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Abstract: This paper proposed a model algorithm control (MAC) method for trajectory 
tracking control of the differentially steered wheeled mobile robots (WMRs) subject to 
nonholonomic constraint. The dynamic model of the wheeled mobile robot is presented 
and used as the model to be controlled. The performance of the proposed control 
algorithm is verified via computer simulations in which the WMR is controlled to track 
two different reference paths. It is shown that the control strategy is feasible. 
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1. INTRODUCTION 
 
The differentially steered wheeled mobile robots 
(WMRs) possess the advantages of high mobility, 
high traction with pneumatic tires, and a simple 
wheel configuration. Due to these advantages, the 
differentially steered WMRs have been utilized for 
automating highway maintenance and constructions. 
For these applications, tracking ability is essential 
since most tasks involve tracking a predefined path 
and/or a detected path in a real time manner. 
Extensive research has been conducted in the area of 
mobile robotics in last decade and many different 
types of mobile robots for industrial applications 
were developed for the operations that must follow a 
reference path. 
 
In recent years, the research on designing wheeled 
mobile robots (WMRs) controllers subject to 
nonholonomic contrains is both extensive and 

diverse. There are tow fundamental status in 
controlling a mobile robot: posture stabilization and 
trajectory tracking. The aim of posture stabilization is 
to stabilize the robot to a reference point, while the 
aim of trajectory tracking is to have the robot follow 
a reference trajectory. The trajectory tracking 
problem, indeed, is particularly relevant in practical 
applications, since WMR modules are usually 
required to follow a previously planned collision-free 
path. Therefore, the problem of controlling these 
robots needs to be studied in order to have good and 
robust path or trajectory tracking algorithms for 
different types of automated tasks. Tracking control 
of nonholonomic mobile robots aims at controlling 
robots to tracking a given time varying trajectory 
(reference trajectory). It is a fundamental motion 
control problem and has been intensively 
investigated in the robotic domain. Arthur and Hugh 
(2000) addressed the problem of fully decentralized 
data fusion and control for a modular wheeled mobile 
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robot. Corradini, et al. (2002) addresses the 
trajectory tracking problem for a wheeled mobile 
base, considering the presence of disturbances that 
violate the nonholonomic constraint, and using an 
approximated discrete-time model for the vehicle. 
Chen, et al. (2006) developed a visual servo tracking 
controller for a monocular camera system mounted 
on an underactuated wheeled mobile robot subject to 
nonholonomic motion constraints. Paulo and Urbano 
(2005) presented the implementation of a new 
control strategy, Kalman-based active observer 
controller for the path following of wheeled mobile 
robots subject to nonholonomic constrains. Yang, et 
al. (2005) proposed a robust tracking scheme for 
nonholonomic wheeled mobile robots with parameter 
uncertainty, external disturbance and input 
constraints. Tan and Gu (2005) proposed a control 
design method for autonomous mobile platforms 
basing on way point guidance approach combining 
with model reference trajectory control method. 
Zhang, et al. (2003) discussed dynamic modeling 
and robust control of a differentially steered mobile 
robot subject to wheel slip and external loads. Shim, 
et al. (1995) proposed a variable structure controller 
for a nonholonomic wheeled mobile robot for 
tracking desired trajectories. 
 
This paper proposed a Model Algorithm Control 
(MAC) method for tracking control of the wheeled 
mobile robots. MAC is a one-step-ahead predictive 
controller, in which the control law is obtained by 
minimizing the output error at time k r+ . It 
basically involves an impulse response model for 
system representation and prediction, a reference 
trajectory, an optimality criterion and a consideration 
of the state and control constraints. The main idea of 
the MAC strategy is to predict the deviation of the 
future system outputs from the reference path based 
on the model, define an optimality criterion that 
reflects the deviations, and obtain an optimality 
control strategy to minimize the criterion over a 
certain horizon in the future. A closed-loop MAC 
that incorporates process uncertainties by adjusting 
the discrepancy between the process output and its 
predicted value is particularly robust against process 
model errors and disturbances. Two reference paths 
are chosen to do the simulation. The two paths used 
in this simulation refer to a time history of position 
and velocity for the mobile robot. That means that 
the robot track the desired path using the desired 
velocity based on the proposed control algorithm. 
 

 
2. MATHEMATICAL MODEL OF THE 

WHEELED MOBILE ROBOT 
 

Consider a WMR with differentially driven wheels as 
shown in Fig. 1. 

nY

nX

θ

 
 
Fig. 1. Model of a nonholonomic wheeled mobile 

robot. 
 
 
2.1 Kinematic Model 
 
Fig. 1 presents a geometrical model of the wheeled 
mobile robot defining the necessary variables to 
obtain the kinematic model. This WMR has two 
driving wheels (radius r ) and one support wheel. 
And the two driving wheels are independently 
actuated by two DC motors. ( , )n nN x y defines the 
intersection of the axis of symmetry with driving 
wheel axis, and is assumed to be the origin of 
coordinate frame n nX Y− . C is the center of mass of 
the robot with coordinate ( , )c cx y . The point A  
represents the point being tracked by the controller. 
a is the distance between point N and point A , b is 
the distance between point N and point C , and d is 
the wheel track. 
 
For this kind of WMR there are three constraints. 
The first one is that the robot must move in the 
direction of the axis of symmetry. 
 

sin cos 0n nx yθ θ− =                      (1) 
 

The other two constrains are the rolling constraints, 
which are that the driving wheels do not slip. 
 

cos sin 0
2n n r
dx y rθ θ θ ϕ+ + − =              (2) 

 

cos sin 0
2n n l
dx y rθ θ θ ϕ+ − − =              (3) 
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whereθ is the orientation angle of the mobile robot, 
and rφ , lφ are the angles of the right and left driving 
wheels. 
 
Let ( , , , , )n n r lq x y θ φ φ= , the three constraints can be 
written in the form: 
 

( ) 0A q q =                               (4) 
 
Where 
 

sin cos 0 0 0

( ) cos sin 0
2

cos sin 0
2

dA q r

d r

θ θ

θ θ

θ θ

⎡ ⎤
⎢ ⎥−
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎣ ⎦

        (5) 

 
Let ( )S q spans the null space of ( )A q and a full-rank 
matrix formed by a set of smooth and linearly 
independent vector fields, such that: 
 

( ) ( ) 0A q S q =                             (6) 
 
Considering the mobile robot kinematics, we have: 
 

cos cos
sin sin

2 2

( )
2 2 0

20

r d dS q

r

r

θ θ
θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                     (7) 

 
 
2.2 Dynamic Model 
 
The dynamic model can be described as follows: 
 

( ) ( , ) ( ) ( )TM q q V q q q E q A qτ λ+ = −           (8) 
 
where ( ) n nM q R ×∈ is the symmetric and positive 
definite inertia matrix, ( , ) n nV q q R ×∈ is the centripetal 
and Coriolis force Matrix, ( ) m nA q R ×∈ is the matrix 
associated with the constraints, mRλ ∈ is the 
Lagrangian multiplier vector, ( ) n rE q R ×∈ is the input 
transformation matrix and rRτ ∈ is the torque input 
vector. 
 

The nonholonomic mobile robot (8) is transformed to 
and divided into the following two equations: 
 

( ) ( )q S q tη=                            (9) 
 

M V Bη η τ+ =                       (10) 
 
where 
 

2 2

2 2
2 2

2 2

2 2
2 2

( ) ( )
4 4

( )
( ) ( )

4 4

w

w

md mdI I
r I r

d dM q
md mdI I

r r I
d d

⎡ ⎤
+ −⎢ ⎥

+⎢ ⎥
⎢ ⎥=
⎢ ⎥

− +⎢ ⎥
⎢ ⎥+
⎣ ⎦

     

2

2

0

0

c

c

r m b
dV

r m b
d

θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
−⎢ ⎥⎣ ⎦

                        

1 0
0 1

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                             (11) 

 
and [ ]T

r lτ τ τ= is the torque applied on the right 

and left wheel, [ ]T
r lη η η= represents the angular 

velocity of the right and left wheel, 
2

2 2
2
w

c c m
m d

I m b I I= + + + , 2c wm m m= + . Here cm  

and wm are the mass of the mobile robot platform and 
the mass of one driving wheel with the actuator 
respectively, cI , wI and mI are the moment of inertia 
of the platform about the vertical axis through 
point N , the wheel with the actuator about the wheel 
axis, and the wheel with the actuator about the wheel 
diameter respectively. 
 
Assume the linear velocity and the orientation 
angular velocity of the mobile robot at point 
N are v and w , therefore we have: 
 

1
2

1
2

cos 0
sin 0

0 1

r

l

n

n

d
vr r

d w
r r

x
v

q y
w

η
η

θ
θ

θ

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                 (12) 

 
Then it is easy to show that the dynamics equation 
for point A leads to the following: 
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1

22
1 1

2 2

cos sin 0 0
sin cos 0 0

0 0
0

0

v awx
v awy

u
w

u
wv
vww

θ θ
θ θ

θ
β α
β α

−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ = + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      (13) 

 

where
2

1
c

u

m br
β =

Θ
,

2

2
2 c

w

m br
β = −

Θ
, 1

u

rα =
Θ

,

2
w

rdα =
Θ

, 2 2u wmr IΘ = + , 2 22w wr I I dΘ = + , and 

1,2 ( )r lu τ τ= ± . 
 
 
3. MODEL ALGORITHMIC CONTROL FOR 

NONLINEAR SYSTEM 
 
Consider the nonlinear systems described by a 
discrete-time state-space model in the form: 
 

( 1) [ ( ), ( )]
( ) [ ( )]

m m

m m

x k x k u k
y k h x k

+ = Φ
=

                      (14) 

 
where x denotes the vector of state variables, u  
denotes the manipulated input, y represents an output 
(to be controlled), all in the form of deviation 
variables, and the subscript m is added to indicate 
estimates of x and y obtained in model simulations 
and differentiate the measured y . It is assumed that 

nx X R∈ ⊂ , and mu U R∈ ⊂ , where X and U are 
open-connected sets that contain the origin (that is, 
the nominal equilibrium point). ( , )x uΦ is an analytic 
vector function on X U× , and ( )h x is an analytic 
scalar function on X . 
 
We suppose that system (14) has the relative order r , 
i.e. r  is the smallest number of sampling periods 
after which the manipulated input ( )u k affects the 
output y . That means that: 
 

1

( ) ( , ) ( , ) 0,  0,1,..., 2

( ) ( , ) ( , ) 0

l

r

h x x u x u l rx x u

h x x u x u
x x u

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∂ ∂Φ ∂Φ = = −
∂ ∂ ∂

∂ ∂Φ ∂Φ ≠
∂ ∂ ∂

   (15) 

 
Online simulation of the model described by Eq. (14) 
can be used to predict the future changes in the 
output y as follows: 
 

1

2

1

1

( 1) ( ) [ ( )] [ ( )]

( 2) ( ) [ ( )] [ ( )]

( 1) ( ) [ ( )] [ ( )]

( ) ( ) [ [ ( ), ( )] [ ( )]

m m m m

m m m m

r
m m m m

r
m m m m

y k y k h x k h x k

y k y k h x k h x k

y k r y k h x k h x k

y k r y k h x k u k h x k

−

−

+ − = −

+ − = −

+ − − = −

+ − = Φ −

        (16) 

 
where r is the relative order of the system, and the 
following notation will be used: 
 

[ ]

0

1

( ) ( )
( ) ( , ) ,   1,..., 1l l

h x h x
h x h x u l r−

⎧ =⎪
⎨

= Φ = −⎪⎩
               (17) 

 
Here we take into account Eq. (15) that can be 
represented in the form: 

 

1
1

( ) ( , ) ( , )[ ( , )] 0,

 0,1,..., 2,

( ) ( , ) ( , )[ ( , )] 0

l
l

r
r

h x x u x uh x u
u x x u

l r

h x x u x uh x u
u x x u

−
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∂ ∂Φ ∂Φ∂ Φ =
∂ ∂ ∂ ∂

= −

∂ ∂Φ ∂Φ∂ Φ = ≠
∂ ∂ ∂ ∂

   (18) 

 
Furthermore, the following relations will hold: 
 

1

( ) [ ( )],  0,..., 1
( ) { [ ( ), ( )]}

l

r

y k l h x k l r
y k r h x k u k−

⎧ + = = −⎪
⎨

+ = Φ⎪⎩
                  (19) 

 
Therefore r is the smallest number of sampling 
periods after which the manipulated input ( )u k  
affects the output y .  
 
With a finite relative order r , Eq. (15) implies that 
the algebraic equation 
 

1[ ( , )]rh x u y− Φ =                          (20) 
 
is locally solvable in u . The corresponding implicit 
function will be denoted by: 
 

0 ( , )u x y= Ψ                              (21) 
 

and will be assumed to be well-defined and unique 
on ( )X h X× . 
 
When these predicted changes are added to the 
measured output signal ( )y k , one obtains the 
following closed-loop predictions of the output: 
 

1

2

1

1

ˆ( 1) ( ) [ ( )] [ ( )]
ˆ( 2) ( ) [ ( )] [ ( )]
...
ˆ( 1) ( ) [ ( )] [ ( )]
ˆ( ) ( ) [ [ ( ), ( )]] [ ( )]

m m

m m

r
m m

r
m m

y k y k h x k h x k

y k y k h x k h x k

y k r y k h x k h x k

y k r y k h x k u k h x k

−

−

+ = + −

+ = + −

+ − = + −

+ = + Φ −

        (22) 
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where the ^ is used to indicate that ŷ represents a 
prediction of the output. It is interesting to observe 
that the output predictions in Eq. (22) are “closed-
loop” predictions in the sense that they make use of 
the measured output signal. In addition, the 
manipulated input ( )u k affects the output after r  
sampling periods, and this interprets r tΔ as the 
overall delay of the system. 
 
At every time step, the control computer can 
calculate the output prediction Eq. (22), driven 
by ( )u k  and ( )y k , where ( )mx k is obtained by online 
simulation of the state equations of Eq.(14): 

( 1) [ ( ), ( )]m mx k x k u k+ = Φ . 
 
The question that arises is what should be the choice 
of ( )u k to obtain a desirable output response after r  
time steps. If ( )u k is chosen so that ˆ( )y k r+ is exactly 
the set-point value spy , this would clearly create a 
non-robust situation since the output can be seriously 
affected by the disturbances or system errors which 
can make the system unstable. Instead, one can 
request ˆ( )y k r+ to be in the right direction and cover 
a fraction of the “distance” between ˆ( 1)y k r+ − and the 
set-point value. In other words, one can define a 
desirable value dy of the output at the ( )thk r+ time 
step by: 

ˆ( ) (1 ) ( 1)d spy k r y y k rα α+ = − + + −             (23) 
 

where α is a tunable filter parameter such that 
0 1α< < . Clearly, 0α →  corresponds to 

( )d spy k r y+ → and therefore, will try to force the 
output to go to the set point as soon as possible, 
whereas 1α →  corresponds to ˆ( ) ( 1)dy k r y k r+ → + − , 
leaving the output unaffected. An intermediate 
choice of α corresponds to a desirable value of the 
output between spy and ˆ( 1)y k r+ −  that tries to bridge 
the gap to a certain extent. Equation (23) is referred 
to as the “reference trajectory” in the MAC literature. 
 
One can derive a nonlinear MAC controller by 
requesting that the output prediction match the 
reference trajectory in the sense of minimizing the 
performance index of Eq. (23): 
 

2

( )
ˆmin[ ( ) ( )]du k

y k r y k r+ − +                    (24) 

 
Considering Eqs. (29) and (30), this becomes 
 

1

( )

1 2

min{(1 ) ( ) { [ ( ), ( )]}

[ ( )] (1 ) [ ( )]}

r
mu k

r
m m

e k h x k u k

h x k h x k

α

α α

−

−

− − Φ

+ + −
            (25) 

 
where ( ) ( ) ( )spe k y k y k= − . 
 
In the absence of input constraints, this minimization 
problem is trivially solvable. Minimizing ( )u k  is the 
solution of the nonlinear algebraic equation: 
 

1{ [ ( ), ( )]} ( ( ) ( ))r
m mh x k u k b x k e k− Φ = ，                (26) 

 
where 1( , ) [ ] (1 )( [ ] )rb x e h x h x eα α−= + − + . 
 
Recalling the definition of 0Ψ (Eq. 28), the solution 
can be represented as: 
 

{ }0( ) ( ), ( ( ), ( ))m mu k x k b x k e k= Ψ                (27) 
 
Therefore, the derived control law is given by Eq. 
(27), where ( )mx k is obtained by Eq. (14). 
 
 
4. SIMULATION 
 
We simulated the proposed control law to 
demonstrate its effectiveness. In a simulation 
program, dynamic model described in Section 2 are 
used as the mobile robot model.  
 
The first reference path is a straight line. The 
tracking performance of the MAC controller for the 
straight line is shown in Figure 2. 
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Fig. 2 Path tracking performance of straight line 

reference path. 
 
Next we choose the reference path as a circular 
reference path. The tracking performance of the 
MAC controller for the circular reference path is 
shown in Figure 3. 
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Fig. 3 Path tracking performance of circular 

reference path 
 
In the above simulations the computation time is 
about 6%  of the robot operation time. The 
computational load of this proposed algorithm is 
small which indicates the feasibility of real-time 
application of this proposed controller. 
 
 
5. CONCLUSION 
 
In this paper we study the path tracking problem of 
dynamic WMRs subject to nonholonomic constrains. 
The MAC control method is proposed for tracking 
control of the discrete time nonlinear system. Two 
numerical simulations are done to show the promise 
of the proposed MAC control method in terms of 
tracking performance. 
 

 
REFERENCES 

 
Chen Jian, Dixon Warren E., Dawson Darren M. and 

McIntyre Michael (2006). Homography-Based 
Visual Servo Tracking Control Of A Wheeled 
Mobile Robot. IEEE Transactions on Robotics, 
Vol. 22, No. 2, pp. 407-416. 

Coelho Paulo and Nunes Urbano (2005). Path-
Following Control of Mobile Robots In Presence 
Of Uncertainties. IEEE Transactions on 
Robotics, Vol. 21, No. 2, pp. 252-261. 

Corradini M. Letizia, Leo T. and Orlando G. (2002). 
Experimental Testing Of A Discrete-Time 
Sliding Mode Controller For Trajectory 
Tracking Of A Wheeled Mobile Robot In The 
Presence Of Skidding Effects. Journal of 
Robotic Systems, Vol. 19, No. 4, pp. 177-188. 

Mutambara Arthur G. O. and Hugh F. Durrant-
Whyte (2000). Estimation And Control For A 
Modular Wheeled Mobile Robot. IEEE 
Transactions on Control Systems Technology, 
Vol. 8, No. 1, pp. 35-46. 

Shim Hyun Sik, Kim Jong Hwan and Koh Kwangill 
(1995). Variable Structure Control Of 
Nonholonomic Wheeled Mobile Robot. IEEE 
International Conference on Robotics and 
Automation, pp. 1694-1699. 

Tan Swee Leong and Gu Jason (2005). Investigation 
Of Trajectory Tracking Control Algorithms For 
Autonomous Mobile Platforms: Theory and 
Simulation. Proceedings of the IEEE 
International Conference on Mechatronics and 
Automation, pp. 934-939, Niagara Falls, Canada. 

Yang Tian Tian, Liu Zhi Yuan, Chen Hong and Pei 
Run (2005). The Research On Robust Tracking 
Control Of Constrained Wheeled Mobile Robots. 
Proceedings of the Fourth International 
Conference on Machine Learning and 
Cybernetics, Guangzhou, pp. 1356-1361. 

Zhang Yulin, Chung Jae H. and Velinsky Steven A. 
(2003). Variable Structure Control Of A 
Differentially Steered Wheeled Mobile Robot. 
Journal of Intelligent and Robotic Systems, Vol. 
36, pp. 301-314, 2003. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2352


