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1. INTRODUCTION

There is a wide range of axiomatic formulations of decision
making (DM) under uncertainty and incomplete knowl-
edge, e.g. Savage [1954]. It seems, however, that none of
them fits satisfactorily to closed decision loops in which the
selected actions influence distributions describing them,
cf. Fishburn [1970], part three. This text is an engineering
attempt to fill the gap. The adjective “engineering” means
that the overall picture is preferred over subtleties like
measurability of various mappings: technical assumptions
of this type are implicitly

assumed to be valid. The text serves primarily as a formal-
ized justification of the fully probabilistic design (FPD) of
decision-making strategies, Kárný [1996], Guy and Kárný
[2005], Kárný and Guy [2006]. Also, the relationship of the
FPD to the standard Bayesian DM is established.

A considered DM unit, called here participant, selects a
sequence of actions a1:̊t ≡ (a1, . . . , åt), at ∈ a∗t 6= ∅, with
the aim to influence its environment, a thought of part
of the real world. In connection with the faced DM, the
participant considers observations ∆1:̊t, ∆t ∈ ∆∗

t 6= ∅, of
the environment together with others unobserved variables
x1:̊t, xt ∈ x∗t . The collection of these variables

Q ≡
(
∆1:̊t, a1:̊t, x1:̊t

)
≡
(
d1:̊t, x1:̊t

)
, horizon t̊ given, (1)

forms behavior of the closed loop made of the participant
and its environment. Typically, the behavior consists of
a finite sequence of finite-dimensional vectors with real
or discrete-valued entries. The inspected theory should
help in selecting the optimal strategy among available DM
strategies R ≡ R1:̊t formed by sequences of DM rules

Rt : d1:t−1∗ → a∗t . (2)
The optimal strategy “pushes” the closed-loop behavior as
much as possible towards a desired closed-loop behavior.
It supposes that the participant has partial preferences
among behaviors. The addressed theory of its construction
is put together as follows.

• The partial preferential ordering / on possible behaviors
Q ∈ Q∗ is characterized and quantified by a loss function
? This work was supported in part by grants GA ČR 102/08/0567,
MŠMT 2C06001.

Z : Q∗ → [−∞,∞] ≡ <. The inevitable assumptions are
only made. Consequently, the loss function Z(·) that orders
possible behaviors a posteriori is non-unique, Section 2.
• For a fixed strategy R, possible behaviors Q ∈ Q∗ are ex-
pressed as images of external unobserved influences, called
uncertainties, N ∈ N∗ 6= ∅. Uncertainties include anything
what a priori prevents unambiguous determination the
closed-loop behavior Q. The mapping

WR : N∗ → Q∗ (3)
induces a priori ordering /R∗ of strategies R ∈ R∗ as the
image of the a posteriori ordering / of behaviors Q ∈ Q∗.
Due to the presence of uncertainties N ∈ N∗, the induced
ordering /R∗ of strategies R ∈ R∗ is partial even if the a
posteriori ordering / of behaviors Q ∈ Q∗ is complete.

For selecting the optimal DM strategy a complete ordering
has to be defined on R∗. The optimal strategy is then
defined as the most preferred strategy in terms of this or-
dering. In order to respect participant’s preferences, it has
to be an extension of the ordering induced by the ordering
of behaviors. The extension is made via a local functional
T quantifying partial ordering of losses generated by a
variety of a posteriori orderings, their representations and
by possible strategies. The integral representation of T,
Rao [1987], is given by a kernel Φ and a finite regular
Borrel measure µ. The measure is recognized as a universal
model of uncertainties N ∈ N∗ common to all DM tasks
sharing them. Even then, the extension is not unique but
good kernels Φ must avoid bad strategies, Section 3.
• Optional mappings Z, Φ appearing during quantitative
characterization of the a priori ordering of strategies /R∗

are restricted by conditions that make the FPD the proper
alternative in selecting the best strategy, Section 4.
• The standard Bayesian DM is shown to be a strict subset
of the FPD, Section 5.
• General properties of the advocated FPD are summa-
rized in Section 6.

2. A POSTERIORI ORDERING OF BEHAVIORS

The participant is supposed to have a strict preferential
ordering / among behaviors Q ∈ Q∗. It is the binary
relation / on ordered pairs

(
aQ, bQ

)
∈ Q∗ ×Q∗

aQ / bQ reads aQ is preferred against bQ. (4)
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Preferential interpretation implies that the ordering /
is to be asymmetric aQ / bQ ⇒ ¬( bQ / aQ); if aQ
is preferred against bQ then bQ is not preferred to aQ.

Desirable consistency of preferences restricts the ordering
to be transitive ( aQ / bQ ∧ bQ / cQ) ⇒ aQ / cQ. The
ordering / is generally partial one as the participants
are often unable or unwilling to compare all pairs of
possible behaviors. This is the key but realistic obstacle
of the preference modelling. The incomparable pairs can
be perceived as indistinguishable

aQ ∼ bQ ⇔ (¬( aQ / bQ) ∧ ¬( bQ / aQ)). (5)
As a rule, the relation ∼ is, however, intransitive so that
it cannot be taken as equivalence. The intransitivity is
easily demonstrated when considering the ordering of two-
dimensional integer-valued vectors Q = [Q1,Q2] with aQ/
bQ ⇔ aQi < bQi, i = 1, 2. It is sufficient to think about
aQ = [0, 0], bQ = [1, 1] and cQ = [2,−1] as

aQ ∼ cQ ∧ bQ ∼ cQ ∧ aQ / bQ. (6)
It is possible to use (5) and define the transitive preferen-
tial equivalence ≈ on which (6) is “forbidden”. The equiv-
alence relation ≈ introduces on Q∗ equivalence classes.
Their collection we denote Q∗≈. The ordering / induces
the preferential ordering /≈ on Q∗≈. Let A,B ∈ Q∗≈, then

A /≈ B ⇔ ∃( aQ ∈ A ∧ bQ ∈ B) such that aQ / bQ.

This ordering is partial as still may exist aQ ∼ cQ ∧
¬( aQ ≈ cQ). The above example demonstrates this.

The set Q̃∗≈ ⊂ Q∗≈ is said /≈-dense if for any A /≈ B,
A,B ∈ Q∗≈ \ Q̃∗≈ there is C ∈ Q̃∗≈ such that A /≈ C
and C /≈ B. This notion is needed in the following basic
proposition about numerical representation of ordering /.
Proposition 2.1. (Existence of real-valued loss function).
Let exist a countable /≈-dense set in Q∗≈. Then, there is
a real-valued function Z defined on Q∗≈ such that

aQ / bQ ⇒ Z ( aQ) < Z ( aQ) and (7)
aQ ≈ bQ ⇒ Z ( aQ) = Z

(
bQ
)
.

Proof: See Fishburn [1970], Proposition 3.2. 2

The loss function Z(·) described in the above proposition
is by no means unique. The freedom can be restricted
in a meaningful way by requiring it to be continuous
with respect to topology generated by the ordering /≈.
Still its uniqueness can be obtained at too high price of
unnecessary additional assumptions.

3. A PRIORI ORDERING OF STRATEGIES

For a fixed environment, let us consider any version of the
loss function meeting (7) and express the behavior Q as
the image of the considered strategy R ∈ R∗ and of the
uncertainties N ∈ N∗ 6= ∅, cf. (3). Then, the loss function
can be expressed as a compound mapping of uncertainties
on the (extended) real line <

ZR : N∗ → < with ZR(N) ≡ Z(WR(N)). (8)
Considering all possible strategies R ∈ R∗, we get the set
ZR∗ of real-valued functions of uncertainty N ∈ N∗

ZR∗ ≡ {Z : N∗ → <, ∃R ∈ R∗ such that Z = ZR cf. (8)} . (9)

The value-wise defined ordering of functions in ZR∗ induces
a “natural” partial ordering /R∗ of strategies aR, bR ∈ R∗

aR /R∗
bR ⇔ Z aR(N)=Z(W aR(N)) ≤ Z(W bR(N))=Z bR(N)

(10)
∀N ∈ N∗, while the inequality (10) is sharp on a “non-
negligible” subset of N∗. The term “non-negligible” is
made more exact below. The strategy bR in (10) is called
dominated by the strategy aR and any reasonable ordering
introduced on R∗ must not take it as the optimal one: its
consequences are worse than those of aR irrespectively of
inaccessible uncertainties. This is the key requirement on
the constructed ordering of strategies.
Requirement 3.1. (Inadmissibility of dominated strategies).
Let the loss function and environment be fixed and let /R∗

be defined by (10). Then, any admissible completion of
this ordering must not prefer a dominated strategy on any
subset of sR∗ ⊂ R∗.
Remark 1. (The quest for objectivity). By demanding
non-dominance on subsets sR∗ of R∗, we try to make the
ordering weakly dependent on the specific-case-dependent
choice of the set of considered strategies. This reflects
the wish to make the proposed methodology as objective
as possible. The resulting methodology should serve to
a whole range of a posteriori ordering on behaviors and
should be weakly dependent on the chosen numerical
representations. The same line is followed throughout.

Assuming existence of countable /R∗≈-dense set in R∗,
Proposition 2.1 guarantees existence of a functional T :
ZR∗ → < such that aR /R∗

bR ⇒ T(Z aR) < T(Z bR) and
aR ≈R∗

bR ⇒ T(Z aR) = T(Z bR).

For a systematic choice of the best strategy, we have to
define complete ordering on R∗. In order to respect the
given a posteriori ordering of behaviors, it has to be an
extension of the discussed partial ordering /R∗ . The key
property of such an extension (denoted further on also
/R∗) is formulated in the following proposition.
Proposition 3.1. (Admissible ordering). Let countable
/R∗≈-dense set in R∗ exist. Then, Requirement 3.1 is met
iff /R∗ is quantified by the functional T fulfilling

aR /R∗
bR ⇔ T(Z aR) < T(Z bR) and aR ≈R∗

bR (11)

⇔ T(Z aR) = T(Z bR).

Proof: The implication ⇐ in (11) has to be only proved.
For it, it is sufficient to observe that the optimum strategy
is dominated if the optimization is restricted to a subset
sR∗ ⊂ R∗ consisting of strategies violating isotonicity. 2

This makes us to define the complete ordering of strategies
by (11) for a loss function Z and a functional T.

4. BASIS OF THE FPD

In order to get operational tool for the choice of the best
strategy, we represent the functional T ordering completely
strategies by (11) by exploiting integral representation of
local functionals. It is reasonable to require the functional
T to be continuous on the space of “nice” loss functions
Z, generated by possible choices of Z-versions and by the
considered DM strategies R ∈ R∗. In accordance with
Remark 1, we want to make the result weakly dependent
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on a specific loss function Z(·) chosen, i.e., on the specific
choice of a posteriori preferences /. Thus, we consider the
functional T acting on functions of the same uncertainty
N ∈ N∗, which arise by both varying possible strategies
R ∈ R∗ and loss functions Z ∈ Z∗ determining different a
posteriori orderings (4) of possible behaviors Q ∈ Q∗. It
means that the functional T (11) acts on
Z∗R∗ ≡ ∪Z∈Z∗≡loss functions on Q∗ZR∗ , see (8), (9). (12)
The nice loss functions in Z∗R∗ are assumed to belong to the
space of continuous real-valued functions with a compact
support in N∗, which is a locally compact Hausdorff space.
The uniform norm || · || is well defined on these functions.
The following representation is described, up to minor
changes in notations, by Theorem 5, page 479, Rao [1987],
where the highly technical proof can be found.
Proposition 4.1. (Representation of local functional). Let
T : Z∗R∗ → < be a mapping such that:

(1) (Sequential continuity) If {Zn : n ≥ 1} ⊂ Z∗R∗ is
a bounded point-wise convergent sequence, then
{T(Zn) : n ≥ 1} ⊂ < is Cauchy.

(2) (Additivity)
T
(

aZ + bZ
)

= T ( aZ) + T
(

bZ
)

if aZ bZ = 0. (13)
(3) (Bounded uniform continuity) For each ε > 0, γ >

0, there is a δ ≡ δε,γ such that if || aZ|| < γ,∣∣∣∣ bZ∣∣∣∣ < γ, aZ, bZ ∈ Z∗R∗ and
∣∣∣∣ aZ− bZ

∣∣∣∣ < δ, then∣∣T ( aZ)− T
(

bZ
)∣∣ < ε.

Then, the functional T is representable as the integral

T(Z) =
∫

N∗
Φ(Z(N), N) µ(dN), where (14)

µ is a finite regular Borel measure on N∗ and the
kernel Φ : < × N∗ → < satisfies the following
conditions:

(4) Φ(0, N) = 0 and Φ(·, N) is continuous for almost all
(a.a.) N ∈ N∗,

(5) Φ(x, ·) is µ-measurable for all x ∈ <, and,
(6) for each Z ∈ Z∗R∗ , Φ(Z(N), N) is bounded for a.a.

N ∈ N∗ and for any point-wise convergent sequence
{Zn : n ≥ 1} ⊂ Z∗R∗ {Φ(Zn, ·) : n ≥ 1} is Cauchy in
the space of integrable functions with measure µ.

Conversely, if the pair (Φ, µ) satisfies the last three condi-
tions and the functional T is defined by (14), then it meets
the initial three conditions.

Note that the “non-negligible sets” quoted in connection
with (10) are those of a positive measure µ.

The only interpretation-sensitive assumption of the used
theorem is additivity (13) of T on functions with disjoint
supports. It seems to be widely acceptable as

Z = χAZ︸︷︷︸
aZ

+(1− χA)Z︸ ︷︷ ︸
bZ

, A ⊂ N∗, χA ≡
{

1 on A
0 otherwise

both interprets the meaning of the sum of loss functions
and justifies the wish for this additivity.

Obviously, the functional of the form (14) is admissible
in the sense of Proposition 3.1 on Z∗R∗ iff the kernel
Φ is increasing function of the first argument for a.a.
second arguments. The complete ordering /R∗ (11) remains
the same if T is multiplied by any positive constant.

Thus, without a loss of generality, we can assume that
µ(N∗) = 1, i.e., that µ is a probabilistic measure. Using
Fundamental theorem of probability, Corollary 7, page
155 in Rao [1987], we can express the functional (14) as
the functional on behaviors determined by the considered
decision strategy R ∈ R∗

T(ZR) =
∫
Q∗

Φ(Z(Q),W−1
R (Q)) dFR(Q), where (15)

FR(Q) is the probability distribution function of Q and
W−1

R is the inverse image of WR (3).

The representation of the a priori ordering /R∗ of the DM
strategies R ∈ R∗ by the functional T(ZR) has the following
important methodological consequences:
•• The representation of the functional T separates de-
scription of uncertainty, µ(dN) in (14), and its influence
on a posteriori ordering of behaviors Q ∈ Q∗, expressed
by values of the specific loss function Z(Q). Consequently,
µ(dN) can be safely interpreted as the objective descrip-
tion of uncertainty entering the closed loop formed by the
considered environment and DM strategy.
• • • The measure µ describing the uncertainties N ∈ N∗

converts into the probability distribution function FR(Q)
of the closed-loop behaviors Q ∈ Q∗. This distribution
depends explicitly on the chosen DM strategy R.

Taking into account the item ••, all definitions of uncer-
tainties N ∈ N∗ and of the corresponding mappings WR

giving the same FR(Q) are equivalent. Thus, the probabil-
ity distribution function FR(Q) is the universal model of
the closed loop.
• The strategies-ordering functional T(ZR) is the expected
value of Φ(Z(Q),W−1

R (Q)). Generally, it depends both on
the values of the loss function Z (ordering behaviors a
posteriori) and the mapping WR (3) projecting the un-
certainties N ∈ N∗ on behaviors Q = WR(N). Taking
into account equivalence of all pairs (N,WR(N)) with
the same pdf FR(Q), see item • • •, we can assume that
W−1

R (Q) = W(FR(·),Q) for a functionW. Thus, the kernel
in (14) can be given the form

Φ(Z(Q),W−1
R (Q)) = Φ(Z(Q),W(FR(·),Q))

≡ Ω(Z(Q), FR(·),Q) (16)

with the function Ω increasing in the first argument and
Ω(0, FR(·),Q) = 0 for a.a. Q.
• The kernel Ω models interaction between uncertainty,
projected into Q∗, which is described by FR(·), and a
posteriori observable loss Z(Q). It models attitude of
the participant to risk (neutral, risk prone, risk aware)
or more generally, a non-trivial interactions between a
posteriori consequences and their distribution. There are
strong indications, Starmer [2000], that such a possibility
is badly needed at least in risk-facing DMs.
• In order to avoid technicalities, we assume further on
that the probability distribution function FR(Q) has the
probability density function (pdf) fR(Q) with respect to a
dominating measure denoted here dQ.

Generally, the kernel Ω depends on the whole probability
distribution function FR(·). It makes, however, sense to
make the acquired loss and thus the ordering of strategies
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dependent only on realized behaviors, i.e., to adopt a sort
of likelihood principle (the localness in Bernardo [1979]).
Requirement 4.1. (“Likelihood” principle). The pdf fR(·)
enters the kernel Ω (16) value-wise, i.e., Φ(Z(Q),W−1

R (Q))
= Φ(Z(Q),W(fR(·),Q)) ≡ Ω(Z(Q), fR(Q),Q). (17)

The above considerations define the optimal strategy as
minimizer of the expected value

E [Ω(Z(Q), fR(Q),Q)] ≡
∫

Ω(Z(Q), fR(Q),Q) fR(Q) dQ.

The optimized strategy influences just the pdf fR(Q),
which enters both the function Ω and – linearly – the
expectation operator E. Let us stress that the occurrence
of fR(Q) in Ω is non-standard and represents the key gen-
eralization brought by the treated problem formulation.

For a given Ω(·) and Z(·), let us define the ideal pdf If(Q)
If(Q) ≡ f OR(Q) with OR ∈ Arg inf

R∈R∗
E [Ω(Z(Q), fR(Q),Q)] .

(18)

The presented results indicate that neither the kernel Ω
nor the loss Z are unique. At the same time, all designs
leading to the same closed-loop description, the same pdf
fR(Q), are equivalent. The fully probabilistic design takes
the last statement seriously and formulates the design as
the selection of the DM strategy that makes the closed-
loop pdf fR(Q) as close as possible to the ideal pdf If (Q).
Thus, the ordering of the strategies is not determined via a
loss function Z(Q) and the kernel Ω(Z(Q), fR(Q),Q) but
via the ideal pdf If (Q) and some kernel Υ(fR(Q),Q) ≡
Ω(Z(Q), fR(Q),Q). The optimal strategy minimizes

E [Υ] ≡
∫

Υ(fR(Q),Q)fR(Q) dQ. (19)

While the ideal pdf is specific to a specific decision prob-
lem, the kernel Υ is a technical tool. We would like to find
class of kernels suitable to a wide class of DM problems.
The following requirements seem to be reasonable and
were inspired by a related problem in Bernardo [1979].
Requirement 4.2. (Universal kernel Υ).
• The kernel Υ is to guarantee that the given If is the
only unrestricted minimizer of (19).
• Υ(fR(Q),Q) = 0 for a.a. Q ∈ Q∗ for which fR(Q) =
IfR(Q), i.e., the contribution of such behaviors to the
optimized functional E [Υ] is zero.
• Re-scaling of the behaviors does not change E [Υ].

The following proposition shows that under this require-
ment there is a little freedom in choosing the kernel Υ.
Proposition 4.2. (Form of the Υ). Under Requirement 4.1
and for an arbitrary ideal pdf If , let the kernel Υ meet
Requirement 4.2 and have continuous derivatives with
respect to the first argument for a.a. Q. Then,

Υ(fR(Q),Q) = A ln
(

fR(Q)
If (Q)

)
, A > 0, i.e., (20)

E [Υ] = A

∫
fR(Q) ln

(
fR(Q)
If (Q)

)
dQ = A×

Kullback-Leibler divergence (KLD) of fR(Q) on If (Q) .

Proof: By taking variations of the minimized functional (19)
over pdfs on Q∗, we get the necessary condition for minimum

f (Q)
∂

∂fR(Q)
Υ(fR(Q),Q) + Υ(fR(Q),Q) = A > 0 (21)

This condition has to be met for fR(Q) = If (Q) for which
the second term on the left-hand side of (21) disappear.

For A 6= 0, it has the solution Υ(fR(Q),Q) = A ln(fR(Q))+
B(Q). The requirement Υ( If (Q) ,Q) = 0 determines
B(Q) = −A ln( If (Q)) uniquely.

For A = 0, Υ(fR(Q),Q) have to be with arbitrary precision
proportional to the quadratic form (fR(Q)− If(Q))2 for all
fR(Q) sufficiently close to If(Q). This quadratic form is not,
however, scale invariant. 2

Remark 2. (On Proposition 4.2 and its conditions).
• The KLD, Kullback and Leibler [1951],

D
(
f
∣∣∣∣ If

)
≡
∫
Q∗

f (Q) ln
(

f (Q)
If (Q)

)
dQ (22)

is an often used proximity measure of pdfs with a range
of applications in DM, statistics and information theory.
It has an exceptional position within a class of so called
f-divergences studied by many authors, e.g., Vajda [1989].
• The minimization of the KLD of f on If is the essence
of the FPD. It was proposed in Kárný [1996] on heuristic
basis and extended into a general form in Kárný and Guy
[2006]. The current paper tries to make this basis more
firm and to relate the FPD to standard Bayesian DM.
• The closed-loop description fR(Q) enters into the op-
timized functional in a non-linear way. This is a source
of strength as well as weakness of the FPD discussed in
subsequent sections. Related considerations of conditional
expectation as, possibly non-linear, mapping can be found
in Pfanzangl [1967].
• It is worth stressing that the multi-modal ideal pdf allows
a straightforward quantification of multiple-aims, which
otherwise is taken as a hard extension of the standard
single-aim Bayesian paradigm.
• For behaviors having non-numerical parts, the scaling in-
variance, Requirement 4.2, can be replaced by requirement
on invariance to sufficient-type mappings.

5. BAYESIAN DM IS A SPECIAL CASE OF THE FPD

First we verify that the FPD defines a suitable loss and ker-
nel corresponding with Proposition 4.2, i.e., we show that
the constructed optimal strategy is non-dominated with
respect to this loss. Then, the proposition corresponding
to the section title is presented.

The FPD minimizes the expectation of ZR(Q) ≡ ln
(

fR(Q)
If(Q)

)
over the space pdfs {fR(Q), R ∈ R∗}. The key practical
restriction on allowable ideal pdfs
If (Q) = 0 ⇒ fR(Q) = 0, for any R ∈ R∗. (23)
allows us to stay within the class of continuous loss
functions. This restricts the set of strategies among which
the optimal one can be found. Essentially, it puts hard
constraints on the desirable behaviors. It may of course
happen that the restricted set of strategies is empty.

If we define N∗ = Q∗, the isotonic kernel Φ(ZR(Q),Q) =
ZR(Q) and the measure µ(dQ) = fR(Q) dQ, we see that the
last three items of Proposition 4.1 are met. Consequently,
the KLD is the local isotonic functional on functions
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ZR(Q) = ln
(

fR(Q)
If(Q)

)
, R ∈ R∗, and meets the initial three

conditions of Proposition 4.1.

For demonstrating the main result of this section, we
reduce (17) to a special case

Φ(Z(Q),W−1
R (Q)) = Ω(Z(Q),Q) (24)

with Ω having properties of the kernel Φ. Under this
assumption, the local functional (15) reduces to the or-
dinary expectation of the isotonic transformation (via Ω)
of the loss Z(·). In other words, the design reduces to the
standard Bayesian one, which is characterized by linearity
with respect to the optimized closed-loop model fR(Q) and
a sort of “neutrality” with respect to this pdf.

Thus, the crucial question is whether we can select the
ideal pdf If (Q) such that – for a given environment,
a given “neutral” kernel Ω(Z(Q),Q) and a given loss
function Z(Q) – the FPD reduces to the standard Bayesian
DM. In other words, we ask whether the FPD extends the
Bayesian DM. The answer is affirmative.

Taking into account structure of the behavior (1), we can
factorize the pdf fR(Q) ≡ fR

(
d1:̊t, x1:̊t

)
describing it as

follows fR(Q) =
∏t̊

t=1

f
(
∆t, xt

∣∣a1:t,∆1:t−1, x1:t−1
)︸ ︷︷ ︸

model of environment and its observation

× f
(
at

∣∣d1:t−1, x1:t−1
)︸ ︷︷ ︸

rule Rt of the strategy R

(25)
with d1:0, x1:0 representing trivial conditioning. The first
generic factor in (25) is fixed when the environment is
fixed. The second generic factor describes the optimized
strategy. By definition, x1:̊t are never directly observed by
the participant. Thus, natural conditions of DM, Peterka
[1981], have to be met

f
(
at

∣∣d1:t−1, x1:t−1
)

= f
(
at

∣∣d1:t−1
)

(26)
that comply with domains of decision rules Rt in (2)

Within the considered class of continuous loss functions
on a compact support, the function

Z(Q) ≡ Ω(Z(Q),Q), see (24), (27)
is bounded. Thus, we can assume without a loss of gen-
erality that Z(Q), whose expectation is minimized in
the standard Bayesian way, is bounded and non-negative.
Moreover, Z(Q) can be always written in the additive form

Z(Q) =
t̊∑

t=1

z
(
d1:t, x1:t

)︸ ︷︷ ︸
partial loss

, z
(
d1:t, x1:t

){Z(Q) if t = t̊
0 if t < t̊

. (28)

Dynamic programming methodology, e.g. Bertsekas [2001],
splits the optimization into a sequence of minimizations of
the conditional expectation of the partial loss increased by
the non-negative Bellman function of the same argument.
Consequently, it is sufficient to express a static DM task
as the FPD in order to get the conclusion valid for the
general dynamic case.
Proposition 5.1. (Inclusion of Bayesian DM into the FPD).
Let the bounded loss function Z(y, a) ≥ 0, y ≡ (∆, x), and
the environment model f (y|a) be given. Let us search for
an optimal randomized decision rule Of (a)

Of (a) ∈ Arg min
f(a)

E [Z] . (29)

Let us exploit so called leave-to-fate option, Kárný
et al. [2005], and define the ideal pdf If (y, a) =
If (y|a) If (a) ≡ If (y|a) f (a), i.e., the inspected strat-
egy f (a) is taken as the factor in the ideal pdf. The
environment-related factor of the ideal pdf is chosen

If (y|a) = f (y|a) exp (30){
−
[
B(a)Z(y, a)− (B(a)− 1)

∫
Z(y, a)f (y|a) dy

]}
,

where the non-negative coefficient B(a) depends on the
environment model and the loss function. It is found as a
solution of the equation

1 =
∫

f (y|a) exp (31){
−
[
B(a)Z(y, a)− (B(a)− 1)

∫
Z(y, a)f (y|a) dy

]}
dy,

which always exists. Then, the FPD with this ideal pdf
reduces to the standard Bayesian DM, i.e.,

D
(
f
∣∣∣∣ If

)
= E [Z] , ∀ strategies f (a) . (32)

Proof: For a constant loss function, the assertion is trivial
Thus, the non-constant loss is generic. By construction,
the factor If (y|a) of the chosen ideal pdf (30) depends
on the environment model and the loss function, i.e., it is
independent of the decision rule f (a) to be chosen. The
condition (31) guarantees that it is a well defined pdf. Thus,
it is just necessary to show that this condition can be met.
Simple details are omitted to spare the space. 2

6. CONCLUSIONS

6.1 Drawbacks of the FPD

General limitations of the FPD follow from troubles with
the KL divergence on pdfs having both continuous and
Dirac-delta type constituents and thus having “tendency”
to violate (23). Moreover, the optimized functional is non-
linear and as such it is more sensitive to variations of its
arguments f and If . The fact that aims are quantified in
a non-standard way brings additional troubles:
• Expression of the real aims by If is non-trivial and it
may happen that the option made does not reflect them.
• Some simple tasks like search for an extreme of a function
are expressed in the FPD only in a cumbersome and
sensitive way.
• The usual complete separation of the a posteriori loss
and description of uncertainty is broken. This argument
is, however, valid only when the neutral risk attitude is
(implicitly) assumed.
• It is recommended to choose the ideal pdf as desirable
and realistic modification of the environment model Kárný
[2006]. While we take it as an advantage, there are tasks
where this methodology brings undesirable effects.

6.2 Advantages of the FPD

At least because of authorship, it is not surprising that we
let advantages of the FDP overweight disadvantages.
• Dynamic programming shows that stochastic optimiza-
tion can be made by performing repetitively operations
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(conditional expectation,minimization), Bertsekas [2001].
The FPD has an explicit minimizer, Kárný and Guy
[2006], so that the (almost) inevitable approximation task,
Si et al. [2004], is substantially simplified.

The evaluation complexity of the optimal strategy can
be simply seen on so called data-driven FPD when no
internal quantities are present and Q ≡ d1:̊t. The following
proposition is proved in Kárný et al. [2005].
Proposition 6.1. (Solution of the data-driven FPD). The
optimal strategy minimizing the KLD of f(Q) ≡ f

(
d1:̊t
)

=∏t̊
t=1 f

(
∆t

∣∣at, d
1:t−1

)
f
(
at

∣∣d1:t−1
)

on the ideal pdf
If(Q) ≡ If

(
d1:̊t
)

=
∏t̊

t=1
If
(
∆t

∣∣at, d
1:t−1

)
If
(
at

∣∣d1:t−1
)

is f
(
at

∣∣d1:t−1
)

= If
(
at

∣∣d1:t−1
) exp

[
−ω

(
at, d

1:t−1
)]

γ (d1:t−1)
,

γ
(
d1:t−1

)
≡
∫

If
(
at

∣∣d1:t−1
)

× exp
[
−ω

(
at, d

1:t−1
)]

dat, for t < t̊,

ω
(
at, d

1:t−1
)
≡
∫

f
(
∆t

∣∣at, d
1:t−1

)
× ln

(
f
(
∆t

∣∣at, d
1:t−1

)
γ (d1:t) If

(
∆t

∣∣at, d1:t−1
)) d∆t.

It is solved for t = t̊, t̊− 1, . . . , 1 with γ
(
d1:̊t
)

= 1.

Notice that the restricted support of the ideal pdf on
actions implies restricted support of the chosen strategy.
This manifests the general property of the FPD: the op-
timum lies between strategies meeting (23) and thus the
ideal pdfs quantifies both decision aims and constraints.
• Multi-modal ideal pdf expresses “naturally” multiple
decision aims, Böhm et al. [2005]. There is no conceptual
jump between single and multiple aim optimization.
• In the multiple-participant context, the well-developed
art of combining pdfs, Nelsen [1999], Cowell et al. [1999],
Kárný et al. [2006], can be extended to combination of
aims expressed by ideal pdfs Kraćık [2004]. The similar
problem is much harder in the classical setting.
• Unlike in the standard Bayesian DM, the optimal strate-
gies are randomized. It is much more realistic as any chan-
nel implementing the designed DM strategy has a finite
capacity, cf. Sims [2002], i.e., it is unable to implement
non-randomized strategy.
• The reasonable choice of the ideal pdf as a modifica-
tion of the current closed loop description, Kárný [2006],
allows to respect the available environment model. For
instance, quadratic optimization is performed when regu-
lating linear environment with Gaussian noise while linear
programming should be used for the same environment
with uniform noise. This intuitively plausible result follows
directly from the FPD problem formulation.
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bilistic mixture control. In P. Horáček, M. Šimandl, and
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