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Abstract: The stability of multi-input and multi-output web-tension systems is an important factor that is 
required for the roll-to-roll printing machines. This paper analyzes stability for design parameters of a 
web-tension system of a high-speed gravure printing machine. Analyzed parameters include moment of 
inertia of the passive dancer, viscous friction coefficient of the dancer system, distances from hinge to 
dancer roller and cylinder, and proportional gains of the tension control system. The validity of the 
analysis is demonstrated by simulation study.  

 

1. INTRODUCTION 

Large printing demand of our modern society requests 
development of high-speed printing machines. A reasonable 
model for web tension plays an important role for the 
development of a high-speed roll-to-roll printing machine.  

Web tension control is a prerequisite for accurate register 
control to obtain high printing resolution (Gravure 
Education Foundation, 2003). If web tension in roll-to-roll 
printing machine is too high, several problems occur such as 
large register error, rewinder wrinkling, web tearing, and 
plastic deformation of the web. On the other hand, if web 
tension is too small, then problems occur such as web 
oscillations, loose rewinding and web surface damages. 

Usually highly interactive web tension is modeled under 
the assumption that the span length is fixed (Shin, 2000; 
Shin, 1995; Mathur et al., 1998; Weiss, 1985), but at 
unwinder and rewinder units using turrets, the span length is 
changing from time to time.   

In this paper, we analyze design parameters of the tension 
control system of the gravure printing machine. Furthermore, 
we analyze the stability of web-tension model for specific 
parameters (such as web speed or moment of inertia of 
dancer arm) using eigenvalues of the linearized model. The 
validity of the stability analysis is demonstrated by means of 
simulation study. 

2. GRAVURE PRINTING MACHINE 

Fig. 1 shows schematic diagram of the pilot plant of the 
gravure printing machine with three color printing function 
installed at Flexible Display Roll-to-Roll Research Center 
(FDRC), Konkuk University (manufactured by SAM, Inc.). 
This system is composed of an unwinder unit including 
turret and splicing mechanism and a passive dancer, an 
infeeder unit with a passive dancer, three printing units with 
color register control devices, an outfeeder unit with a 
passive dancer, and a rewinder unit including an active 
dancer. Dancers may be bypassed optionally. Eight loadcells 
are installed at idle rollers in the middle of continuous 
process for tension pickup.  

When a command is given at HMI in the figure, PLC 
generates appropriate command signals for motion control 
of each motor, and then the controller of each motor controls 
tensions and speeds of the web using motion commands and 
feedback signals for motion and web tension.   

 In this pilot plant, web speed, angular velocity of driving 
rolls, web tension, angular speed of the turret, radius of the 
wound roll, arm angles of the dancers can be measured and 
monitored through control panels and also PCs. 

 

Fig. 1 Schematic diagram of the gravure printing machine. 
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3. NONLINEAR TENSION MODEL 

In this paper, we derive a nonlinear MIMO model which 
represents actual dynamics of transient region and turret 
operation. In the equations, Vi represents web speed, Ti does 
web tension, VD1, VD2, VD3, VD4 represent speeds of dancers. 
Subscripts U, I, O, R imply unwinder, infeeder, outfeeder, 
rewinder, respectively.  

Within one span, cross sectional area and velocity of the 
web may vary continuously, but tension and strain are 
assumed to be constants along web longitudinal direction. All 
these variables may vary in time. 

Under these conditions, we obtain the following equations 
from mass conservation law.  
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where x implies web position in longitudinal direction, r  

implies the density of the web, A implies cross sectional area 
of the web, subscripts 1, 2 imply the positions of the upstream 
roller and downstream roller.  

Representing Eq. (1) by means of web strain e , we obtain 
the following equation.  
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The strain of the web is very small in general. Thus, 

assuming e  is much smaller than 1 in Eq. (2), we can 
approximately rewrite it as follows. 
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From Hooke’s law for the web, the following equation can 

be obtained.  
 

( ) ( , ) ( , ) ( )T t A x t E x t te=                                                   (4) 

 

where E implies Young’s modulus that may vary a little due 
to the effects of temperature, humidity, etc.  

Substituting Eq. (4) for Eq. (3), and using average value 
AE instead of ( , ) ( , )A x t E x t , we obtain a new nonlinear 

tension model that is able to consider web length variation 
within a span.  
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In general, variation of ( , ) ( , )A x t E x t  is very small in a roll-

to-roll printing machine. Thus, using the average value AE 
instead of ( , ) ( , )A x t E x t  is acceptable for representing 

dynamic characteristics of the system.  

In the following equation, Dq  represents the angle of the 

dancer arm from a neutral position, dD represents the length 
of the dancer arm from hinge to dancer roller, dP represents 
the length of the dancer from hinge to pneumatic piston, and 
P0 and AP represent pneumatic pressure and piston area, 
respectively. The pneumatic cylinder used for dancer system 
in general is preloaded by a spring within the cylinder.  

From the free body diagram for the dancer roller, the 
following equation of motion is obtained (Lee et al., 2005).  

2
2 1( )D D U U D D DJ V T T r b V= - -&                                         (6) 

where Dr  implies the radius of dancer roller, Db  does the 

coefficient of viscous friction of dancer roller, and DV does 

web speed at dancer roller. We assume no slip between 
dancer rollers and web materials.  

Then, applying Newton’s law of motion to the free body 
diagram of the dancer arm, we can obtain the following 
equation. 
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where eqJ  represents the equivalent moment of inertia of the 

dancer arm with respect to hinge center, eqb  does the 

equivalent coefficient of viscous friction of the dancer arm, 
and Dm  does the mass of dancer roller. And max min,F F  

represent maximum and minimum compression force of the 
spring, and maxpx  does maximum stroke of the piston.  

If we neglect mass, moment of inertia, and viscous friction 
of dancer roller in Eqs. (6) and (7), then 1 2U UT T T= = , and  

we can obtain the following equation for the roller.  
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Applying web-tension model, Eq. (5), and dancer model, 
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Eq. (8) for the 3 color printing machine results in the 

following nonlinear MIMO plant model, in which ,U Rl l& &  are 

constant linear speeds by unwind and rewind turrets. 
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 4. LINEARIZATION 

It is not easy to check stability of the nonlinear plant 

models, Eqs. (9). For the purpose of stability analysis, 

therefore, we linearize the nonlinear model. First, defining 

state variables as 1 ,Ux T= 2 1,Dx q=   

3 1,Dx q= & 4 ,Ix T= 5 2 ,Dx q= 6 2 ,Dx q= & 7 1,Px T=
8 2 ,Px T=

9 ,Ox T= 10 3 ,Dx q= 11 3 ,Dx q= & 12 ,Rx T= 13 4 ,Dx q=  

14 4Dx q= & , Eq. (9) results in the following nonlinear state 

equation that has 14 state variables and 7 input variables.  

 

( ) ( ( ), ( ), )t t t t=x f x u&                             (10) 

 

where input vector is 1 2 3[ , , , , , , ]T
U I P P P O RV V V V V V V=u . Let 

operating point as * *
1 ,Ux T=  * *

2 1 0,Dx q= =  
* *
3 1 0,Dx q= =& * *

4 ,Ix T= * *
5 2 0,Dx q= = * *

6 2 0,Dx q= =& * *
7 1,Px T=

* *
8 2 ,Px T= * *

9 ,Ox T= * *
10 3 0,Dx q= = * *

11 3 0,Dx q= =& * *
12 ,Rx T=

* *
13 4 0,Dx q= = * *

14 4 0Dx q= =& , and 
* * * * * * * *

1 2 3[ , , , , , , ]TU I P P P O RV V V V V V V=u . Then the following 

linearized state equation is obtained. 
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where A is 14´14 state matrix, and B is 14´7 input matrix.  
 
 

5. DESIGN PARAMETER ANALYSIS 
 

To analyze plant stability of the roll-to-roll printing 
machine for increasing web speed, we calculate eigenvalues 
of the matrix A in Eq. (11). Parameter values used here for 
the actual gravure printing machine are: A=20´10-6, 
E=2.1´10-9, LU1=3.78, LU2=2.34, LI1=1.34, LI2=4.33, LP1=9.55, 
LP2=10.22, LO1=8.22, LO2=3.73, LR1=1.26, LR2=4.80, dD=0.3, 
dP=0.15, mD=9.676, JD=0.0295, rD=0.06, bD=0.0005, 
AP=0.00273. All units used here are SI units.  

When web speed is 100 mpm (meter/min), 14 eigenvalues 

are calculated. We let * 100 / ,UT N m= * 110 / ,IT N m=  
* 120 / ,OT N m= * 50 /RT N m= . Since all eignevalues have 

negative real parts, the plant model is stable. But it is near 
marginal stability since there is quadruple -0.008 eigenvalues.  

In order to estimate stability behavior for increasing web 
speed, we calculate eigenvalues for web speed 100 mpm, 200 
mpm, 300 mpm, 400 mpm, and 500 mpm. From this result, 
we find that the eigenvalues of web plant model moves to the 
left in s-plane as web speed increases, and therefore the 
stability of web plant model improves as web speed increases.  
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Fig. 2 Eigenvalue trajectories for inertia variations of the 
dancer arm (500 mpm). 
 

Fig. 2 shows eigenvalue trajectories for inertia variations 
of the dancer arm, in which eigenvalues for each Jeq are 
calculated at every 0.1 increments from Jeq = 0.0004 to 
2.0004. This result shows that eigenvalues move to the left in 
s-plane as Jeq value increases, and thus the plant system 
becomes stable as Jeq is bigger than a certain value (about 0.7 
for the present case). Furthermore, it becomes more stable as 
Jeq becomes bigger.  
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Fig. 3 Eigenvalue trajectories for inertia variations of the 
dancer arm (300 mpm). 
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Fig. 4 Eigenvalue trajectories for viscous friction coefficient 
changes of the dancer mechanism  
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Fig. 5 Eigenvalue trajectories for variations of piston to hinge 
distance dP   
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Fig. 6 Eigenvalue trajectories for variations of dancer roller 
to hinge distance dD 
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Fig. 7 Eigenvalue trajectories for unwinder P gain (KUP) 
changes  
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Fig. 8 Eigenvalue trajecgtories for infeeder P gain (KIP) 
changes  

Jeq increase 

Longer length 
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Fig. 9 Eigenvalue trajectories for outfeeder P gain (KOP) 
changes  
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Fig. 10 Eigenvalue trajectories for rewinder P gain (KRP) 
changes 

 
Fig. 3 shows eigenvalue trajectories for inertia changes of 

the dancer arm from 1.9 to 5.9 kg·m2, when web speed is 300 
mpm. From this result, we see that the system is stable if Jeq 

is less than 4.5 kg·m2 when web speed is 300 mpm.  
Fig. 4 shows eigenvalue trajectories for viscous friction 

coefficient changes from 0.0001 to 0.001 N·s/m, and the 
plant stability is less sensitive for viscous friction coefficient 
variation. The plant is stable for viscous friction coefficient 

changes from 0.0001 to 0.001 N·s/m when web speed is 300 
mpm.  

Fig. 5 shows eigenvalue trajectories for variations of piston 
to hinge distance dP from 0.1 to 0.2 m with dD = 0.3 m and 
web speed = 300 mpm. Fig. 6 shows eigenvalue trajectories 
for variations of dancer roller to hinge distance dD from 0.2 to 
0.3 m with dP = 0.15 m and web speed = 300 mpm. From 
these results, the pant stability is improved as the lengths,  dP 
and dD are longer. 

Fig. 7 shows eigenvalue trajectories for unwinder P gain 
(KUP) changes from 0.06 to 0.21 with all other P gains = 0.2 
for the PI control system and web speed = 500 mpm. Fig. 8 
shows eigenvalue trajectories for infeeder P gain (KIP) 
changes from 0.06 to 0.21 with all other P gains = 0.2, Fig. 9 
shows eigenvalue trajectories for outfeeder P gain (KOP) 
changes from 0.06 to 0.25 with all other P gains = 0.2, and 
Fig. 10 shows eigenvalue trajectories for rewinder P gain 
(KRP) changes from 0.06 to 0.26 with all other P gains = 0.2. 
From these figures, we see that the proportional gains of the 
PI web tension control system should be less than some 
limiting values to obtain appropriate stability of the feedback 
control system. 

The following Fig. 11 shows a simulation result using Eq. 
(9) via Simulink when there exit 1 % initial condition errors 
at web tension. Upper figure of Fig. 11 shows simulated 
tension of unwind zone for web speed of 100 and 500 mpm 
with sinusoidal disturbance from unwind roll when there 
exist no initial condition errors. Lower figure of Fig. 11 
shows simulated tension of unwind zone for 100 and 500 
mpm speed with the same condition as above when there 
exist 1% initial condition errors of steady-state tension values. 
The result in Fig. 11 demonstrates that the derived web-
tension model is stable, and also the plant stability improves 
as web speed increases.   
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Fig. 11 Time responses for initial condition errors exists 
 

 
5. CONCLUSION  

 
In this paper, we have shown a nonlinear web-tension 

model that can consider span length variation due to dancer, 
and have analyzed design parameters using eigenvalue 
trajectories of the linearized model about operating 
conditions. The linearized system with 14´14 system matrix 
neglects mass, moment of inertia and viscous friction of 
dancer roller itself. Furthermore, the plant model becomes 
more stable as web speed increases, differently as expected.  

Eigenvalues for parameter Jeq move to the left in s-plane 
from the right half plane as Jeq value increases, and thus the 
plant system becomes stable as Jeq is bigger than a certain 
value (about 0.7 for the present case). Moreover, it becomes 
more stable as Jeq becomes bigger. Furthermore, it is shown 
that plant stability is less sensitive for viscous friction 
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coefficient variation compared to dancer arm inertia, and is 
improved as the lengths from hinge to cylinder and dancer 
roller,  dP and dD are longer. Also it is shown that the 
proportional gains of the PI web tension control system 
should be less than some limiting values to obtain appropriate 
stability of the feedback control system. 
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