥ and∥∥ 1
τ (T−1

τ − I)
∥∥ for τ < 1. Regarding the second perturba-

tion, it can be shown that there exists a constant k3 such
that

∣∣∣(η∗[1])′∣∣∣ ≤ τk3.

Finally, let V (ξ̃, η̃) = αξ̃TPξ ξ̃ + η̃TPη̃ η̃ with α to be
determined. Then, for (24)–(25),

V ′ ≤ −α|ξ̃|2 − 2ταξ̃TPξBθξ − κ|η̃|2

+ 2η̃TPη̃
(
Ba[0](θη − θ∗η)− B̄(θ∗[1)′

)
≤ −α|ξ̃|2 + τα%1|ξ̃| − κ|η̃|2

+ |η̃|(τ(%2k2 + %3k3) + %2k1|ξ̃|)
where %1 = 2|PξB|max{θξ}, %2 = 2|Pη̃Ba[0]|, and %3 =
2|Pη̃B̄|. (Note that θξ is bounded on Z ×U with bounded
d and yr, which can be seen from the definition of θξ in
Lemma 1.) With α = (k1%2)2/κ, we have

V ′ ≤ −α
2
|ξ̃|2 − κ

2
|η̃|2 + τα%1|ξ̃|+ τ(%2k2 + %3k3)|η̃|.

Hence, it follows that V ′ ≤ −ᾱ1V + τᾱ2

√
V with some

ᾱ1 > 0 and ᾱ2 > 0. By the comparison lemma [Khalil,
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2002] and the quadratic property of V , the claim follows.
2

Remark 5. By repeating the proof of Lemma 3, one can
easily prove that if τ = 0, the fast subsystem (22) (i.e.,
the boundary-layer system of (17) and (18)) is globally
exponentially stable at the equilibrium [ξ∗; η∗]. �

Assuming that z(t) ∈ Z and [z̄(t);x(t); c(t)] ∈ U , the
stability of the boundary-layer system enables us to derive
the quasi-steady-state system as follows:

ż = Sz + Px

˙̄z = S̄z̄ + P̄ x

ẋ = Ax+B
(
F̄ [z̄;x] + Ḡγ(c, Cx, yr)

)
ċ = Γ(c, Cx, yr)

(30)

which is obtained by putting ξ∗ and η∗ into the slow system
(17) and using the fact

θξ|τ=0,ξ=ξ∗,η=η∗ = F [z;x] +G(w∗ + ΠḠur + d)

= F̄ [z̄;x] + Ḡur

where w∗ = η∗[1] + ΠF̄ [z̄;x] = G−1(F̄ [z̄;x] − F [z;x]) +
(G−1−Π)Ḡur−d and ur = γ(c, Cx, yr). It is interesting to
observe that the quasi-steady-state system (30) is nothing
but the nominal closed-loop system augmented by the z-
dynamics.

With the arguments so far, we are ready to prove the
statements of Theorem 1. The system (17) and (18), that
is in the standard singular perturbation form, is equivalent
to the closed-loop system (1), (4), and (14) with ȳ being
replaced by y in (4). Then, there exists T1 > 0, which
is independent of τ , such that the state [x(t); c(t)] of
the solution [z(t); z̄(t);x(t); c(t)] of (17) and (18) remains
in Uz × U for 0 ≤ t ≤ T1, with any initial condition
[z(0); z̄(0);x(0); c(0); ξ(0); η(0)] ∈ S̄z×S̄×Rr×Rr and with
any 0 < τ ≤ 1, because the compact set S̄z×S̄ is contained
in the open set Uz × U , and the vector field of (17) is
bounded, independently of τ , by the saturation functions.
On the other hand, there exists T2 > 0, independent of τ ,
such that |[x(t); c(t)]− [xN (t); cN (t)]| ≤ ε/2 for 0 ≤ t ≤ T2,
because [x(0); c(0)] = [xN (0); cN (0)] and, again, the vector
field of (17) is bounded. Finally, let T = min{T1, T2}.
Then, Lemma 3 is applicable, which yields that

|[ξ(T )− ξ∗; η(T )− η∗(T )]| ≤ ke−λTτ
(
k∗

τ r∗
+ k̂

)
+ δ(τ)

where we used that |[ξ̃(0); η̃(0)]| ≤ (k∗/τ r
∗

+ k̂) from
Remark 3, and k̂ is a bound for θ∗[1]. Therefore, by
taking a sufficiently small τ , we have the property that
ξ(T ) → ξ∗ and η(T ) → η∗(T ) as τ → 0. Then, the
Tikhonov’s theorem can now be applied for the time
interval [T,∞). Indeed, the boundary-layer system (i.e.,
τ = 0) is uniformly globally exponentially stable by
Remark 5, and the solution [z̄N (t); x̄N (t); cN (t)] (i.e., the
nominal trajectory) of the quasi-steady-state system is
uniformly locally asymptotically stable by Assumption 2.
With these, all the assumptions in [Hoppensteadt, 1966]
hold. Then, by the Tikhonov’s theorem, Theorem 1 is
proved.

4. CONCLUSION

We have proposed an inner-loop controller for a class of
MIMO linear systems, which guarantees robust transient
performance as well as robust steady-state performance,
assuming that an outer-loop controller shows a satisfac-
tory performance for the nominal plant without any dis-
turbances. This has been achieved by employing some
saturations functions on top of the disturbance observer
structure discussed in [Shim and Joo, 2007]. Nonlinear
extension of the proposed result can be one of further
studies.
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