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Abstract: In chemical process system optimization, it is common that problem has large number of 
equality constraints and bound constraints, and relatively few degrees of freedom. Reduced space 
algorithms are well suited for this category of problem. In this paper, a new version of RSQP algorithm 
coded and implemented in Matlab language was developed. In the RSQP algorithm, the rule of basis 
selection was revised, and basis selection was realized by Matlab subroutine. Also, an integrated line 
search of filter method was performed to obtained steplengh. The method combines the advantages of 
filter line search and that of traditional line search, and was validated by some benchmark examples. The 
RSQP was applied to some chemical process optimization problems; computational results demonstrate its 
effectiveness and efficiency. 

 

1.  INTRODUCTION 

In last twenty years, Sequential Quadratic Programming(SQP) 
algorithms are viewed as the best approach[1] to solve 
nonlinear problems. SQP method generates a sequence of 
point{ }

k
x converging to the solution by solving a quadratic 

program (QP) sub-problem at each point kx . It must deal with 
a n n×  Hessian matrix. When number of variables increases, 
the matrix of Hessian needs much more memory and is very 
expensive for computation. So Biegler and etc. [2-5] 
presented a reduced SQP algorithm to problems with large 
number of equality constraints and relatively low degrees of 
freedom. In reduced SQP algorithm, QP sub-problem is 
solved in relatively small space by the way of space 
decomposition. In chemical process system, this kind of 
problems exists extensively. So the method is quite attractive, 
and it has been applied in process optimization [6-7]. 

In reduced SQP algorithm, how to select basic variables is of 
great importance. It can greatly affect the efficiency and 
stability of the algorithm. In this paper, Matlab coded routines 
are used for basis selection, and new rule of basis selection is 
regulated. The method for basis selection is similar and 
somehow different from the work of Bigler[15]. With the rule 
of basis selection, sparse technology was utilized to check the 
rank of Jacobian matrix, and multipliers were adjusted 
according to steplenth. 

Since Fletcher and Leyffer[8] presented the idea of filter 
method, line search of filter method has become a hot topic in 
the research of NLP[9-10]. Main concept of the line search of 
filter method is that[8]: in the filter region, a steplength is 
accepted if new iterate 1kx +  minimizes infeasibility or 
objective function. Since the conditions to accept steplength 
are slackened, it is possible to obtain a bigger steplength. 

Filter method requires sufficient decrease in either objective 
function or infeasibility at each iteration. But sometimes 
either the objective function or infeasibility in exchange for a 
small decease in the other may occur. And when this method 
suffers from numerical difficulties, “Restore Phase” is 
generally used. In this paper, traditional and filter method of 
line search are integrated and performed to obtain steplength. 
It combines the advantages of filter method and that of 
traditional line search, and is easier in implementation.  

2.  REDUCED SQP ALGORITHM  

In chemical process system, many optimization problems can 
be formulated as nonlinear programming (NLP) problems. 
Generally, cost or profit is valued as objective function; 
model equality and the bound requirements are valued as 
constraints. With introducing slack variables, inequality 
constraints can be converted into equality constraints. Thus 
the model can be described as: 
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f x

c x
x x x
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Here : nf R R→ , : n mc R R→ are twice continuously 
differentiable functions. SQP algorithms approach the optimal 
solution by solving a sequence of quadratic programming sub-
problems 
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Here, kd denotes the search direction, ( )kg x  denotes the 

gradient of ( )kf x , ( )kW x denotes the Hessian of Lagrangian 
function  

( ) ( )( , , , ) ( ) ( ) T U T LT x x x xL x f x c x υ πλ ν π λ − − −= + + (3)            

( )kA x stands for the n m×  matrix of gradients of ( )kc x . 

[ ]1 2( ) ,......,k mA x c c c= ∇ ∇ ∇            (4) 
Assuming the first m variables as basic variables (dependent 
variables) and the other ( )n m− variables as nonbasic 

variables (independent variables), T
kA  can be grouped as: 

( ) [ ( ) ( )]T
k k kA x N x C x=                      (5) 

In reduced SQP, the search direction kd is partitioned into two 
parts: [4,5] 

k k y k zd Y p Z p= +                       (6) 

Here kZ is ( )n n m× − matrix spanning the null space of 
T
kA (which is assumed to have full column rank for all 

iterations), kY is n m×  matrix spanning the range space 

of T
kA , zp and yp  are vectors in n mR − and mR respectively. 

There are many choices for constructing the matrix of Y and 
Z [11]. By QR factorization of T

kA to get kY and kZ , 

kY and kZ  have orthonormal columns. This method gives a 
well-conditioned representation of null space and rang space 
of T

kA . But it could be very expensive in calculation if the 
number of variable is large. Another way to choose Y and Z is 
called orthogonal bases method. This method is less 
expensive, but the sparse structure of T

kA can’t be kept well. 
In this paper the way called coordinate bases method[12] was 
adopted to construct Y and Z. Y and Z are defined as: 

1( )
( ) ( )k

k k

I
Z x

C x N x−

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

    
0

( )kY x
I

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
            (7)  

Since kZ  is in the null space of T
kA , then 

0T
k kA Z =                                    (8) 

Substituting (6) and (8) into (2), then yp  can be solved by 

        1( )T
y k k kp A Y c−= −                             (9) 

So kd can be formulated as 
1( )T

k k k k k k zd Y A Y c Z p−= − +                   (10) 

To determine the component
z

p , we substitute (10) into (2) 

and eliminate terms not involving zp . Then (2) can be 
expressed as the QP sub-problem in terms of the 
( )n m− dimension variables zp :  

min ( ) 1/ 2
n m

z

T T T
k k k z z k z

p R

L U
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       (11) 

Here kw  is a vector approximating T
k k k yZ W Y p , kB denotes 

matrix T T
k k kZ W Z . For process system with large number of 

variables and relatively small degrees of freedom, 
i.e. ( )n n m− , kB is quite small. It can be approximated 
by BFGS method with much less computational cost. The 
vector kw  is relatively large; it can be ignored or 
approximated via Broyden method. 

If the cross term is not ignored, it can be calculated by 
Broyden’s method. Matrix T

k kZ W is approximated by kU  and 
can be updated as 

  1

( )k k k
k k T

k k

y U s
U U

s s+

−
= +                  (12) 

where 

1 1 1 1[ ( , , , ) ( , , , )]T
k k k k k k k k k ky Z L x L xλ υ π λ υ π+ + + += ∇ −∇ (13) 

1k k ks x x+= −                                      (14) 

then kw  is calculated by  

k k k yw S Y p=                                      (15) 

kB is updated by BFGS formula  

1

T T
k k k k k k

k k T T
k k k k k

B s s B y y
B B

s B s y s+ = − +                    (16) 

   1k k kB s y+ =                                    (17) 

k k zs pα=                                      (18) 

and  1 1 1 1[ ( , , , )
( , , , )]

T
k k k k k k

k k k k k

y Z L x
L x w

λ υ π
λ υ π

+ + + += ∇ −
∇ −

           (19) 

1k k k k yw S Y pα +=                                   (20) 

Powell recommends keeping the Hessian positive definite 
even though it might be positive indefinite at the solution 
point. A positive definite Hessian is maintained 
providing T

k ky s is positive at each update.  

( ) ( )( , , , ) ( ) ( ) T U T LT x x x xL x f x c x υ πλ ν π λ − − −= + +  

When T
k ky s is not positive, ky is modified on an element-by-

element basis so that 0T
k ky s > . If T

k ky s is still not positive 
with the procedure, the update is skipped. 

In RSQP algorithm, since QP problems are reduced from 
dimension of n  to the relatively small dimension of ( )n m− , 
they can be solved with much less memory and computational 
cost.  

The whole algorithm of RSQP is listed in figure 1. 
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Fig.  1.  Schematic of RSQP algorithm 

3. SELECTION OF BASIS  

When coordinate bases are used to select Y and Z, formula (9) 
must be solvable, that is to say TA Y C=  should be 
nonsingular. But in the process of solving QP sub-problems, 

TA Y may be singular or nearly singular, which will cause the 
problem unsolvable. To avoid this, basic and nonbasic 
variables should be checked and well selected at all iterations. 

To guarantee TA Y  nonsingular, permuting columns of TA  
  T TA A P=                                         (21) 

To ensure the leading square matrix of TA  is nonsingular, the 
variables can be rearranged as 

Tx P x=                                           (22) 
Accordingly, ,Z B and etc. are converted into the form [4]                                  

1

I
Z

C N−

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

                                         (23) 

Tf P f∇ = ∇                                           (24) 
T T TB Z WZ Z P WPZ= =                             (25) 

Here x denotes the variables after basis selection, f∇ denotes 

the gradient of ( )f x , f∇ denotes the gradient 
of ( )f x , P denotes basis permutation matrix. 
In Biegler’s work[15], Fortran coded software MA28 or 
MA48 was used to select basic variables and to get the basis 

permutation matrix. To realize the same function in Matlab 
language, subroutine named findp was used to select the basis 
permutation matrix. In the subroutine P is obtained by 
choosing column minimum degree permutation vector[13] 
from A  and LU factorization of A . 

Since Matlab is more excellent in matrix operation, its 
functions were applied to the rule of basis selection. In this 
paper, we make some revisions for the basis selection rule 
described in Biegler etc [15].  The rule for selection of basis is 
described as:  

(1) Let 1
,,

max( ( ) )i ji j
C Nγ −= , if 1 20k kγ γ+ ≥  or C  is 

singular, then new basic and nonbasic variables are selected 
again, Because C  is check by sparse rank function, the 
calculation cost is very small. 
(2) If steplength 0.01α < and 2 kγ γ>k+1  or steplength 

0.001α < , then the multipliers of merit function 

1 10k kμ μ+ = , and new basic variables and nonbasic 
variables are selected again. 
Here γ is the parameter to describe the biggest element of 

matrix 1C N− . For constructing well conditioned Z , it should 

not increase too much at each iteration. In step (2), if 
steplength is small and γ  increases quickly, new basis is 
selected to obtain good search direction. With new basis 
selection taken, μ is increased 10 times to guarantee 
sufficient decrease of merit function.  

4. INTEGRATED LINE SEARCH OF FILTER METHOD 

To make sure the global convergence of RSQP algorithm, 
new iterate 1kx + is calculated by the following formula. 

Hereα is the steplength at the interval of (0 1] , which must 
be selected carefully. 

1k k kx x dα+ = +                               (26)  

Now line search of filter method is a very open topic. Though 
it may obtain a bigger steplength, it still has its disadvantages. 
It is difficult to obtain sufficient decrease of objective 
function or infeasibility each time. Also it may sometimes 
suffer from numerical difficulties. But traditional line search 
method does not have these disadvantages with merit function 
employed. To incorporate advantages of traditional and filter 
line search methods, an integrated line search method of filter 
was performed to obtain steplength. In this method, the 
maximum infeasibility of constraints is expressed as 

max( ( ) , max(0, , ))U Lmg c x x x x x
∞ ∞ ∞

= − −  (27) 

The objective function is replaced by L1 merit function, 
which is defined as bellow: 

1

1

max(0, )
( ) ( ) ( )

max(0, )

U

L

x x
x f x c x

x x
φ μ κ

−
= + +

−
    (28) 

If all variables satisfy the bound constraints, it can be 
proved[14] that the direction derivative of ( )xφ  is  
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1
( ) ( ) 'D x f x d cμφ μ= ∇ +                   (29) 

To describe the integrated line search of filter method, several 
combinational conditions are defined as: 
Condition 1 
At iterate 1kx + , merit function has some degrees of reduction, 

that is 1( ) ( ) ( )k k kx x D xμ μ μφ φ εα φ+ <= +  
ε denotes a small positive number, generally it can be taken 
to be 1.0e-6 
Condition 2 
At iterate 1kx + , maximum infeasibility of constraints has some 
degrees of reduction, that is  

2 2
1( ) ( ) 2 ( ) ( )T

k k k k kmg x mg x c x c x dεα+ <= + ∇  
Condition 3 
Maximum infeasibility of constraints is fairly small, 

1.0 6mg e<= −  
Condition 4 

1 1( ( ) / ( ) 1) /( / 1)k k k kx x mg mgμ μφ φ β+ +− − ≤ or  

1 1( ( ) / ( ) 1) /( / 1) 1/k k k kx x mg mgμ μφ φ β+ +− − ≥  

here β a is positive number  
Condition 5 
 1.0 4eα < −  
The procedure of integrated line search of filter method is 
illustrated in figure 2. Traditional line search method is 
implemented as described in literature [25]. 

 
Fig. 2.   Schematic of integrated line search method of filter 

The integrated line search method utilizes the concept of filter 
and the idea of merit function. It can get sufficient reduction 
of merit function or maximum infeasibility at each iteration. 
At the same time a large increase in either the merit function 
or the infeasibility in exchange for a small decease in the 
other can be avoided. Furthermore, when filter method of the 
integrated line search suffers from numerical difficulties, 
traditional line search is employed to obtain the steplength. To 
avoid Marotos effect, SOC (Second Order Correction) is 
employed in the new line search method. 

5. NUMERICAL RESULTS 

Because Matlab is the package with least effort in modeling 
NLP problems[24] and is excellent in matrix operation and 
visibility, the RSQP algorithm was coded in Matlab language. 
The basis selection and line search method proposed above 

were incorporated into the implementation of the new version 
of RSQP algorithm. Efficiency was compared and analyzed in 
solving some benchmark problems. 

Examples in Table 1 come from literatures of Schmid and 
Biegler[4,15]. All of these examples have large number of 
equality constraints and variable dimensions. Exam1 and 
Exam3 have relatively low degrees of freedom. But Exam2 
has relatively large degrees of freedom. They increase quickly 
with the increase of dimension of variables. Some benchmark 
examples from Murtagh[16] and Hock[17] are also selected to 
validate the performance of the improved version of RSQP 
algorithm. 

Table 1. large benchmark examples 
Examples Expression 
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5.1 Performance of RSQP with new rule of basis selection 

In RSQP algorithm, coordinate bases method was used to 
construct Y and Z , traditional line search was used to obtain 
steplength. Performance of the RSQP algorithm with and 
without rule of basis selection was compared. The results are 
listed in Table 2 and Table 3. 

Table 2.  Results of large benchmark examples 
Basis Selection   No Basis 

Selection  
   

Examples
   

N/M  
  

Iter/FunEvals  Iter/FunEvals 
1000/999 9/24 10/27  
2000/1999 4/15 9/24  

     
Exam1 

3000/2999 6/19 10/28  
1000/500 4/9 21/69  
2000/1000 4/9 29/96  

     
Exam2 

3000/1500 4/9 24/79  
300/298 4/12 #  
600/598 4/12 #  

     
Exam3 

900/898 4/12 #  
* N/M denotes variables/ equality constraints; Iter/FunEvals denotes 

iterations/ function evaluations ；# denotes failed or iterations >500;                        

From Table 2 and Table 3, we can see that with the rule of 
basis selection employed, number of iterations and function 
evaluations reduced obviously. The stability of RSQP 
algorithm was also improved obviously. Most examples 
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require less iterations and function evaluations. The RSQP 
algorithm succeeded in solving Exam3, Entropy and Hs6 with 
basis selection, but failed without basis selection. This is 
because the leading square matrix C  is singular or nearly 
singular in solving QP sub-problems.  

Table 3.  Results of small benchmark examples 
Basis 

Selection 
No Basis 
Selection 

  
Examples 

  
N/M 

Iter/FunEvals Iter/FunEvals
 Entropy 10/1 10/136 # 

 Box 3/1 11/26 11/26 
Wright4 5/3 9/22 9/21 

 Hs6 2/1 14/32 # 
 Hs12 2/1 8/17 31/104 
Hs36 3/1 3/7 2/5 
 Hs39 4/2 31/113 113/1222 
 Hs40 4/3 6/13 6/13 
 Hs42 4/1 16/49 # 
 Hs46 5/2 13/31 15/37 
 Hs80 5/3 10/25 9/24 
  Hs99 7/2 37/135 468/1836 

5.2 Performance of RSQP with integrated line search of filter 
method 

To validate performance of the proposed line search method, 
we incorporated it into RSQP algorithm. Then the algorithm 
was used to solve these benchmark examples. All results were 
compared with those solved by the RSQP algorithm with 
traditional line search to obtain steplength. 

The comparison results of Exam1-3 are listed in table 4. For 
the first two examples, the iterations and function evaluations 
of integrated line search of filter method were no less than 
those of traditional line search. But for Exam3, the integrated 
line search method decreased iterations and function 
evaluations obviously. 

Table 4.  Results of Exam1-3 with integrated line 
search of filter method 

Traditional 
Line Search  

Integrated 
Line  

Search 

 
Examples 

 

 
N/M 

 
Iter/FunEvals Iter/FunEvals

1000/999 9/24 6/17 
2000/1999 4/15 8/22 

 
Exam1 

3000/2999 6/19 7/19 
1000/500 4/9 4/9 
2000/1000 4/9 4/9 

 
Exam2 

3000/1500 4/9 4/9 
300/298 4/12 2/6 
600/598 4/12 2/6 

 
Exam3 

900/898 4/12 2/6 
From table 5, it can be found that with integrated line search 
of filter method employed, these benchmark examples could 
be solved more effectively. Most examples need less 
iterations and function evaluations. With traditional line 
search adopted, the total number of iterations/function 
evaluations is 168/606. But with integrated line search of 
filter method adopted, the total number of iterations/function 

evaluations is 134/496. The integrated line search method 
outperforms traditional line search. 

Table 5.  Results of benchmark examples with 
integrated line search of filter method  

Traditional 
Line Search  

Integrated 
Line Search 

  
Examples

 
N/M

Iter/FunEvals Iter/FunEvals
  Entropy 10/1 10/136 9/121 

 Box 3/1 11/26 11/24 
 Wright4 5/3 9/22 11/32 

 Hs6 2/1 14/32 6/34 
 Hs12 2/1 8/17 8/17 
 Hs36 3/1 3/7 2/5 
 Hs39 4/2 31/113 24/134 
 Hs40 4/3 6/13 6/13 
 Hs42 4/1 16/49 11/29 
 Hs46 5/2 13/31 9/29 
 Hs80 5/3 10/25 10/30 
 Hs99 7/2 37/135 27/128 

 Total 168/606 134/496 
  

5.3 Chemical case study 

To make comparisons, chemical problems were also solved 
by the standard SQP algorithm (Fmincon)[19] in Matlab6.5 
and SNOPT. The operation system is Windows 2000. The 
computing platform has Intel 1.7GHz, 1 GB memory. 

5.3.1 Distillation column optimization  

Two distillation columns in ethylene process were optimized 
for case study. The flowsheet of the system is described as 
figure 3: 

 
Fig. 3. Flowsheet of the columns in ethylene process 

E-DA-404 denotes depropanizer and E-DA-405 denotes 
debutanizer. Depropanizer has 47 theoretical trays and two 
feeds input. Debutanizer has 35 theoretical trays and its feed 
comes for the bottom output of depropanizer.  Details of the 
system can be seen in literature [26]. 

With open formed model based on rigorous principle founded, 
the objective function is as below:  

Max : (278.88 1_ 227.752 S1_dw)/10000F S bw= × + ×  
1_S bw denotes top product flow of depropanizer 

and 1_S dw denotes top product flow of debutanizer. 
F denotes the total economic  efficiency. 
 The constraints are:         

S502
 

S538
 

S511
 

S503

S592
 

S581
 

E-DA-404
E-DA-405
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Mesh equality of distillation process 
Relationship equality for the two columns 

Bound constraints: 
In product 1_S bw , C3H6≥0.93;  
In product 1_S dw , C5≤0.0095;  

The whole system has 4190 free variables, 103 fixed variables 
and 4188 equality constraints. So the whole system’s degrees 
of freedom are 2. We solve the problem by RSQP, SNOPT 
and Fmincon. Fmincon failed to solve the problem because of 
its difficulty to deal with large matrix. But RSQP and SNOPT 
can use the sparse information of the problem and can solve 
large scale problems quickly. Computing information and 
optimization results are shown in table6, table7 and figure4, 
figure5.  

Table 6.  Computing Comparison of RSQP and 
SNOPT 

Algorithm Iter/ 
FunEval 

Grad 
call 

Objective Time(s) 

SNOPT 92/364 117 -20.2943 5685.31 
RSQP 28/93 45 -20.2901 1240.164

Table 7.  Computing information of RSQP in 
detail 

Statistics of computing time(s) Iter/ 
FunEval BFGS& 

Broyden gradient Line 
search QP Space 

decomp Total 

28/93 311.160 572.000 7.906 1.722 345.473 1240.164
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Fig. 4. Temperature profile comparison of depropanizer  
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Fig. 5. Temperature profile comparison of debutanier 

The results of table6 show that compared with the famous 
SNOPT, the RSQP algorithm decreased solving time greatly. 
The iterations and function evaluations of the RSQP 
algorithm are much less than SNOPT. Table7 gives the 
Statistics of RSQP’s computing time, from which we can get 
bottleneck of the algorithm. We can see that the gradient 
computing time is 572s, improvement of gradient computing 
can decrease the total solution time obviously. Figure4 and 

figure5 are the comparison of optimization results. T0 denotes 
initial temperature profile; T1 and T2 denote optimal 
temperature profile gotten by RSQP and SNOPT.  From the 
figures we can see that the optimal results of RSQP and 
SNOPT are the same, it demonstrate that the optimal results 
of RSQP is correct.  

5.3.2 Parameter estimation of catalytic cracking of gasoil[22] 

The reaction mechanism of the catalytic cracking of gasoil(A) 
to gasoline(Q) and other byproducts(S). The reaction model is 
formulated as  

21
1 3 1

22
1 1 2 2

( )
dz

z
dt
dz

z z
dt

θ θ

θ θ

= − +

= −

⎫
⎪⎪
⎬
⎪
⎪⎭

 

Initial conditions: 0 (1, 0)=z  

Variable bounds: 
0 1

0 20

z

θ

≤ ≤

≤ ≤

⎫
⎬
⎭

 

The problem is to minimize
221

1

( , )
j j

j

τ
=

−∑ z θ y , here 

jy denote the concentration measurements for z at time 

points 1τ , 2τ , ... 21τ . 

To solve the dynamical problem, the model was converted 
into NLP by approximate the state profiles by orthogonal 
collocation on finite elements. The whole time region was 
partitioned into 50 finite elements, and three collocation 
points was used in every element. The discritized model has 
503 variables, 500 equality constraints and 1006 bound 
constraints. 

To obtain first order gradient information of the discritized 
model accurately and quickly, automatic differentiation 
technology (AD) was utilized to calculate the gradient 
information. Sparse structure of the Jacobian matrix of the 
discritized model was also utilized. The problem was 
successfully solved by RSQP and standard SQP algorithm, 
and computational results of the problem were list in table8 
and figure6.  

Table 8. Computational results of discritized 
gasoil model  

Algorithm BFGS  
& Broyden

QP  Iter/ 
FunEvals 

Total (s)

Standard SQP 27.078 146.578 48/198 189.500
RSQP 3.890   0.992 63/229 37.156 
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Fig. 6. Solution and measurements of gasoil 
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Though RSQP algorithm still needs more iteration and 
function evaluations, computational time is largely reduced. 
In RSQP algorithm, though most effort is spent on space 
decomposition and gradient calculation, it is much less than 
the effort saved in QP solving. Figure6 shows the solution of 
concentration and the concentration measurements. It can 
found that the solution fits the measurements well. 

 

6. CONCLUSIONS 

RSQP algorithm is designed for chemical process system 
optimization problem with relatively large number of equality 
constraints and few degrees of freedom.  In this paper, a new 
version of RSQP coded and implemented in Matlab is 
developed. In the algorithm, the rule for basis selection is 
revised and basis selection is realized by Matlab subroutines, 
it has the same function as MA28 and MA48. An Integrated 
line search of filter method is incorporated in the RSQP 
algorithm to obtain steplength. The RSQP algorithm was 
validated by some benchmark examples and then was applied 
to solve chemical process optimization cases. Computational 
results demonstrate that it is quite effective and is more 
efficient than standard SQP algorithm. 

Since it very important to keep the global stability of RSQP 
algorithm, more attention will be placed on trust region 
method and the calculation of cross term. Also, interior-point 
method will be combined with RSQP for real-time 
optimization of chemical process. 
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