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Abstract: This paper presents an analytical study of swarm motion in a quasi static environment, in which, 
motion of each member is being affected by interactive forces and agents. Interactive effects on each 
member could be attractive or repulsive due to being far from or close to other members respectively. An 
agent also can be attractive or repulsive. The method is based on Lyapunov analysis. The aim is to 
preserve the unity of swarm i.e. not losing any member through motion, while being under influence of an 
agent. It is also considered that field of view of swarm members is limited; which is the most important 
characteristic of this work.  

 

1. INTRODUCTION 

Schooling and aggregation have been under investigation 
since 1954. Distributed control structures and artificial 
swarming have attracted lots of studies in robotics. What ever 
the mission of an artificial swarm is, one of the most 
important problems is to preserve unity while trying to 
coordinate the swarm. Prediction of total swarm size, inter 
individual distances between members, domain of attraction 
of attractive objects around the swarm and secure distance 
from repellent objects in order to save the swarm unity, are 
considerable factors of many researches. 
Observations of natural flocks by Breder (1954), Partridge 
(1982), and Miller (1996), and computer simulations by 
Warburton (1990) and Brogan (1997) showed that the 
assumption of mutual attractive and repulsive forces between 
members will lead to acceptable social behaviors which are 
similar to natural flocking behaviors. Artificial potential 
fields were first introduced for obstacle avoidance by Khatib 
(1986). Using artificial potential fields and through 
simulations Reif and Wang (1999) showed that the quasi 
static modeling also leads to acceptable social behaviors. 
Gazi and Passino (2002 and 2003 a) considered a scalable 
swarm with mass less and dimension less members in an n 
dimensional Euclidian space, and with the assumption of 
homogeneity and unlimited vision proved that in the absence 
of any environmental motivation the geometrical center of 
the swarm will not move. They also showed that the final 
position of members is unique and is dependent to initial 
conditions but can not be predicted. Later (2004) they 
considered the effect of the environment and discussed the 
cohesion and goal convergence. Gazi (2005) also introduced 
a sliding mode controller so that the members with 
considerable inertial effects would follow the high viscosity 
swarming behaviors in previous studies. Kim, Wang, Ye and 
Shin (2004) discussed the unreachable goal problem and 
collision between members and proposed some criteria for 

design on the basis of artificial potential fields. Baras and Tan 
(2004) using graph methods modelled the swarm as a Markof 
random field and tried to control aggregation, segregation and 
even produce linear configurations via Gibbs sampling 
methods. Liu, Passino and Polycarpou (2003 a) considered a 
line of members in one dimensional space with a leader in 
front. They showed that with the assumption of motion delay, 
in order not to break this chain velocity of the leader must not 
exceed a special amount. Later they discussed the problem in 
n dimensional space (2003 b) with the assumption that the 
neighborhoods remain unchanged during the motion. A very 
famous theory in discrete time modeling of swarms is 
proposed by Vicsek, Czirok, Jacob, Cohen, and Schochet 
(1995). They showed that using the nearest neighbor rule, a 
swarm which possesses members with equal velocities and 
different directions will finally move in a unified direction. 
They also considered limited sensing extent. Later Jadbabaie, 
Lin, and Morse (2003), Sarkin (2004), and Gao and Cheng 
(2005) revised this method and strengthened the proof. Olfati 
saber and Murray (2004 and 2006) studied the flocking 
phenomena and combined both graph and energy methods. 
Martinoli, Easton, and Agassounon (2004) proposed a 
simulation method and algorithm which decreases the 
computation time at least by four times. Soysal and Sahin 
(2005) and Starke, Schanz, and Fukuda (2005) used 
behavioral control systems to produce cohesive or dispersive 
behaviors and coordinated a robotic swarm through a field of 
obstacles. Dougherty (2004) also used behavioral rules and 
potential fields to control a group of vehicles toward the goal. 
Gerkey, Thrun and Gordon (2006) developed a technique for 
coordinating a swarm to execute the searching task in an 
application domain. Egerested and Hu (2001) and Ogren 
(2002) used Lyapunov methods to construct a special 
configuration among agents while trying toward goal and 
avoiding obstacles. They considered that agents posses a 
complete dynamic model. Kalantar and Zimmer (2007) 
studied the under water formation control of vehicles for 
ocean surface sampling and exploration. Desai, Ostrowski, 
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and Kumar (2001 and 2002), tried graph methods to 
coordinate and reconfigure the agents while moving. They 
also showed that the method is robust against noise. Fierro et. 
al. (2002) proposed a framework for deployment of a robotic 
swarm in an unstructured and unknown environment. Gazi 
(2003 b) showed that the problem of coordination of some 
agents along a periodic track and remaining in a predefined 
configuration will lead to design of a classic servo control 
system. Howard, Parker and Sukhatme (2006) tried to 
implement distributed control system on a heterogeneous 
swarm in order to make them capable of carrying out a 
specific mission. Bahceci and Sahin (2005) introduced 
Perceptron (neural network) controllers to achieve acceptable 
cohesion behavior. Xi, Tan, and Baras (2005) proposed a 
combination of artificial potential fields and Simulated 
Annealing technique to control a swarm among 
environmental potential fields.  
In this paper a swarm model is proposed and analytically 
discussed in a continuous time dynamic field. There is no 
limit on the number of space dimensions and the number of 
swarm members. In order to be more realistic and similar to a 
robotic swarm, it is assumed that field of view of every 
member is not infinity. Stability analysis via Lyapunov 
method is performed which guarantees the unity preservation 
while moving toward the goal or running from the repellant 
zones. 

2. MODELING 

A swarm as supposed here is homogenous and includes at 
least two members i.e. M≥2. Swarm members are considered 
to be dimensionless, which is a normal assumption in this 
field of studies. We also consider no time delay in motion of 
swarm members. Motion and behaviour of swarm members 
are mostly result of two different phenomena: interactive 
mutual forces and influence of one or more agents. 
Interactive mutual forces comprise both attraction and 
repulsion. Attraction to other members in sight helps to keep 
the swarm unity, and repulsion from members which are 
closer than a specified distance avoids collision between 
swarm members. So there will be a specified equivalent 
distance named deq which for distances more than deq 
interaction is attractive and for distances less than deq 
interaction is repulsive. Contrary to many previous stability 
investigations on swarms, here, to be more realistic the field 
of the swarm members' view is not infinity. Hence members 
out of field of view due to not being clearly sighted, show no 
mutual attraction. Let us consider inter-individual interaction 
vector Gij(.) as follows: 
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where i,j∈[1, M]. xi and xj represent location of ith and jth 
members and Gij corresponds to the effect of the latter on the 
former. µ is a positive constant coefficient and gr is a positive 
definite function. gr is only defined to avoid collision of 
members. We can control the amount of deq by proper choose 
of the gr function. We will neglect function gr in our analysis. 
Domain of affection of gr is small. The outer zone around 

every member is the attraction zone. Intensity of attraction in 
this zone is controlled with µ. fv is the extent of inter-
individual field of view of swarm members; i.e. if the jth 
member is farther than fv from the ith member, then it has no 
effect on the ith member.  
Motion of swarm members is also affected by agents. A 
swarm member would be influenced by an agent if and only 
if the agent is not farther than a specified distance. This 
distance is represented by fav. Therefore regarding an agent, 
members farther than fav are not capable to see the agent. 
Hence there is a circle with center located at the agent's 
location Ck with radius equal to fav, in which every swarm 
member see the agent, and out of the circle no member is 
capable to see the agent. We name the circle, vicinity of the 
agent. Let us express the agent's effect analytically via the 
following equation: 
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It is assumed that there may be more than one agent. Index k 
corresponds to a specific agent where number of all agents is 
equal to N. Therefore k∈[1, N]  . gar is a positive definite 
function avoiding collision of members and agents. β is a 
constant coefficient and is positive if the agent attracts swarm 
members and is negative if the agent repels them. We can 
control minimum allowed distance between the agent and 
swarm members by proper choose of the gar function. We 
will neglect function gar in our analysis because domain of 
affection of gr is small. The outer zone around the agent is 
controlled by coefficient β. Greater value of β cause stronger 
attraction to the agent. 
According to Reif and Wang (1999), and biological 
observations by Breder (1954), Partridge (1982), and Miller 
et. al. (1996), and also according to computer simulations by 
Warburton et. al. (1990) and Brogan et. al. (1997), in natural 
swarms viscosity is considerably high and mass is negligible. 
Therefore velocity is dependent to external forces, i.e. 

i i ic x cv u= =& . Here external forces ui are caused by inter-
individual interactions and agents' effects; therefore velocity 
of each swarm member can be calculated using a formula as: 

1 1

N M
i

ik ij
k j

x Gσ
= =

= +∑ ∑&  (3) 

All of the above assumptions are completely in accordance 
with nature and biological swarms. But our goal is to use this 
analysis for robotic systems. It may be doubted that the 
consideration of highly over damped behaviour of a robotic 
swarm system is justifiable. According to Gazi (2005 And 
2007) even if this assumption could not be established, it is 
possible to design a controller so that every robot follows the 
mass less viscous dynamic behaviour as a swarm member.  

3. DISCUSSION ON SWARM CENTER MOTION 

Since here a homogenous swarm is considered, all M 
members of the swarm are the same, Then the geometrical 
centre of the swarm would be defined as follows: 

1
1

M
i

i
X M x

=

= ∑  (4) 
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Derivation leads to: 

1 1 1 1
1 1
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First term in the above equation expresses the effect of the 
agents on the motion of the swarm center. Second term is the 
effect of interactive forces. If interactive forces are mutual, 
then ( ). ( ).i j j i

ij ij ji jiG x x g x x g G= − = − − = −  and this cause the 
second term to vanish. Hence, providing the mutuality of 
interactions, swarm center motion only depends on agents. In 
equilibrium state, every pair of swarm members should feel 
no desire for motion when they are in a specified distance 
from each other. Otherwise motion of the center will be 
observed even in the absence of any external effects. 
Suppose that there is just one agent and the first Q members 
of the swarm are located in the vicinity of an agent where 
Q<M. Geometrical center of these Q members is named 
pseudo center of the swarm and is calculated via the 
following equation: 

1
1

Q
i

i
Z Q x

=

= ∑  (6) 

Due to the limited field of view, the other members are not 
capable to feel the agents. We need to investigate that if the 
swarm center converges to the agent's location or not. 

Lemma I: Swarm center moves toward an attractive agent's 
location at most until the whole vicinity of the agent is 
located inside the swarm. 
Proof of Lemma I: Let us define a Lyapunov function VC as: 

21
2C CV e=  (7) 

in which eC=X-C. It is possible to show that derivative of (7) 
leads to the following equation: 

( )'t
C C C

QV e e
M
β

= −&  (8) 

where eC'=Z-C. β is defined in equation (2). eC decreases if 
(8) is negative. A swarm as we have considered here always 
tries to follow a minimum energy pattern. Therefore members 
move so that the boundary of the swarm shows a circular or 
oval or a convex shape. Simulations also verify this fact. In 
this condition eC.eC' posses a positive value which guarantees 
negative definiteness of VC (Fig. 1).  

 
Fig. 1: illustration of vectors eC'=Z-C and eC=X-C. Agent is 

close to the swarm. eC.eC' possesses a positive value. 
 

Equation (8) would be equal to zero if eC' vanishes, which 
means that the pseudo center of the swarm coincides with the 
agent's location. Despite of occasional and unstable 
situations, this coincidence will happen if swarm members 
are scattered uniformly around the agent. Therefore we can 

say that the whole agent's vicinity is located inside the 
swarm. Hence there is no guaranty that swarm center 
converges to the attractive agent's location unless both their 
locations coincide at the initial condition or the agent's 
vicinity is vast enough to accommodate all M members of the 
swarm. 
If the agent is repellant then β is negative which causes (8) to 
be positive under the same circumstances. Therefore if the 
agent's vicinity is totally located inside the swarm then 
pseudo center of the swarm coincides with the agent's 
location and swarm will be trapped. But if the agent's vicinity 
does not have a complete overlap with swarm then derivative 
of VC is positive and swarm center runs away from the agent's 
location. It is obvious that if some swarm members (or all of 
them) are outside an agent's vicinity then they feel no desire 
to move toward or run away from the agent. Hence there 
would be no reason gathering all swam members uniformly 
around an attractive agent. 

4. SWARM UNITY  

It is necessary to establish and discuss conditions so that the 
unity of the swarm is preserved near an agent. We are going 
to use agents to coordinate swarm and unity preservation here 
means not to make any member to exit from the range of 
view of other members. Attractive and repellent agents have 
different influences on swarm unity. Attractive agent near 
swarm would weaken the unity because it may attract and 
separate one or more members from other swarm members. 
Therefore contrary to the stabilizing character of an attractive 
agent, it may induce instability in swarm. The opposite 
phenomena would be observed for a repellent agent. It means 
that a repellent agent near swarm would force them together 
and strengthen the unity. 
To investigate proper conditions for preservation of the 
swarm unity let us define Unity function as follows: 

2

1 1

1
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M M
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We need to establish conditions for descending behavior of 
unity function V. So we shall discuss its derivative: 

2 2
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Lemma II: Swarm unity will be preserved beside an attractive 
agent if the following inequality is satisfied: 

2
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v
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fQ
M f

β
µ

<  (11) 

Proof of Lemma II: If the agent is not located inside the 
swarm at initial conditions, then manipulation of (10) leads to 
the following inequality. Due to limitation of pages we have 
ignored the procedure: 

2 2
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If (12) is going to be negative definite then (11) must be 
satisfied. If vicinity of the attractive agent is vast enough to 
accommodate all M members then (11) will reduce to (13). 
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Lemma III: Swarm unity will be preserved beside a repellant 
agent if the following inequality is satisfied: 

2

22
v
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f
f

β
µ
<  (13) 

Proof of Lemma III: If the agent is not located inside the 
swarm at initial conditions, then manipulation of (10) leads to 
the following inequality: 

2 2
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If (14) is going to be negative definite then (13) must be 
satisfied. Note that all presented proofs are based on the 
assumption that every swarm member has at least one 
member in sight. 

5.  VALIDATION VIA SIMULATION 

In order to verify results a few simulations is performed. The 
aim is to preserve swarm unity both near attractive and 
repellent agents. Values of parameters used in simulation are 
reported in table 1. Both gr and gar are selected with too much 
gradient therefore all inter-individual distances deq are forced 
to be approximately equal to 1m. Values of β and µ satisfy 
(11) and (13), Hence swarm unity is expected to be 
preserved. The swarm possesses 32 members.  

Table 1.  Values of Parameters used in 
Simulation 

µ 0.4 β 0.2 
Fv 1.5m fav 2m 
dr 1m dar 0.3m 

5.1 Swarm Near a Repellant Agent 

Fig. 2 illustrates behaviour of the swarm near a repellant 
agent. In Fig. 2A swarm runs away from the agent's location 
and distance between swarm center and the agent's location 
grows. This behaviour continues till all members exit from 
the agent vicinity. After this time swarm center shows no 
movement as illustrated in Fig. 2 A4. In Fig. 1B pseudo 
center of the swarm and agent's location coincide at the initial 
condition and swarm is trapped around the repellant agent. 
As Fig. 2B shows little movement can be observed during 
simulation which means more arrangement around the 
repellant agent. In both cases unity is preserved.  

5.2  Swarm Beside an Attractive Agent 

Fig.3 shows the effect of an attractive agent near swarm. At 
initial conditions two members are inside the agent vicinity. 
Due to the distance between pseudo center Z and the agent 
position C, pseudo center and real center X start moving 
toward the agent. This motion continues till swarm members 
cover the whole agent vicinity. At the time Z has come very 
close to C and this cause pseudo center Z and real center X 
both to stop moving. Also none of the inter-member relations 
is broken due to the agent effect which means that 
satisfaction of equation (11) and lemma II has preserved the 
swarm unity near the attractive agent. 

In both simulations we can see that in final conditions 
members do not seem to be gathered around a point and 
boundary of the swarm resembles more to a convex 
polygonal. This polygonal would be smoothened by 
increasing field of view of members. This will also decrease 
the final distance between swarm center and for example an 
agent's location, and will bring members more uniformly 
around it. 
It may be questioned that how much it is possible to 
influence a swarm by agents. The answer comes back to the 
constraints like extent of view and attraction-repulsion 
functions defined by the designer. 

6. CONCLUSIONS 

Stability analysis and preservation of swarm unity is 
discussed analytically in this paper. Contrary to previous 
stability analysis in continuous time dynamic modelling of a 
swarm, limited field of view is considered here which leads 
to more realistic swarming behaviour. In a recent previous 
work by the author (Etemadi, et. al. 2007), fading field of 
view is considered and the assumption of limited field of 
view shows more reasonable results, especially about the 
convergence of the swarm center to the agent's location and 
behaviour of the swarm near an agent. Conditions for 
preservation of swarm unity near attractive or repellent 
agents are discussed via Unity Function.  
The method introduces very secure conditions of stability. 
Although Lyapunov method naturally is a conservative 
method but we believe that it is possible to improve the 
stability conditions by extending secure domains via 
definition of new Lyapunov functions which is under study 
yet. It should be noted that the results are going to be used for 
coordination of robotic swarms which is still under study. 
The problem of multi agent and a swarm also would be very 
similar to the presented procedure especially when there are 
agents with non-overlapping vicinities, but still needs a little 
more concentration. 
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Fig. 2: A1,2,3) Repellant Agent pushes the swarm away till all swarm members exit from the agent vicinity.  A4) Changes of 

the distance between swarm center and agent position vs. time.   
B) Entrapment of swarm around the repellant agent. B1) Positions of swarm members. B2) Distance between swarm center 

and the agent position (solid graph) show little change. Q (dashed graph) also follows the same pattern. 
(Stars *: swarm members, square□ : agent's location, circle ○: swarm center, and diamond ◊: pseudo center of the swarm, 

continues line: swarm center motion path.) 
 

 
Fig. 3: Attractive agent pulls the swarm and swarm center till the whole agent vicinity is filled with swarm members 

A) Initial and final positions of swarm member   B) change of the distance between swarm center and the agent vs. time.  
 (Stars *: swarm members, square□ : agent's location, circle ○: swarm center, and diamond ◊: pseudo center of the swarm, 

continues line: swarm center motion path.) 
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