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Abstract: In this paper, a new scheme for adaptive unfalsified control is demonstrated for
a well-known example of a nonlinear plant, a continuous stirred tank reactor (CSTR) with
the van-der-Vusse reaction scheme. There are two new elements in our scheme: 1. Instead of
switching between a finite number of controllers from a given, fixed set, an adaptation of the
controller parameters is performed. For this purpose, a population-based evolutionary algorithm
is used. 2. As the cost function that was originally proposed by Safonov is unable to correctly
assess the potential performance of a controller that has not been in the loop, we propose a new
cost function that employs the fictitious error for the actual reference signal. This error signal
is determined by estimating the impulse response of the sensitivity function from the observed
data.
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1. INTRODUCTION

Data-driven adaptive unfalsified control was introduced by
Safonov et al. (1997). The basic idea is to switch between
different candidate controllers in a predefined set of con-
trollers using only the observed data in order to obtain
good performance or at least a stable behaviour of the
closed-loop system. No plant model is required. As shown
in Stefanovic et al. (2005), safe adaptive control can be
achieved if the traditional scheme allows the class of can-
didate controllers to be infinite. Further developments by
Wang et al. (2005) led to the concept of cost detectability,
the proposal of a cost-detectable cost function and the ǫ-
hysteresis algorithm as a switching mechanism. By this
mechanism, the scheme searches for the best controller in
the fixed set and cannot adapt the set of controllers.

A natural extension of these ideas is the introduction of
an adaptation of the set of controllers in order to find
the best controller within the set of all controllers of
some predefined structure, but with arbitrary parameters.
Adaptation requires that the performance of a candidate
controller is evaluated correctly when this controller is not
in the loop. Recently Engell et al. (2007), Manuelli et al.
(2007), and Dehghani et al. (2007) pointed out that the
cost function proposed in Wang et al. (2005) will only
detect instability of a controller in the set of candidate
controllers if this controller is active, i.e. actually in the
loop. A brief derivation of this fact is given in section 3.
This renders the original cost function that is based on the
computation of a fictitious reference signal unsuitable for
adaptive unfalsified control. In order to resolve this issue,
in Engell et al. (2007) a new cost function was proposed
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together with a scheme to compute its values for arbitrary
controllers that are not in the loop from measured data
only.

In this paper, we describe the new scheme and present re-
sults of its application to a well-known example of a nonlin-
ear nonminimum phase system, a continuous stirred tank
reactor (CSTR) with the van-der-Vusse reaction scheme.
In the next section, we first review the original concept of
unfalsified control with the ǫ-hysteresis algorithm. Then
we show why instability of a candidate controller cannot
be detected using the proposed cost function and introduce
our new scheme. Section 5 presents simulation studies
of the CSTR example. We compare unfalsified control
with a fixed set of controllers and with adaptation of the
controller parameters. Finally, some hints for further work
are given.

2. THE BASIC IDEA OF UNFALSIFIED CONTROL

We consider a SISO adaptive unfalsified control system
Σ(P, K̂) mapping r into (u, y). The system is defined

on Σ(P, K̂) : L2e → L2e. The traditional scheme of an

adaptive unfalsified control system Σ(P, K̂) is shown in
Fig. 1.

We assume that the control system Σ(P, K̂) satisfies the
zero-input zero-output property which means that if r = 0,
then [u, y]T = 0 as well, i.e. the plant is operated around
an equilibrium at the origin. The unknown plant P : U →
Y is defined by

P = {(r, u, y) ⊂ R× U × Y | y = Pu}. (1)

A set of finitely many controllers K : R×Y → U is defined
by
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Fig. 1. Traditional Adaptive Unfalsified Control Scheme

K = {(r, u, y) ⊂ R× U × Y | u = Kn

[

r
y

]

}. (2)

The signals r(t), u(t), y(t) are assumed to be square-
integrable over every bounded interval [0, τ ], τ ∈ R+.
The adaptive control algorithm maps vector signals d =
[u(t), y(t)]T into a choice of a controller Kn ∈ K, K =
{Kn}, n ∈ {1, 2, 3, ..., N}.

The adaptive control law has the form:

u(t) = K̂(t)

[

r(t)
y(t)

]

where K̂ = Kn(t) denotes the active controller. n(t) is
a piecewise constant function with a finite number of
switchings in any finite interval.

Let d = (u(t), y(t)), 0 ≤ t ≤ T denote experimental plant
data collected over the time interval T , and let D denote
the set of all possible such vector signals d. dτ denotes the
truncation of d e.g., all past plant data up to current time
τ . The data set Dτ is defined by

Dτ = {(r, u, y) ⊂ R× U × Y | dτ = (uτ , yτ )}.

The L2e norm of a scalar function of time x(t) at time τ
is defined by

‖x‖2τ =

∫ τ

0

|x(t)|2dt

and the L2e norm of a scalar function of time x(t) in the
time interval (a, b) is defined by

‖x‖2(a,b) =

∫ b

a

|x(t)|2dt.

We consider linear time-invariant control laws of the form:

Kn = {(r, u, y) ⊂ R× U × Y | u = cn ∗ (r − y)} (3)

where ∗ denotes the convolution integral, cn is the impulse
response of the n-th controller. Cn(s) denotes the Laplace
transform of cn. We assume that we have observed the
input data uτ and the output data yτ .

In the original unfalsified control concept (Safonov et al.
(1997)), these data are used to evaluate whether the
controller Kn meets a specified closed-loop performance
criterion

J(rτ , uτ , yτ ) ≤ α (4)

where α is called the unfalsification threshold. If this
condition is not met, the control law switches to a different
controller and the previous controller is discarded. After
at most n switchings, a suitable controller is found, if there
is such a controller in the set.

The key idea of unfalsified control is to compute the cost
J(Kn, dτ , τ) based upon the available measurements. For
this purpose,

r̃n = c−1
n ∗ u + y (5)

and
ẽn = r̃n − y (6)

where c−1
n is the impulse response of the inverse controller

transfer function C−1
n (s). These signals are called the

fictitious reference signal and the fictitious error signal.
The fictitious reference signal of controller Kn is the same
as the true reference signal if the controller Kn is an active
controller K̂(t), ∀t ∈ [0, τ). When J(r̃nτ

, uτ , yτ ) > α, this
implies that if the controller Kn were in the loop, it would
not satisfy the performance criterion (4). In this case,
it is said that the controller Kn is a falsified controller.
Otherwise the controller Kn is an unfalsified controller.

Assume that for the adaptive unfalsified control system
Σ(P, K̂) in Fig. 1, dτ is the resulting plant input-output

data collected while K̂(dτ , t) is in the loop. A cost func-
tion J(Kn, dτ , τ), Kn ∈ K satisfies the criterion of cost
detectability of the adaptive unfalsified control system
Σ(P, K̂) for K̂ ∈ K with finitely many switching times
if with Kf being the final controller that is used in the
closed-loop, finiteness of J(Kf , dτ , τ), Kf ∈ K as τ →∞,
is equivalent to stability of the adaptive unfalsified control
system Σ(P, K̂).

The adaptive control algorithm proposed by Wang et al.
(2005) consists of two main components:

1. Switching Mechanism
As the switching mechanism, the ǫ-hysteresis algorithm is
used:

(1) Initialize: Let k = 0, τ0 = 0; choose ǫ > 0. Let

K̂(0) = K1, K1 ∈ K, be the first active controller
in the loop.

(2) k = k + 1, τk = τk+1

If J(K̂(k − 1), dτk
, τk) > minKn∈K J(Kn, dτk

, τk) +

ǫ then K̂(k) ← arg minKn∈K J(Kn, dτk
, τk), else

K̂(k)← K̂(k − 1).
(3) go to 2.

2. Cost Monitoring
The fictitious control performances of the candidate con-
trollers are computed as:

J̃(Kn, dτk
, τk) = max

τj≤τk

∑j

i=0 |ẽ(Kn, dτi
)|2 + γ

∑j

i=0 |u(i)|2
∑j

i=0 |r̃(Kn, dτi
)|2 + ρ

(7)
where γ and ρ are positive numbers. The max function is
used to ensure that the cost function J̃ is non-decreasing
as time progresses.

In Wang et al. (2005), it was proven that this algorithm
leads to a stable closed-loop system if the set of controllers
contains at least one stabilizing controller, i.e. at least the
terminal controller stabilizes the loop.

3. PROBLEMS WITH SAFONOV’S COST FUNCTION

Recently, Manuelli et al. (2007), Dehghani et al. (2007),
and Engell et al. (2007) pointed out deficiencies of the
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cost function proposed in Wang et al. (2005). The key
point is that cost detectability only refers to the situation
where a destabilizing controller is actually in the loop.
When a destabilizing controller is not in the loop, its
associated (fictitious) fitness can be bounded even for long
observation horizons and be lower than the cost of a stabi-
lizing controller. This may cause switching to an unstable
controller even in an ideal situation without measurement
noise or disturbances, what clearly is not desirable. And
this property makes the original cost function unsuitable
for its use in a parameter optimization algorithm because
the shape of the fictitious cost function drastically differs
from the true cost function such that the algorithm con-
verges to destabilizing controllers.

The pitfall of the cost function J̃ (7) results from the fact
that the unstable dynamics of the loop with the non-active
destabilizing controller are not excited due to a rhp-zero
in the transform of the fictitious reference signal at the
location of the unstable pole.

Let us assume that a controller C1 was in the loop up
to time τ and the controller C1 gives a stable closed-loop
system with an unknown plant P(s). We want to compute
the performance of a controller C2 which is destabilizing
for this unknown plant.

From (5) and (6), the relationship between Ẽ2(s) and

R̃2(s) is

Ẽ2(s) =
1

1 + C2(s)P (s)
R̃2(s) = S2(s)R̃2(s)

and the unknown sensitivity function S2(s) is unstable
with (at least) one (unknown) rhp pole p̃. However, as

R̃2(s) = (1 + (C2(s)P (s))−1)Y (s) =
1 + C2(s)P (s)

C2(s)P (s)
Y (s),

the transfer function from Y (s) (the true signal) to R̃2(s)
(the fictitious input) has the same rhp zeros at p̃, so the
unknown unstable dynamics are not excited. Hence, as
long as the destabilizing controller is not in the loop,
the corresponding cost function does not indicate the
instability of the closed-loop system with this controller
because the fictitious error signal remains small. This also
holds when the computations are performed numerically.

4. A NEW APPROACH TO UNFALSIFIED CONTROL

From the above, the key problem with the original cost
function is the use of the fictitious reference signal r̃ and of
the corresponding error signal ẽ in the cost function. While
this approach has the big advantage that these signals
can easily be computed from the measured data, the cost
function only indicates instability if the controller under
consideration is in the loop. The main idea to resolve the
problem is to compute the fictitious error e∗ that would
result with the controller that is evaluated for the real
reference signal r.

4.1 A New Cost Function

With this signal, a new cost function can be defined as
proposed by Engell et al. (2007):

J∗(Kn, dτ , τ) = max
t<τ

‖e∗(Kn, dt, t)‖
2
t + γ‖u(t)‖2t

‖r(t)‖2t + ρ
(8)

where e∗(Kn) is the fictitious error of a candidate con-
troller Kn for the actual reference signal r.

4.2 Numerical Computation of e∗

The open problem with the new cost function of course is
how it can be computed without model information, solely
using measured data. In Engell et al. (2007) the following
scheme was proposed:

The sensitivity function with the candidate controller Ci

is

S̃i(s) =
E∗

i (s)

R(s)
=

1

1 + Ci(s)P (s)
(9)

where E∗
i (s) is the Laplace transform of the fictitious error

e∗i and R(s) is the Laplace transform of the actual reference
signal r that was applied to the loop.

However, we cannot compute e∗i directly since the plant
P (s) is unknown. One possible way is to compute it from
the fictitious reference signal and the fictitious error signal
as defined above for a candidate controller Ci.

S̃i(s) =
Ẽi(s)

R̃i(s)
=

1

1 + Ci(s)P (s)
(10)

or in the time-domain,

ẽi(t) = s̃i(t) ∗ r̃i(t). (11)

The signal of interest is

e∗i (t) = s̃i(t) ∗ r(t). (12)

Using (11), s̃i(t) can be obtained from the measured
data u(t) and y(t) via ẽ(t) and r̃(t). Practically, the
deconvolution can be performed using sampled signals:

R̃i · s̃i = ẽi

with

R̃i =





















r̃i(k − l) 0 0
. . . 0

... r̃i(k − l) 0
. . . 0

r̃i(k − 2)
. . . r̃i(k − l) 0

...

r̃i(k − 1) r̃i(k − 2)
. . .

. . . 0
r̃i(k) r̃i(k − 1) r̃i(k − 2) · · · r̃i(k − l)





















, (13)

ẽi =







ẽi(k − l)
...

ẽi(k)






and s̃i = R̃−1

i · ẽi =







s̃i(0)
...

s̃i(l)







where l is the estimated settling time of the closed-loop
system with the previous controller. Thus

e∗i =







e∗i (k − l)
...

e∗i (k)






= R · R̃−1

i · ẽi (14)

where R is defined similar to R̃i. Similar to the original
cost function (7), we define the new cost function of the
controller Ci as

J∗(Ci, k) = maxH≤k

∑H

j=k−l |e
∗
i (j)|

2 + γ
∑H

j=k−l |u(j)|2

∑H

j=k−l |r(j)|
2 + ρ

.

(15)
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Fig. 2. New Adaptive Unfalsified Control Scheme

4.3 Instability Detection by the New Cost Function

Let us first examine the cost function if the controller
under consideration is actually in the loop. So K̂ was active
from time (τ − l) up to time τ . From r̃

K̂
= r and ẽ

K̂
= e,

s̃
K̂

= R̃−1

K̂
· ẽ

K̂
= R−1 · e

and we obtain e∗
K̂

(t) = e(t) and

J∗(K̂, τ) = max
(τ−l)<τ

‖e(t)‖2(τ−l) + γ‖u(t)‖2(τ−l)

‖r(t)‖2(τ−l) + ρ
.

Thus, J∗(K̂, τ) will detect instability of an active con-

troller K̂.

Now we assume that the controller of interest is not in
the loop. Since the controller C2 is destabilizing, R̃2(s)

Y (s) =
1+C2(s)P (s)

C2(s)P (s) contains (at least) one rhp zero. Its reciprocal
Y (s)

R̃2(s)
= C2(s)P (s)

1+C2(s)P (s) contains (at least) one unknown rhp

pole. Y (s) can be computed from (6), hence

1−
Ẽ2(s)

R̃2(s)
= 1− S̃2(s) =

C2(s)P (s)

1 + C2(s)P (s)

S̃2(s) =
1

1 + C2(s)P (s)
=

Ẽ2(s)

R̃2(s)
=

C−1
2 (s)U(s)

C−1
2 (s)U(s) + Y (s)

.

In the case without measurement noise and disturbances
and as l goes to ∞, the sensitivity function s̃2(t) can be
estimated perfectly from u(t) and y(t) Then the estimated

sensitivity function S̃2(s) contains (at least) one rhp pole.
and the fictitious error will tend to infinity for almost all
signals r(t) as τ →∞ and l →∞.

4.4 A New Scheme for Unfalsified Control

Similar to the traditional scheme, the new scheme of
adaptive unfalsified control Σ(P, K̂) is presented in Fig.
2.

Using the new cost function defined above, the set of con-
trollers can now be adapted by an evolutionary algorithm.

The truncated window data set D(τ−l,τ) is defined by

D(τ−l,τ) = {(r, u, y) ⊂ R× U × Y |

d(τ−l,τ) = (r(τ−l,τ), u(τ−l,τ), y(τ−l,τ))} (16)

In our approach, the adaptive control algorithm consists
of two components:

1. Switching of the Active Controller
The ǫ-hysteresis algorithm is applied for the switching of
the active controller as in the traditional approach. The
algorithm scans whether the performance of the currently
active controller is inferior to the performance of other
controllers in the set. In contrast to the original approach,
the modified cost function is used, computed for the win-
dowed data set D(τ−l,τ). The choice of l is discussed below.

2. Adaptation of the Controller Set
An evolutionary algorithm is used for the optimization be-
cause an evolutionary algorithm manipulates a population
of controllers. The EA will be executed only at certain
instances in time. In our work, the evolutionary algorithm
is a so-called evolution strategy where each individual is
represented by the vector of controller parameters and by
a vector of strategy parameters that control the mutation
strength. For details of the algorithm see Engell et al.
(2007).

In the implementation of the algorithm, two issues have
to be taken care of: window length and excitation. For
the computation of the cost function, a sufficient amount
of data is necessary, and for accurate results, the window
length l should roughly match the settling time of the con-
trolled system. The data in the window must be generated
by one fixed controller in the loop, so the evolutionary
algorithm can only start after a certain period of time after
the last switching. Secondly, the computation will fail if in-
sufficient excitation leads to an ill-conditioned matrix R̃i.
Therefore we restricted the activation of the evolutionary
algorithm to a suitable interval after an excitation of the
system by the change of the reference signal.

5. CONTROL OF A CSTR WITH NONMINIMUM
PHASE BEHAVIOR

As an example of the application to a nonlinear process
we investigate the well-known case study of the control
of a CSTR with the van-der-Vusse reaction scheme. The
parameters of the model are taken from Engell et al. (1993)
and Klatt et al. (1998).

A sketch of the reactor is shown in Fig. 3. The reaction
scheme is

A
k1→B

k2→ C,

2A
k3→ D.

The reactor is operated at a constant holdup, i.e. the
volume of the contents is constant. The manipulated input
u(t) is the flow through the reactor, represented by the
inverse of the residence time (f = Fin/VR). u is in the
range 0 ≤ u(t) ≤ 30h−1 We assume that the temperature
control is tight so that the dependency of the kinetic
parameters on the reactor temperature can be neglected.
Under these assumptions, a SISO nonlinear model results
from mass balances for the components A and B:

ẋ1 =−k1x1 − k3x
2
1 + (x1,in − x1)u

ẋ2 = k1x1 − k2x2 − x2u

y = x2 (17)
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Fig. 3. Continuous Stirred Tank Reactor

where x1 is the concentration of component A, x2 is the
concentration of component B and x1,in is the feed con-
centration of A, assumed to be constant. The parameter
values are k1 = 15.0345h−1, k2 = 15.0345h−1, k3 = 2.324l ·
mol−1 · h−1, x1,in = 5.1mol · l−1.

We assume that the plant P consists of the continuous
stirred tank reactor as described by the above model plus
a delay of 0.02h for the analytic instrument. The controller
structure is a PI-controller defined by

C(s) = kp(1 +
1

Tns
).

First we consider the case of a fixed set of controllers.
The initial set of the controller parameters is given by
the proportional gains Kp = {10, 50, 100} and the in-
tegral times Tn = {0.1, 0.5, 1}. The set of controllers
thus comprises 9 controllers with parameter vectors Θ =
{θi = [kpi

, Tni
]T , i ∈ {1, ..., 9}}. The first active controller

assigned to the loop is θ1 = [10, 0.1]T ∈ Θ. All initial
conditions at τ = 0 are zero and the simulation horizon is
tf = 3.5h. The constant ǫ in the ǫ-hysteresis algorithm is
0.1 and γ = 10−9 and ρ = 0.01 in the new cost function
J∗.

We assume that the reference signal is

r(t) =















0mol · l−1 : 0 ≤ t < 0.15h;
0.7mol · l−1 : 0.15h ≤ t < 1.15h;
0.9mol · l−1 : 1.15h ≤ t < 2.15h;

1.09mol · l−1 : 2.15h ≤ t < 3.5h.

The window length for the computation of the fictitious
error signal is l = 0.3h.

5.1 CSTR without adaptation of the controller set

Since the first active controller is a stabilizing controller
for all three operating points, the ǫ-hysteresis algorithm
keeps the first controller with parameters θ1 in the loop
also for the third operating point rather than switching
to the better controller because the threshold ǫ prevents
the switching as can be seen from Fig. 4. As Fig. 5
shows, the plant dynamics change significantly at the third
operating point and an adaptation of the controller would
be beneficial.

5.2 CSTR with adaptation of the controller set

The evolutionary algorithm is executed three times at
0.45h, 1.45h, and 2.45h. The evolutionary algorithm is a
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standard evolution strategy with adaptation of the search
parameters according to Schwefel (1995) and Quagliarella
et al. (1998). In this application, the size of the population
is equal to the number of candidate controllers µ = n. The
(µ + λ) selection is chosen with µ = 9 and λ = 63. This
means that the best of controllers kept from the set of
the old controllers and 63 offspring. The search space of
solutions Kp × Tn is restricted to [−100, 100] × [0.01, 1]
and the initial strategy parameters are set to 10% of the
ranges of the variables.
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The first evolutionary algorithm was executed by using
measured data d(0.15h,0.45h) obtained with the first active
controller θ1 that was in the loop during t ∈ (0.00h, 0.45h).
The values of the cost functions of all candidate controllers
while the first controller is in the loop are shown in Fig.
6. We can see that costs of the non-active destabilizing
controllers reach large values even though were are not in
the loop. At the first execution of the ES at t = 0.45h,
the evolution strategy returns a new set of controllers for
the first operating point after 15 generations. As shown in
Fig. 7, the new active controller is θ∗p1

= [20.875, 0.371]T .

The evolutionary algorithm was executed for the second
time using the data d(1.15h,1.45h) with the active controller
θ∗p1

. After the second execution of the ES at t = 1.45h,
the evolution strategy returned a new set of controllers for
the second operating point after 14 generations. The new
active controller is θ∗p2

= [20.184, 0.0705]T (see Fig. 7).

The evolutionary algorithm was executed for the third
time using the data d(2.15h,2.45h) with the active controller
θ∗p2

. After 14 generations the ES returned a new set of
controllers for the third operating point. The new active
controller is θ∗p3

= [49.477, 0.105]T (see Fig. 7).

The output and the manipulated variable are shown in Fig.
8. We can see that the active controller is well adapted to
the change of the dynamics of the unknown plant.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a new scheme for unfalsified control with
adaptation of the set of candidate controllers was pre-
sented. It was explained that the traditional cost function
in unfalsified control is not suitable in this context because
it cannot distinguish between stabilizing and destabilizing
non-active controllers, and a new cost function was intro-
duced. The example of a CSTR with nonminimum phase
nonlinear dynamics showed that good performance can be
obtained with the new concept.

There are two important issues with the proposed scheme
that will be addressed in future work: 1. Automatic trig-
gering of the evolution strategy. This requires to estimate
the settling time of the closed-loop system and to monitor
the condition number of the matrices involved online. 2.
While evolutionary algorithms work with a population of
solutions, the diversity of the population is diminished dur-
ing the optimization. So in the end, the set of controllers
will consist of nearly identical controllers, and switching
between these controllers will not make sense any more.
While this is not a problem if the plant dynamics is fixed,
it is not desired if the diversity of the population is seen
as a measure to react to changes of the plant dynamics.
Either a part of the population can be fixed and excluded
from the evolution, or algorithms that maintain diversity
must be used.
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