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Abstract: This paper presents a design procedure of the ARHC(Adaptive Receding Horizon
Control) of the looper-tension controller in hot strip finishing mill. The controller is applied
to satisfy the constraints of the control input and attenuate the disturbance of the actuator.
The system matrices of the looper model are periodically updated during online simulation.
Moreover the closed loop stability of the controller is analyzed.

1. INTRODUCTION

The width of the hot strip process is important to deter-
mine the productivity of the steel company, because the
width shrinkage of the strip is trimmed after the process.
The width of the finishing mill mainly depends on the
tension between two neighboring stands which is controlled
by the looper system. Therefore the tension deviation
can be minimized by the looper-tension control system.
Normally, it has to satisfy the constraints on the control
input and state, attenuate the variations of the system
parameters and the speed disturbance of the actuator.

The researchers have developed the looper-tension control
system using the conventional PI, inverse linear quadratic,
H∞ control, model predictive control, and so on (Park
[2007]). However, they have the weak robustness with
respect to the input constraints, the variation of model
parameters, and uncertainties, and so on.

The purpose of this paper is the construction of the adap-
tive RHC(ARHC) control system based on the state space
model for the looper system. The system matrices of the
looper model are updated by the online identification. The
proposed RHC is based on the finite terminal weighting
matrix instead of the terminal equality constraint. More-
over, the closed loop stability of the control system is
analyzed.

The paper is organized as follows: Section 2 gives a brief
description of the RHC control scheme and its adaptation.
In Section 3, the closed loop stability of the RHC is
introduced. Conclusions are presented in Section 4.

2. ADAPTIVE RECEDING HORIZON CONTROL

2.1 Design of RHC System

Nonlinear dynamics of the looper system is linearized by
the approximation technique using Taylor’s series expan-
sion, where the considered operating points are the strip
tension(8.6[N/mm2]) and the looper angle(18[degree])
(Hesketh et al. [1998], Imanari et al. [1998]). To design the
RHC controller which satisfies some constraints subject to

control input/state variables, the time-invariant discrete
system is represented:

xk+1 = Akxk + Bkuk, (1)
yk = Ckxk + Dkuk, (2)

where xk ∈ �n is a state, and uk ∈ �m and yk ∈ �m

are a control input and a measured output(n=5, m=2),
respectively, and defined as xk = [δσ δθ δθ̇ δvRe δilm]T ,
uk = [δvref

Re δiref
lm ]T , yk = [δσ δθ]T .

The performance criterion is represented as follows:

J(xk, k) =
N−1∑
i=0

(xT
k+i Q xk+i + uT

k+i R uk+i)

+ xT
k+N Ψ xk+N (3)

where Q ≥ 0, R > 0 and Ψ > 0 are the state weighting
matrix, the input weighting matrix and the terminal
weighting matrix, respectively.

To design the RHC controller, we define state equations (1)
and (2) of the looper-tension system and set the horizon
N , input/state constraints and weighting matrix(Q, R),
respectively (Lee [1998], Kwon [2005]). The augmented
variables are defined as follows:

Xk =

⎡
⎢⎢⎣

xk|k
xk+1|k

...
xk+N |k

⎤
⎥⎥⎦ , Uk =

⎡
⎢⎣

uk|k
...

uk+N−1|k

⎤
⎥⎦ (4)

Then we calculate the performance index (3) as follows:

J(xk, k) = XT
k Q̂Xk + UT

k R̂Uk, (5)

where

Q̂ =

⎡
⎢⎢⎢⎣

Q 0 · · · 0

0
. . .

. . . 0
...

. . . Q 0
0 · · · 0 Ψ

⎤
⎥⎥⎥⎦ , R̂ =

⎡
⎢⎣

R 0 0

0
. . . 0

0 0 R

⎤
⎥⎦ .
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The RHC problem minimizing (3) with constraints can
be formulated into a semidefinite programming(SDP) with
variable t ∈ � as follows (Boyd et al. [1994]):

U∗
k = Minimize t (6)

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

input and state constraints,[
I W

1/2
k Uk

(W 1/2
k Uk)T ωT

k Uk + ω0k + t

]
≥ 0,[

I (AN
k xk + B̄kUk)T

AN
k xk + B̄kUk Ψ−1

]
≥ 0,

(7)

where

Wk = ŴT
k Q̂Ŵk + R̂, ωT

k = 2ω̂T
0kQ̂Ŵk,

ω0k = ω̂T
0kQ̂ω̂0k,

Ŵk = [I − Âk]−1 B̂k, and ω̂0k = [I − Âk]−1 Xk0,

B̄k = [ AN−1
k Bk AN−2

k Bk · · · Bk ].

Thus we pick the first one up among U∗
k as

u∗
k = [ 1, 0, · · · , 0 ] U∗

k (8)

Finally the control input(uk) is represented as follows :

{
uk = u∗

k, k = 0, 1, · · · , N − 1
uk = Hxk, k = N, N + 1, · · · (9)

where H is a feedback control gain.

2.2 Adaptation of the Looper-Tension System

Since the RHC controller does not theoretically consider
modeling errors, its robustness may be weak. To enhance
the robustness of the RHC controller, we identify system
matrices(Ak, Bk) in (1) using an on-line subspace identi-
fication algorithm, so called 4SID(Subspace-based State
Space System IDentification). At first, we form Hankel
matrices from the input/output data sets as follows :

Yp =

⎡
⎢⎢⎣

y(p) y(p + 1) · · · y(p + M − 1)
y(p + 1) y(p + 2) · · · y(p + M)

...
...

. . .
...

y(p + j − 1) y(p + j) · · · y(p + j + M − 2)

⎤
⎥⎥⎦(10)

Up =

⎡
⎢⎢⎣

u(p) u(p + 1) · · · u(p + M − 1)
u(p + 1) u(p + 2) · · · u(p + M)

...
...

. . .
...

u(p + j − 1) u(p + j) · · · u(p + j + M − 2)

⎤
⎥⎥⎦(11)

where Yp ∈ �lj×M , Up ∈ �mj×M and p is the acquisition
time of the (1×1) component of the each matrix and
rank Uk = mj(m = 2), which the rank condition ensures
the persistently exciting condition of u(p). For the looper
system, u(p) = [δvref

Re δiref
lm ]T , y(p) = [δσ δθ]T . Since

many samples are needed for the on-line adaptation, the
parameter M and j are set to 200, 50 samples, respectively.
Thus the on-line adaptation is executed after 4[sec].

Then RQ factorization for the input and output matrices
is represented as follows :

[
Up

Yp

]
=

[
R11 0
R21 R22

]
, (12)

where R11 ∈ �mj×mj , R21 ∈ �lj×mj , R22 ∈ �lj×lj . We
perform the singular value decomposition(SVD) for R22 in
(12).

R22 = [Un U⊥
n ]

[ ∑
n 0

0
∑

2

] [
V T

n

(V ⊥
n )T

]
, (13)

where Un ∈ �lj×n, U⊥
n ∈ �lj×(lj−n),

∑
n ∈ �n×n.

Finally, we solve the realization of system matrices
[AT , BT , CT , DT ], which is similar to [Ak, Bk, Ck, Dk].

CT = Un(1 : l, :), U (1)
n AT = U (2)

n , Xy = Xu Θ, (14)

where U
(1)
n is a submatrix of Un composed of the first

l(j−1) rows, U
(2)
n from (j +1) to lj rows, respectively and

Θ is obtained by a least square error method(LS).

3. STABILITY ANALYSIS

The closed-loop stability of the RHC is analyzed for time-
invariant systems which guarantee the monotonicity of
the optimal cost. The cost function can be represented
as J(xi, ui+·, i, if) and the optimal cost can be given as
J∗(xi, i, if), where xi is the initial state, ui+· input, i
initial time, and if terminal time, respectively. Assume
that the pairs (A, B) and (A, Q

1
2 ) are stabilizable and

observable respectively, and that the receding horizon
control associated with the quadratic cost J(xi, i, i + N)
exists. If J∗(xi, i, i + N + 1) ≤ J∗(xi, i, i + N), then
asymptotical stability is guaranteed (Kwon [2005]).

4. CONCLUSION

This paper investigates the ARHC scheme with online
model identification for the looper-tension system. The
proposed controller satisfies the constraints of the control
input and the closed loop stability criterion. It is also easy
to apply the online test because of the simple algorithms.
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