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Abstract: This paper proposes an adaptive Dynamic Matrix Control (DMC) and its application to boiler-
turbine system. In a conventional DMC, object system is described as a Step Response Model (SRM). 
However, a nonlinear system is not effectively described as a single SRM. In this paper, nine SRMs at 
various operating points are prepared. On-line interpolation is performed at every sampling step to find the 
suitable SRM. Therefore, the proposed adaptive DMC can consider the nonlinearity of boiler-turbine 
system. The simulation results show satisfactory results with a wide range operation of the boiler-turbine 
system.  

 

1. INTRODUCTION 

Model Predictive Control (MPC) refers to a class of control 
algorithms that compute a sequence of control inputs based 
on an explicit prediction of outputs within some future 
horizon (Lee, 1997). The important strengths of MPC is that 
it can consider the constraints of input and output variables 
which often exist in real industrial systems. Now, MPC has 
become a standard tool for process controls. One of the most 
well-known MPC algorithms for the process control is 
Dynamic Matrix Control (DMC), which assumes a step-
response model (SRM) for the underlying system. The 
multivariable DMC controller has been discussed extensively 
in the past by Richalet (1978), Garcia (1986) and Lee (1997). 
DMC has been successfully applied to numerous industrial 
processes, and many commercial software have been 
developed: DMC+, SMC, RMPCT, HIECON, PFC, OPC, etc.  

A Boiler-turbine system provides high pressure steam to 
drive the turbine in thermal electric power generation. Bell 
and Åström (1987) modeled a boiler-turbine system with a 
Multi-Input Multi-Output (MIMO) nonlinear system. The 
severe nonlinearity and wide operation range of the boiler-
turbine plant have resulted in many challenges to power 
system control engineers. Rovnak and Corlis (1991) 
discussed theoretical and practical aspects of DMC, and 
presented simulation results of a supercritical boiler. Sanchez 
and others (1995) presented an application of DMC to steam 
temperature control of fossil power plants, and showed that 
the SISO (Single-Input Single-Output) DMC performs better 
than the PID control. Kim and others (2005) presented the 
simulation results of DMC to boiler-turbine system. In that 
paper, they presented simulation results that the SRM 
obtained from process test data is superior than the SRM 
from linearization of a mathematical model. 

To overcome the nonlinearity of the boiler-turbine plant, 
many kinds of adaptive and artificial intelligence techniques 
have also been applied. Hogg and Ei-Rabaie (1991) presented 
an application of adaptive control, that is, the self-tuning 
Generalized Predictive Control (GPC) to a boiler system. 
Prasad, Swidenbank and Hogg (1991) proposed a predictive` 
control based on a neural network model. Dimeo and Lee 
(1995) used genetic algorithm to enhance the wide range 
performance of PI controller or Linear Quadratic Regulator 
(LQR). Alturki and Abdennour (1999) applied a neural-fuzzy 
control to a boiler-turbine system. They trained neuro-fuzzy 
system with the data from five LQRs which are designed for 
each operating point. Cheung and Wang (1998) presented a 
comparison of fuzzy and PI controller for drum-boiler system, 
and concluded that the fuzzy control system has better 
performance than PID control system especially in setpoint 
tracking.  

In this paper, we proposed an adaptive DMC and its 
application to a drum-type boiler-turbine system in a fossil 
power plant. In a conventional DMC, a single SRM describes 
the dynamics of entire operation range. Therefore, the control 
performance with a single SRM has a limitation for nonlinear 
boiler-turbine system. When SRM is updated on-line to 
consider the present plant condition, the SRM can effectively 
describe the dynamics of nonlinear boiler-turbine system. 

At first, nine SRMs are prepared at typical nine operating 
points without loss of generality. Interpolation with nine 
SRMs is performed at every sampling step to find the suitable 
SRM. Therefore, the proposed adaptive DMC can consider 
the nonlinearity of boiler-turbine system. The simulation 
results show satisfactory results with a wide range set point 
tracking.  
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2. BOILER-TURBINE SYSTEM 

The model of Bell and Åström (1987) is assumed as a real 
plant among various nonlinear models for the boiler-turbine 
system. The model represents a 160 MW oil fired drum-type 
boiler-turbine-generator for overall wide-range simulations 
and is described by a third order MIMO nonlinear state 
equation as follows: 
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The three state variables x1, x2 and x3 are drum steam pressure 
(P in MPa), electric power (E in MW) and steam-water fluid 
density in the drum (ρf in kg/m2), respectively. The three 
outputs y1, y2 and y3 are drum steam pressure (x1), electric 
power (x2) and drum water level deviation (L in m), 
respectively. The y3, drum water level L, is calculated using 
two algebraic equations for αcs and qe which are the steam 
quality (mass ratio) and the evaporation rate (kg/sec), 
respectively.  

The three inputs u1, u2 and u3 are normalized positions of 
valve actuators that control the mass flow rates of fuel, steam 
to the turbine, and feed water to the drum, respectively. 
Positions of valve actuators are constrained to [0,1], and their 
rates of change per second are limited to:  

 
007.0007.0 1 ≤≤− dtdu   (9) 

 
02.00.2 2 ≤≤− dtdu  (10) 

 
05.005.0 3 ≤≤− dtdu  (11) 

 

3. ADAPTIVE DMC WITH INTERPOLATION 

3.1  DMC Algorithm 

For a Single-Input Single-Output (SISO) system, the 
prediction equation is in the following form: 

 

d
kkkkkkk YUSYY |11|1|1 +−++ +∆+=  (12) 

 

where, Yk+1|k is a p × 1 vector representing a prediction of 
future output trajectory, [yk+1|k,…, yk+p|k]T at t=k, and p is the 
prediction horizon; Yk+1|k-1 is a p × 1 vector representing the 
unforced output trajectory [yk+1|k-1,…, yk+p|k-1]T, which means 
the open-loop prediction while the input u remains constant 
at the previous value uk-1;  ∆Uk is an m × 1 input adjustments 
vector [∆uk,…,∆uk+m-1]T and m is the control horizon; Yd

k+1|k is 
a p × 1 vector representing an estimate of unmeasured 
disturbance on the future output; and, S is a p× m dynamic 
matrix containing the step-response coefficients as follows:  
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where si is the amplitude of step response at the i-th sampling 
step. 

To compute the inputs, the following on-line optimization is 
performed at every sampling time: 
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where, Ek+1|k = Yk+1|k - Rk+1|k = [ek+1,…, ek+p]T is a p × 1 error 
vector, Rk+1|k = [rk+1,…, rk+p]T  is a p × 1 vector containing the 
desired trajectory of the future output, Λ and Γ are the 
weights for the weighted Euclidean norm of the 
corresponding vectors. To the above, the following additional 
constraints are added: 
 

max|1min YYY kk ≤≤ +  (15) 
 

maxmin UUU k ∆≤∆≤∆  (16) 
 

maxmin UUU k ≤≤  (17) 
 
where Uk is an m× 1 input vector, [uk,…,uk+m-1]T.  
The resulting problem is a Quadratic Programming (QP) 
problem with the inequality constraints (15)-(17). Once the 
optimal inputs [∆uk,…,∆uk+m-1] are computed, only the first 
input ∆uk is implemented and the rest is discarded. The 
procedure is repeated at the next sampling time. 

In this study, the boiler-turbine system is a Multi-Input Multi-
Output (MIMO) system which has three inputs and three 
outputs. Therefore, the vectors Yk+1|k, Yk+1|k-1, Yd

k+1|k, Rk+1|k and 
Ek+1|k are extended to 3p × 1 vectors and ∆Uk is a 3m × 1 
vector in (12)-(17). The prediction equation of the boiler-
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turbine system is then in the following form: 
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The subscripts 1, 2 and 3 in (20) and (22) are the indices for 
the three outputs and three inputs, and S is a 3p × 3m 
dynamic matrix containing nine step responses as follows: 
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where, every matrix element is  is a 3 × 3 vector containing 
nine amplitudes of the step response at the i-th sampling step. 
The optimization problem (12) is also extended as follows: 
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where, kkkkkk RYE |1|1|1 +++ −= . The constraints vectors in 
(15)-(17) are extended to 3p × 1 and 3m × 1 vectors 
respectively, and considered in optimization (24). 

Table 1. Nine Operating Points 

Operating 
points  [ y1O, y2O, y3O, u1O, u2O, u3O, x3O ] 

OP1 [10, 50, 0, 0.271, 0.604, 0.336, 449.5] 

OP2 [10, 85, 0, 0.402, 0.874, 0.547, 417.5] 

OP3 [10, 120, 0, 0.533, 1.144, 0.757, 383.7] 
OP4 [11.5, 50, 0, 0.284, 0.548, 0.337, 437.9] 
OP5 [11.5, 85, 0, 0.415, 0.779, 0.544, 402.8] 
OP6 [11.5, 120, 0, 0.545, 1.009, 0.750, 363.8] 
OP7 [13, 50, 0, 0.298, 0.506, 0.338, 423.2] 

OP8 [13, 85, 0, 0,0.428, 0.707, 0.541,382.5] 
OP9 [13, 120, 0, 0.558, 0.907, 0.745, 331.6] 

 

3.2  Nine Step-Response Models with Process Test 

In a conventional DMC, a single Step Response Model 
(SRM) describes the dynamics of entire range. The SRM 
plays a key role to the control performance of DMC. 
However, the boiler-turbine system (1)-(8) shows severe 
nonlinearity. Therefore, the control performance with single 
SRM has a limitation.  

The basic idea of this paper is the interpolation of SRMs. 
When SRM is updated on-line to consider the present plant 
condition, the SRM can effectively describe the dynamics of 
nonlinear boiler-turbine system. Without loss of generality, 
several operating points are selected as base cases in this 
paper. The values of 10, 11.5 and 13 [MPa] are selected for 
typical values of drum steam pressure (y1). For electric power 
(y2), 50, 85 and 120 [MW] are selected for typical values, 
while drum water level (y3) is zero [m]. Therefore, nine 
operating points are selected as base cases. Using (1)-(8), the 
steady state values of inputs and states can be calculated with 
given output, y1, y2 and y3. Table 1 shows selected 9 
operating points.  

Kim and others (2005) presented simulation results that the 
SRM obtained from process test data shows better 
performance than the SRM from linearization of 
mathematical model. From this perspective, in this paper, 
SRMs are developed off-line with process test data. A virtual 
experiment was performed to develop the SRM by applying 
step inputs to the plant described by the nonlinear model (1)-
(8). Fig. 1 shows the nine SRMs of operating points given in 
Table 1. 
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Fig. 1. Nine step-response models corresponding to the 
operating points given in Table 1. 
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3.3 Interpolation for On-Line Step Response Model 

In Fig. 1, the nine SRMs show similar patterns although the 
time constants and steady state gains are different. Therefore, 
the interpolation with the SRMs can be applied effectively to 
develop a suitable SRM for on-line application.  

The distance di between output of k-th sampling time (y1(k), 
y2(k)) and i-th operating points are defined as follows 

 

9,...,1
35

)(
5.1

)( 2
)(2)(2

2
)(1)(1 =

−
+

−
= i

yyyy
d iOkiOk

i
  (25) 

 
where, y1O(i) and y2O(i) are the y1 and y2 of the i-th operating 
point, respectively. The two constants 1.5 and 35 in (25) are 
added to normalize the scales of the two outputs.  

Then, the three smallest di in (25) are selected, that is, the 
three close operating points are selected for interpolation in 
this paper. Three “weights” or “firing strengths” are 
determined as reciprocals of di as follows: 

 

i
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Therefore, when (y1(k), y2(k)) matches well with the i-th 
operating point, the weight ωi has larger value. The 
interpolated SRM at the k-th sampling time, SRM(k), is 
calculated as the weighted average of three SRMs as follows: 
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where, SRMi is the step response model for corresponding ωi. 

Therefore, the SRM(k) can cope with the plant nonlinearity 
based on the given nine SRMs. Fig. 2 shows the overall 
configuration of the proposed control system. 
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Fig. 2. System configuration of the adaptive DMC. 

 

4. SIMULATION RESULTS 

The control system and process model were developed with 
Matlab in a personal computer environment. The sampling 
time is determined as 5 [sec]. The prediction p is 600 [sec] 
and control horizons m is 100 [sec], and kkR |1+  is fixed with 
three constant setpoint values. In (24), error and input change 
are weighted for the three outputs and three inputs as follows: 

  

















































=

+

+

+

+

+

+

+

)|1(3

)|1(2

)|1(1

)|1(3

)|1(2

)|1(1

|1

10000
010
0010

kk

kk

kk

T

kk

kk

kk

kk

e
e
e

e
e
e

e  (28) 

 

















∆
∆
∆

































∆
∆
∆

=∆

)(3

)(2

)(1

)(3

)(2

)(1

100
010
001

k

k

k
T

k

k

k

k

u
u
u

u
u
u

u   (29) 

 
In (28), the weights are determined to consider the nominal 
values of three outputs. The three control actions are equally 
weighted as ones. More extensive analysis to tuning the 
DMC is discussed by Dougherty and Cooper (2003). 

Yd
k+1|k in (18) is taken as a constant bias of difference between 

the actual measurement and the open-loop model output. 
Output constraint (15) is not considered in this study and 
input constraints (9)–(11) are implemented in the form of 
(16), and three inputs are constrained in [0, 1] in (17). 

The system is assumed initially to be in steady state with 
operating point 1 in Table 1, y =(10, 50, 0), u =(0.271, 0.604, 
0.336), x = (10, 50, 449.5). The reference is successively 
changed to demonstrate the wide range tracking ability of the 
proposed adaptive DMC as follows: 
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That is, the setpoints of pressure and electric load are 
changed to (13, 120) at t= 0, (10, 50) at t= 400, and (11.5, 80) 
at t=800 successively, while the drum water level is kept to 
zero. The first step change represents abrupt increment of 
reference from operating point 1 to 9 in Table 1, second step 
change represents abrupt decrement of reference from 
operating point 9 to 1, and the third reference is around the 
operating point 5.  

Fig. 3 shows the three outputs of the simulation. In the figure, 
the horizontal axis is time [sec], and the vertical axis is 
0.1*[MPa] for y1, [MW] for y2 and [cm] for y3. The y1 and y2 
track the references within 100 seconds, and y3 tracks the 
reference within 150 seconds in every change. The drum 
water level is increased to 22 when the electric power is 
abruptly decreased, while within 15 in the other changes. Fig. 
3 shows that the proposed adaptive DMC algorithm can 
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successfully applied to the wide range operation of boiler-
turbine system. Fig. 4 shows the three inputs of the 
simulation. The horizontal axis is time [sec] and units for 
input variables are normalized positions of valve actuators for 
the three inputs u1, u2 and u3. 

Fig. 5 represents the dominant operating point which means 
the operating point with maximum weight in (26). The 
horizontal axis is time [sec], and the vertical axis is the 
operating point in Fig. 5. At t= 0, the operating point is 1, 
because the simulation is started at operating point 1. As 
outputs are increased, the dominant operating point is moved 
to operating points 2, 3, 6 and 9 successively. From t= 400, 
the dominant operating point moved to 7, 4, 1 and it moves to 
operating points 2 and 5 from t= 800 successively. 
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Fig. 3. Outputs of the adaptive DMC. 
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 Fig. 4. Inputs of the adaptive DMC. 
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 Fig. 5. Dominant operating points. 

5. CONCLUSION 

This paper proposes an adaptive Dynamic Matrix Control 
(DMC) and its application to a boiler-turbine system. In this 
paper, nine SRMs are prepared at various operating points 
covering the operation of the nonlinear plant. On-line 
interpolation with three dominant SRMs is performed at 
every sampling time to find a suitable SRM. The simulation 
shows satisfactory results with a wide range operation of 
boiler-turbine system. Therefore, the proposed adaptive DMC 
can effectively consider the nonlinearity of the boiler-turbine 
system. When the operating points are selected properly, the 
proposed adaptive DMC algorithm can be widely applied to 
various nonlinear plant control problem. 
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