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Abstract: This paper deals with the robust lateral control to improve vehicle dynamic behavior.
Bounded variations on longitudinal speed, front and rear tire stiffnesses are considered allowing
the vehicle model to form a polytope of linear systems. In fact, the vehicle model depends
affinely on the longitudinal speed and its inverse. Taking this dependence into account, the
polytope is associated with a hyper-trapezoidal domain. This representation of the polytope is
more judicious and finally less conservative than a classical hyper-rectangular one. An algorithm
is proposed to compute a static output feedback controller with reduced gains. The controller
guaranteed a certain level of performance for the vehicle system in terms of stability, settling
time and also robustness under a given class of uncertainty. In order to highlight the performance
of the proposed control algorithm, a numerical simulation is performed.
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1. INTRODUCTION

In automotive industry, considerable efforts continue to be
made to improve the safety and comfort of passengers in
dangerous driving situations by developing modern control
systems. The ultimate goal is still to produce vehicles
that anyone can drive ”safely”, ”pleasantly” and ”as one
wishes”. To achieve this, many control schemes are pro-
posed in the literature. Recently, one popular method
that has attracted more attention is robust control as it
can guaranty both the robust stability and robust per-
formance at the same time [1], [2], [3]. In this paper, a
robust static feedback control design for vehicle lateral
dynamics is proposed by considering lateral velocity as un-
available whereas longitudinal velocity and corner stiffness
are variables. Moreover, to keep the output-feedback gain
small, an algorithm is proposed. In the design, the Linear
Parameter-Varying (LPV) polytopic model is adopted in
order to take into account parametric variations. This
polytopic model, inspired by [6], is quite original because
it takes the affine dependency of the longitudinal speed
and its inverse into account. Then a control strategy based
on static output feedback is proposed to guarantee robust
performances in terms of stability and comfort under crit-
ical driving conditions.
The precise objective of this work is to compute a matrix
K, associated with a robust control law by static output
feedback. The computed feedback gain has to stabilize the
system while conferring to it a certain level of transient
performances (settling time and damping ratio). The con-
troller design procedure proposed in this work is based
on a recent output feedback stabilization technique [4, 5].
Conditions for robust stabilization are expressed in terms
of Linear Matrix Inequality (LMI) involving Parameter-
Dependent Lyapunov Matrix (PDLM).
The paper is organized as follows: in section 2, the consid-

ered model of vehicle is expressed in the state-space with
polytopic uncertainties. Then the precise purpose is de-
fined. A robust output-feedback D-stabilization condition
for such a Linear Time-Varying (LTV) system is proposed
in section 3. Section 4 is dedicated to the algorithm used to
compute a robust controller with reduced gains. It is then
applied to the model of the vehicle presented in section 2.
Some conclusions are finally given in the last section.
Notations : We denote by M ′, the transpose conjugate
of M , by H(M) the Hermitian expression M + M ′. In
the hermitian matrices, notation (•)’ enables to avoid
repeating the symmetric blocks. The Kronecker product is
denoted by ⊗. ||M ||2 is the 2-norm of matrix M induced
by the Euclidean vector-norm, i.e. the maximal singular
value of M . II n is the identity matrix of order n, O is a
null matrix of suitable dimension. Matrix inequalities are
considered in the sense of Löewner i.e. “≺ 0” (“� 0”)
means negative (semi-)definite and ”≻ 0” (“� 0”) positive
(semi-)definite. Small letters are used for scalar numbers
and vectors while capital letters denote matrices or sets. At
last, z̃ is the conjugate of the complex number z = x+ iy.

2. PROBLEM STATEMENT

2.1 LTV vehicle model

In [3], a simplified yaw-plane model of vehicle dynamics
is used to describe the lateral dynamics of a highway
vehicle in the state-space. The model considered in this
work is quite similar. It corresponds to the following LTV
equations:

{

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = Cx(t)

(1)
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where x(t) = [vy r y ψ]′ ∈ IRn is the state vector. vy,
r, y and ψ are respectively the lateral velocity, the yaw
rate, the lateral offset of the vehicle’s center of gravity
(CG) and the heading error of the vehicle as illustrated in
Fig. 1.
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Figure 1. Vehicle variables definition

The front steering angle δf (t) = u(t) ∈ IRm is the com-
mand input.

y(t) = [r y ψ]′ ∈ IRp is the output vector. Indeed,
the lateral speed vy is supposed not available for measure
whereas other state measurements can be done with not
very expensive sensors, such as inertial navigation equip-
ment. Consequently, it comes

C = [ O3,1 II 3 ] .

A(t) ∈ IRn×n and B(t) ∈ IRn×m are respectively the time-
varying state and input matrices given by (2) and (3) with
the nominal parameter values of Tab. 1.

A(t) = A(Cf (t), Cr(t), Vx(t),Λx(t))

=







a11 a12 0 0
a21 a22 0 0
1 0 0 a34

0 1 0 0







(2)

B(t) = B(Cf (t), Cr(t)) = [ b11 b21 0 0 ]
′

(3)

with


























































a12 = −Vx(t) −
2

M
Λx(t)(aCf (t) − bCr(t))

b11 =
2Cf (t)

M
, a11 = −

2

M
Λx(t)(Cf (t) + Cr(t))

b21 =
2aCf (t)

I
, a21 = −

2

I
Λx(t)(aCf (t) − bCr(t))

a34 = Vx(t), a22 = −
2

I
Λx(t)(a2Cf (t) + b2Cr(t))

Vx(t) is the longitudinal speed and Λx(t) =
1

Vx(t)
. In fact,

it is supposed that

Vx(t) ∈ [Vx;Vx] (4)

Table 1. Vehicle Model Data

Parameter Value Description

a 0.9637 m distance from CG to front axle

b 1.7287 m distance from CG to rear axle

M 1419 kg vehicle mass

I 2618 kg.m2 m vehicle yaw moment of inertia

where Vx and Vx are some constant values corresponding
to the minimal and maximum speed which the vehicle can
attain. Consequently, it comes

Λx(t) ∈ [Λx; Λx] = [
1

Vx

;
1

Vx

] (5)

Also, to take road conditions into account, the front and
rear cornering stiffness coefficients (Cf (t) and Cr(t)) such
as:

Cf (t) ∈ [Cf ;Cf ] and Cr(t) ∈ [Cr;Cr] (6)

where Cf and Cr correspond to some dry road conditions
whereas Cf and Cr can correspond to some more critical

road conditions (wet or iced road).

According to (4), (5) and (6), the LTV model (1) is
expressed on a following polytopic form such as M =
[ A B ] belongs to a polytope of matrices M defined by:

M =
{

M = M(θ) = [A(θ) B(θ) ] ∈ IRn×n+m|

M(θ) =

N
∑

i=1

(θi [Ai Bi ]) .

}

(7)

where θ ∈ Θ, the set of all barycentric coordinates:

Θ =











θ =







θ1
...
θN






∈ {IR+}N |

N
∑

i=1

θi = 1











. (8)

Extreme matrices Mi, i = 1, ..., N are the vertices of
M. In a classical way, it can correspond to all possible
combinations of the minimal and maximum values of
Vx(t), Λx(t), Cf (t) and Cr(t), such as:



























































M1 =
[

A(Vx,Λx, Cf , Cr) B(Cf , Cr)
]

M2 =
[

A(Vx,Λx, Cf , Cr) B(Cf , Cr)
]

M3 =
[

A(Vx,Λx, Cf , Cr) B(Cf , Cr)
]

M4 =
[

A(Vx,Λx, Cf , Cr) B(Cf , Cr)
]

M5 =
[

A(Vx,Λx, Cf , Cr) B(Cf , Cr)
]

...
...

M16 =
[

A(Vx,Λx, Cf , Cr) B(Cf , Cr)
]

. (9)

The polytope is then described as a hyper-rectangle with
four dimensions. However, for such a system, this extrapo-
lation is not judicious and quite conservative. Indeed, let us
focus our attention on the hyperbole of Fig. 2. It represents
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the variation of Λx(t) according to Vx(t) in a bounded
domain of variation. It is clear that the choice of the
extreme matrices Mi given in (9) is not judicious. Indeed,
the corresponding extrapolation is the rectangular domain
MNOP . However, it is better to choose the polytope as
small as possible. For this reason, the trapezoidal domain
MORQ shown on Fig. 2. is preferred [6].
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Figure 2. Structure of the polytope

The new vertices are






























































M1 =
[

A(Vx,Λx, Cf , Cr) B(Cf , Cr)
]

M2 =
[

A(Vx,Λx, Cf , Cr) B(Cf , Cr)
]

M3 =
[

A(V Q
x ,ΛQ

x , Cf , Cr) B(Cf , Cr)
]

M4 =
[

A(V R
x ,ΛR

x , Cf , Cr) B(Cf , Cr)
]

M5 =
[

A(Vx,Λx, Cf , Cr) B(Cf , Cr)
]

...
...

M16 =
[

A(V R
x ,ΛR

x , Cf , Cr) B(Cf , Cr)
]

. (10)

with































































V Q
x = 2Vx

√

Vx
√

Vx +
√

Vx

ΛQ
x =

2

Vx +
√

VxVx

V R
x = 2Vx

√

Vx

√

Vx +
√

Vx

ΛR
x =

2

Vx +
√

VxVx

2.2 Precice purpose

The main objective of this work is to compute a matrix
K, associated with a robust control law by static output
feedback, so as to guarantee the system (1) some transient
performances.

Transient performances Some transient performances
are strongly influenced by the location of the state matrix

spectrum of the closed-loop system in the complex plane,
in terms of settling time, damping ratio... One of the
main goal of this work is to place the all spectrum in a
region of the complex plane, noted D. Here, the region D
corresponds to a ellipsoidal matrix inequality-region [7] of
degree 1, described by

D = {z ∈ lC | r00 + r10z + r′10z̃ + r11zz̃ ≺ 0} (11)

where

R =

[

r00 r10
r′10 r11

]

∈ IR2×2 (12)

is a symmetric matrix and r11 ≥ 0 ∈ IR. D corresponds
to a a shifted vertical half plane or a disc centered on the
real axis of the complex plane. When the whole spectrum
of the state matrix is strictly clustered in a specified region
D, the system (or the state matrix) is said D-stable.

Control objective The control system configuration is
shown in Fig. 3. The closed-loop model is then described
by:

{

ẋcl(t) = A(θ)xcl(t) + B(θ)Ky(t) + B(θ)δf (t)
y(t) = Cxcl(t)

(13)

Figure 3. Closed-loop model

Let us consider

Acl = Acl(θ) = A(θ) +B(θ)K C , (14)

the closed-loop state matrix of model (13) and λ(Acl) the
set of the eigenvalues Acl. The precise control objective is
to compute K such as λ(Acl) ∈ D.

3. MAIN RESULT

This part proposes a method to compute K, based on an
oiginal idea of [4], associated with a robust control law by
output feedback for the multivariable linear system defined
in (13), allowing to achieve the objectives presented in the
preceding section.

This idea consists in finding a state feedback and an output
feedback checking the same robust D-stability property
through the existence of the same set of Lyapunov matri-
ces. It amounts to solving the following LMI system

{

R(As,P) ≺ 0
R(Acl,P) ≺ 0

(15)
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where R(Aα,P) (α denoting either s or cl) is a sufficient
D-stability condition for Aα with

Mα(Aα,P) = (r00P + H(r10PAα) + r11A
′
αPAα). (16)

As and Acl are respectively the state and the output
closed-loop state matrices. Acl is defined in (14) whereas
As is given by

As = A + BKs . (17)

where Ks is associated with state feedback.

A sufficient condition checking LMI system (15) is now
proposed.

Theorem 1. Let a system desbribed by (13) with (14).
Let also consider a state feedback matrix Ks which D-
stabilizes the pair (A,B), i.e. λ(As = A + BKs) ∈ D.
Then,

K = G−1H (18)

is an output feedback matrix with reduced gains which
D-stabilizes the system (13) if the LMI optimization
problem (19) is satisfied.

min ǫ
{ǫ,P1,..,PN ,F,G,H,Q>0} (19)

subject to

Zi ≺ 0 ∀i ∈ {1, .., N} (20a)

and S(ǫ,H) =

[

ǫ II p H
′

H Q

]

≻ 0 (20b)

where γ ∈ IR, Pi = P ′
i ∈ IRn×n ∀ i ∈ {1, .., N}, G ∈ IRm×m

is a nonsingular matrix, F ∈ IR(2n+m)×n, H ∈ IRm×p,
Q > 0 ∈ IRm×m and

Zi =

[

R⊗ Pi O

O O

]

+ H {F [Asi
−II n Bi ]}

+H

{[

O2n,m

II m

]

G [−Ks O −II m ]

}

+H

{[

O2n,m

II m

]

H [C O ]

}

≺ 0 . (21)

Remark 1. Minimizing ǫ in (20b) results in minimizing the
norm of H, and consequently the one of K.

Proof :

For any vector of barycentric coordinates θ ∈ Θ, let us
consider the convex combination

Z =

N
∑

i=1

θi Zi .

Since all θi are positive, it comes:

Z ≺ 0 . (22)

Let us define the matrix S = KC−Ks, the condition (22)
becomes with (18):

Z =





R⊗ P
S′G′

O

GS O −(G+G′)



 + H {F [ As −II n B ]} ≺ 0 .

(23)

with























P =

N
∑

i=1

θi Pi

As =
N

∑

i=1

θiAsi
=

N
∑

i=1

θi (Ai +BiKs)

Now define matrix Nf by

Nf =

[

II n A
′
s O

O B
′ II m

]

the left orthogonal complement of [ As −II n B ]
′
.

Then according to the elimination lemma [8], (23) can be
written as follows:

N ′
f





R⊗ P
S′G′

O

GS O −(G+G′)



Nf ≺ 0 . (24)

After simple algebraic manipulations, (24) is equivalent to

Z =

[

R(As,P) r10PB + r11A
′
sPB + S′G′

(•)′ r11B
′
PB −G−G′

]

≺ 0 . (25)

Let consider Nk and Ng defined by











Nk = [ II n O O ]

N ′
g =

[

II n S′
O

O O II m

] such as







Nk [ O II n O ]
′

= O

N ′
g [ S −II n O ]

′
= O

Based on the elimination lemma, (25) is equivalent to:

Nk Ψ N ′
k ≺ 0 (26a)

N ′
g Ψ Ng ≺ 0 (26b)

(26a) is nothing but R(As,P) once developed where (26b)
leads to R(Acl,P). 2

4. ALGORITHM

This section proposes an algorithm in order to compute a
robust control law by static output feedback with reduced
gains. It aims at D-stabilizing the triplet (A(θ), B(θ), C)
of system (13). The resolution method that we propose is
as follows:
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Step 1 : First at all, it is advisable to define matrix R
corresponding to the D-region described by (11) according
to the desired transient performances, in terms of settling
time or damping ratio.

Step 2 : It is then question to compute several state-
feedback Kj

s (j ∈ {1, .., j̄}), each D-stabilizing the pair
(A,B). With this intention, a specified eigenstructure as-
signment technique will be used in this work [9]. It exploits
the degree of freedom on the eigenvalues and eigenvectors.
A genetic algorithm begins with a set of parameters, asso-
ciated with j̄ static state feedback Kj

s . It constitutes the
initial population.

Step 3 : Solve the LMI optimization problem (19)
∀j ∈ {1, .., j̄}, subject to (20a) and (20b).

Step 4 : The best set of parameters corresponding to the
smallest values of κj = ||Kj ||2, is selected and used to
form many others parameters at least better than the old
ones, with recombination and mutation techniques.

Test : Then we can define a convergence criterion which,
if it is satisfied, a priori picks up the ”best”, K (denoted
by K3) in the sense of the criterion κ, and stops the
process. If the convergence test does not hold, an evolution
process based on genetic algorithms is used to improve the
control law, iteration after iteration, until the convergence
criterion is finally satisfied and leads to K3.

5. NUMERICAL ILLUSTRATION

The numerical illustration considers the unstable vehicle
model defined in section 2.1 with the values given in Tab.
1. The computations are performed with Matlab 7.1 and
its LMIToolbox [10] on a PC Pentium 2930 Mhz.

As in [3], the clustering region D considered in this exam-
ple is a vertical half-plane defined by x < −0.65.

In a first time, a nominal case is considered with






Vx(t) = Vx0
= 20m.s−1,

Cf (t) = Cf0
= 56600N.rad−1,

Cr(t) = Cr0
= 63500N.rad−1.

A static output feedback is then computed according to
this linear time-invariant model. It leads to:

KL = [−0.0635 −0.1064 −0.2307 ] .

Then longitudinal speed variations and road conditions are
taken into account such as







Vx(t) ∈ [15m.s−1; 40m.s−1],
Cf (t) ∈ [28000N.rad−1; 56600N.rad−1],
Cr(t) ∈ [31500N.rad−1; 63500N.rad−1].

(27)

The matrix M defined in (7) is then assumed to belong to
a polytope of matrices with 16 vertices.

According to this, two other static output feedback matri-
ces (KR3 and KT 3) are computed by solving the LMI
optimization problem (19) and using the genetic algorithm
recalled in section 4. This algorithm considers an initial
population of 50 individuals (j̄ = 50) and a convergence
criterion defined such as κ = ||Kj ||2 ≤ 10. The first out-
put feedback matrix (KR3) is calculated by considering
the polytopic representation (9) of the LTV model (1),
i.e. a hyper-rectangular domain. The second one (KT 3)
is computed by considering the polytopic representation
(10), i.e. a hyper-trapezoidal domain. It leads to

K3

R = [−0.4444 −0.2740 −3.6275 ]

and
K3

T = [−0.8346 −0.4535 −6.8212 ] .

Remark 2. To emphasize the ”hyper-trapezoidal” poly-
topic representation (10), a larger variation domain of the
longitudinal speed is considered such as:

Vx(t) ∈ [15m.s−1; 45m.s−1].

Cf (t) and Cr(t) are defined as in (27). According to this,
the polytopic representation (10) allows the optimization
problem (19) to be solved with the following output
feedback matrix

K3

T2 = [−0.5752 −0.3718 −5.2912 ]

whereas it is not possible with the representation based on
(9).

Furtheremore, in order to confirm the effectiveness of the
control technique designed in this study, the following
computer simulations are considered. It corresponds to a
slalom test (ISO double lane change). δf changes from 5
to −5 degrees whereas the longitudinal speed (Vx) varies
between 15 and 40 m.s−1. Bad road conditions are also
considered between t = 6 s and t = 8 s. It corresponds
to a reduction about 50% of the front and rear cornering
stiffness coefficients (Cf and Cr).

The resulting state signals vy, r, y and ψ are plotted for
different values of K (KL, K3

T and K3

R). The front and
rear forces (Ff and Fr), the slip angle (β) and the lateral
acceleration (ay) are also represented.

Fig. 4 shows the simulation results for K = K3

T (solid
line) and K = K3

R (dotted line). It emphasizes the quality
of these two output feedback control laws. We can just
remark that K3

T confers a better level of performance,
especially for the lateral offset y. On Fig. 5, the same
maneuver is considered but this time, the static output
feedback associated with matrix K3

T (solid line) is com-
pared to the linear control associated with matrix KL

(dotted line). It is clear that this linear control is not
efficient, notably in case of bad road conditions.

6. CONCLUSIONS

In this paper, a robust output feedback stabilization pro-
cedure for the lateral control of a vehicle is proposed.
The considered vehicle model is LPV and then described
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Figure 4. Vehicle response with K = K3
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Figure 5. Vehicle response with K = K3

T (−) and KL (..)

as a convex combination of linear systems. An algorithm
using recent results of control theory is proposed to design
a robust static output-feedback controller with reduced
gains. It improves the robust performances of the control
law and provides some desired vehicle performances like a
greater maneuverability for passenger vehicles.
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