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Abstract: Resource-transition circuits (RTCs) and siphons are related to the deadlock problem and 
liveness control problem in Petri net models of automated manufacturing systems. This paper will 
concentrate on a particular type of Petri nets called systems of sequential processes with resources (S3PRs) 
and solves the RTC and siphon enumeration problems. A graph-based technique is first used to find all 
elementary RTC structures. Any RTC can be expressed as a union of some elementary RTCs. Then, an 
iterative method is developed to recursively construct all maximal perfect-resource-transition circuits 
(MPCs), which can lead the system to deadlock, from the elementary RTCs. Finally, by the one-to-one 
correspondence between strict minimal siphons and MPCs, a new algorithm is obtained to compute strict 
minimal siphons in S3PRs. 

1. INTRODUCTION 

In the Petri net models of automated manufacturing systems 
(AMS), there are two kinds of structural objects, siphons and 
resource transition circuits (RTCs), which are related to the 
liveness properties of Petri net models (Ezpeleta et al., 1995, 
Chu and Xie 1997, Fanti and Zhou, 2004, Huang et al., 2001, 
Li and Zhou, 2006, Park et al., 2001, Wu and Zhou, 2007, 
Xing et al., 1996, 2005, 2007b). They can be used to 
characterize and prevent/avoid deadlocks.  

A siphon is a place set whose input transition set is included 
in its output transition set. A siphon is said to be minimal if it 
does not contain other siphons. A Petri net is deadlock-free if 
no strict minimal siphon (SMS) eventually becomes empty. 
The deadlock avoidance policy determines the set of minimal 
siphons that can be emptied and introduces additional places 
that constrain the behaviour of the systems.   

A RTC is a circuit in Petri net models of AMS, which 
contains only resource places and transitions. Deadlocks are 
linked to particular RTCs called maximal perfect-resource-
transition circuits (MPCs). The system liveness is 
characterized as no MPCs can reach its saturated states. 

Most Petri net-based methods for avoiding deadlocks in 
AMS’s are to add some control places and related arcs to 
strict minimal siphons or MPCs such that no siphons can be 
emptied (Ezpeleta et al., 1995, Chu and Xie 1997, Fanti and 
Zhou, 2004, Huang et al., 2001, Li and Zhou, 2006, Park et 

al., 2001, Wu and Zhou, 2007) or no MPCs can reach 
saturated states (Xing et al., 1996, 2005, 2007b). 

Although SMSs and MPCs are different structural objects, it 
has been proved that there exists a one-to-one 
correspondence between them in S3PRs (Xing et al., 2007a). 
Deadlock prevention methods based on a siphon or RTC rely 
on the computation and enumeration of SMSs or RTCs. But 
since the numbers of siphons and RTCs are exponential with 
the number of the size of the system (the numbers of 
resources, processed parts, and operations of parts), the 
computation of these structural components can be very time 
consuming. Many different methods have been developed for 
the computation of families of siphons (Boer and Murata, 
1994, Ezpeleta Jeng and Peng Lautenbach, 1987).  

This paper will concentrate on a particular type of AMS, 
which can be modelled by means of S3PR. A graph-based 
technique is developed to solve the MPC enumeration 
problem. A well-known method for elementary circuit 
computation is adapted to get all elementary RTC structures 
in S3PRs. An MPC can be expressed as the union of some 
elementary RTCs. Hence, an iterative method is developed to 
recursively construct all MPCs from the already-found 
elementary RTCs. By the one-to-one correspondence 
between SMS and MPC in S3PR, an algorithm to enumerate 
SMS in S3PRs is obtained.  

The rest of this paper is organized as follows. Section 2 
reviews basic definitions of Petri nets and S3PRs used 
throughout the paper. In Section 3, structures and properties 
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of MPCs and some useful results on siphons and MPCs in 
S3PRs are introduced. The MPC and siphon enumeration 
algorithms are introduced in Section 4. An illustrative 
example is provided to illustrate the presented method and 
algorithm in Section 5.

2. PETRI NET PRELIMINARIES AND S3PR CLASS 

This section is a brief presentation of Petri nets and S3PRs. 
For a complete study of this subject, the reader is referred to 
Murata 1989 and Hruz and Zhou 2007. 

2.1 Basic Definition of Petri Nets  

A Petri net is a 3-tuple N = (P, T, F), where P and T are finite 
and disjoint sets. P is a set of places and T is a set of 
transitions. F�(P�T) (T�P) is a set of directed arcs. 

Let N = (P, T, F) be a Petri net. Given a vertex x P T, the 
preset of x is defined as �x = {y P T � (y, x) F}, and the 
post set of x is defined as x� = {y P T | (x, y) F}. The 
notation can be extended to a set, for example, let X � P T, 
then �X  = x X �x and X � = x X x�. N is pure if �(x, y) F, 
then (y, x) � F. A state machine is a Petri net in which each 
transition has exactly one input place and exactly one output 
place.  

A marking or state of N is a mapping M: P 	 , where   = 
{0, 1, 2, …}. Given a place p P and a marking M, M(p) 
denotes the number of tokens in p at M. Let S�P be a set of 
places. The sum of tokens in all places of S at M is denoted 
by M(S), i.e., M(S) = 
p S M(p). A Petri net N with an initial 
marking M0 is called a marked Petri net or simply, a Petri net, 
denoted as (N, M0).  

A transition t T is enabled at a marking M, denoted by M[t>, 
iff �p �t, M(p)>0. An enabled transition t at M can be fired, 
resulting in a new marking M�, denoted by M[t>M�, where 
M�(p) = M(p) � 1, �p �t\t�; M�(p) = M(p)  1, �p t�\�t; and 
otherwise M�(p) = M(p), for all p P. A sequence of 
transitions � = t1t2…tk, ti T, i = 1, 2, …, k, is feasible from a 
marking M, if Mi[ti>Mi+1, i = 1, 2, …, k, where M1 = M and 
Mi’s are called reachable markings from M. Let (N, M0) 
denote the set of all reachable markings of N from the initial 
marking M0. (N, M0) is bounded iff �k \{0}, �M (N, 
M0), �p P: M(p) � k holds. We assume that in this paper all 
Petri nets are bounded and pure. 

The incidence matrix of N is a matrix [N]: P � T 	 {�1, 0, 1} 
such that [N](p, t) = �1, p �t \ t�; [N](p, t) � 1, p t� \ �t; and 
otherwise [N](p, t) = 0 for all p P and t T. A nonzero |P|-
vector I: P 	 Z is a P-invariant if I � 0 and IT � [N] = 0T, 
where Z is the set of integers. The support of a P-invariant I 
is the set of places: ||I|| = {p P | I(p) � 0}. A P-invariant I is 
minimal if there does not exist a P- invariant I� such that ||I�|| 
� ||I||.  

A nonempty subset of places S � P is a siphon if and only if 
�S � S� , i.e., an input transition is also an output transition of 
S. A siphon is minimal if and only if there does not exist a 
siphon contained in S as a proper subset. A minimal siphon is 
strict if it does not contain the support of any P-invariant in N. 
For short, strict minimal siphon is written as SMS. 

Let X � P T. The subnet generated by X is a Petri net N[X] 
= (PX, TX, FX), where PX = P�X, TX = T�X, FX = F�(X�X).  

A Petri net N is a bigraph in which the vertex set consists of 
the set of places, P, and the set of transitions, T. A path in N 
is a sequence of vertices and arcs �uv = (u = x1, x2, …, xk + 1 = 
v), where xi P T and (xi, xi+1) F, i = 1, …, k, and k is the 
length of �. A circuit is a path in which the first and last 
vertices are identical. A vertex may appear more than once in 
a circuit. Two circuits are same if the sets of their vertices 
and arcs are the same, respectively. A circuit � can determine 
a unique subnet whose vertices and arcs are in the circuit �. 
We call this subnet a circuit too, for simplicity. Hence a 
circuit is a strongly connected subnet. A path is elementary if 
no vertex appears twice. A circuit is elementary if no vertex 
but the first and last appears twice in it. Any a circuit is the 
union of some elementary ones.  

The composition of two Petri nets, Ni = (Pi, Ti, Fi), i {1, 2}, 
via the same elements, denoted as N1�N2, is a Petri net 
N1�N2 = (P, T, F), where P = P1 P2, T = T1 T2, and F = F1

F2. And two marked Petri nets, (Ni, Mi0) = (Pi, Ti, Fi, Mi0), i
{1, 2}, are compatible if �p P1�P2, M10(p) = M20(p). The 

composition of two compatible marked Petri nets (N1, M10) 
and (N2, M20) is a marked Petri net (N1, M10)�(N2, M20) = (P, 
T, F, M0) where N1�N2 = (P, T, F), and �p P1, M0(p) = 
M10(p), and �p P2, M0(p) = M20(p). 

2.2  S3PR Class  

Researchers use Petri nets as a formalism to describe AMS 
and to develop appropriate deadlock resolution methods 
(Ezpeleta et al., 1995, Chu and Xie 1997, Fanti and Zhou, 
2004, Huang et al., 2001, Li and Zhou, 2006, Park and 
Reveliotis, 2001, Wu & Zhou, 2007, Xing, et al., 1996, 
2007b). This subsection reviews the basic concepts and 
properties of the system of simple sequential processes with 
resources (S3PRs), originally developed by Ezpeleta et al. 
(1995) for AMS with flexible routings. A formal definition of 
S3PR is as follows. 

Definition 1: Let � = {1, 2, ..., m} be a finite set of indices. A 
net of the S3PR class is a connected self-loop free Petri net N 
= (P, T, F), where we have the following. 

1)  P = PS P0 PR is a partition such that  

PS = i �PSi, where for each i �, PSi �, and for each i, 
j � , i j, PSi�PSj  �. p PSi is called an operation place. 

 P0 = i � {p0i}. For each i j, p0i p0j. p0i is called an idle-
state place.  
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PR = {r1, r2, …, rn}, n > 0. ri is called a resource place. 

2) T = i �Ti, where for each i �, Ti �, and for each i, j
�, i j, Ti�Tj =�.  

3) i �, the subnet Ni, generated by PSi {p0i} and the 
transition subset Ti connected to these places, is a strongly 
connected state machine, such that every directed cycle 
contains place p0i. 

4) rl PR, there are a unique minimal p-semiflow Yrl {0, 
1}|P| such that {rl} =|| Yrl || PR, P0 ||Yrl|| = �, H(rl)�PS || 
Yrl || � �, and Yrl (rl) = 1. p H(rl),  p�� PR = ��p PR 
={rl}. 

5) ri, rj PR, || Yri|| || Yrj|| = �, and PS = (|| Y�
Rl Pr� rl || 

\{rl}).  

Let N = (PS P0 PR, T, F) be a S3PR. An initial marking M0 
of N is called an acceptable initial marking for N iff 1) �p
P0 PR, M0(p) � 1; 2) �p P, M0(p) = 0.  

Let (N, M0) = (PS P0 PR, T, F, M0) be a marked S3PR and 
a transition t T, let (p)t and t(p) denote the input and output 
operation place of t, respectively, and let (r)t and t(r) denote the 
input and the output resource place of t, respectively. Then �t 
= (p)t (r)t and t� = t(p) t (r) in N. For a given marking M
R(N, M0), t is process-enabled at M if M((p)t)>0, and t is 
resource-enabled at M if M((r)t)>0. In S3PR, only transitions, 
which are resource and process-enabled at the same time, can 
be fired.  

In S3PR, H(r) is actually the set of all operation places that 
uses the resource r. For a given subset of resource places R, 
let H(R ) = r R H(r). 

2.3 MPC in S3PRs 

Definitions 2–4 and Lemma 1-2 are from (Xing, et al., 2007a, 
b). 

Definition 2: A directed circuit � in S3PR N is called a 
resource-transition circuit (RTC) if it contains only resource 
places and transitions.  

Let �[�] and �[�] denote the sets of all transitions and all 
resource places on �, respectively. Let R1 = �[�]. Then � is 
said to be with resource set R1. Let �(R1) denote the set of all 
RTCs with resource set R1. 

A RTC is determined uniquely by its transition set and 
resource place set. Hence, RTC � can be denoted as � = 
<�[�], �[�]>.  

Definition 3: Let R1 be a set of resource places, and �1, �2

�(R1). If �2 contains �1, that is, �1 is a subcircuit of �2, 
denoted by �1 � �2, then the inclusion relation � is a partial 
ordering relation defined on �(R1). The union of any two 
RTCs with resource set R1 is also an RTC with the same 

resource set R1. Therefore, �(R1) is closed under the operator 
“union” and has a unique maximal RTC with resource set R1. 

Definition 4: A RTC � is perfect if ((p)�[�])� = �[�]. Let t
�[�], � is perfect on t if �tj ((p)t)�, tj �[�]. Let �(R1) 
denote the set of all perfect RTCs (PRTCs) with resource set 
R1.  

Let �1, �2 �(R1). Then the union of �1 and �2 is also a PRTC 
with the resource set R1, that is, �1 �2 �(R1). Therefore, 
�(R1) contains a unique maximal PRTC (MPC), denoted as 
�(R1). Then ��  �(R1), � �� (R1). Let   denote the set of 
all MPCs in N.  

A MPC ! is called to be saturated under a reachable marking 
M of (N, M0) iff M((p)�[�]) = M0(�[�]).  

With the above concepts, liveness characterization of S3PRs 
is established and stated as follows (Xing et al., 2007b).  

Lemma 1: A marked S3PR (N, M0) is live if and only if no 
MPC of N is saturated at any reachable marking of (N, M0).   

Let " denote the set of all SMSs in N. In (Xing et al., 2007a), 
a one-to-one mapping between   and " in S3PR is 
established as follows.  

Lemma 2: Let N = (PS P0 PR, T, F) be a S3PR. Define the 
map #:   	 " as follows 

f(�) = �[�] H(�[�] \ � �[�] ), �  , 
then f is a one-to-one mapping from   to ".  
 

3. STRUCTURES AND PROPERTIES OF MPC IN S3PRS 

The perfectness of RTC � implies that if an output transition 
of an operation place is in �, then its all output transitions are 
in �. Let P� = {p PS | | p� | > 1}. p P� is called as a split 
operation place. A split operation place is the first node of 
different processing subroutes. That is, from p, the parts 
processed in the systems can choose different processing 
routes.  

Let � be an RTC in N and t �[�]. If |((p)t)�| = 1, then ((p)t)� = t
�[�]. Hence, to check the perfectness of RTC �, we need 

only to check if p� � �[�] for all p P� � (p)�[�]. As a 
conclusion, we have the following results. 

Lemma 3. Let � be a RTC in N. If �p P� and p� T[�]  
� implying p� � T[�], then � is perfect.

By Lemma 3, if an RTC contains one output transition of a 
split operation place, then it contains all output transitions of 
the place, such RTC is perfect.  

Let � be an RTC in N. Then <�[�], �[�]� � ��[�]> is 
connected and a maximal RTC with the resource set �[�]. 
For simplicity, let $(�) denote <�[�], �[�]� � ��[�]>, that is, 
$(�) � <�[�], �[�]� � ��[�]. Furthermore, if $(�) is perfect, 
then $(�) is MPC, that is, �(�[�]) = $(�). 
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Example 1: Consider S3PR shown in Fig. 1, P� = {p1}, and 
p1
� = {t2, t5, t9}. From p1, there are 3 different processing 

routes for a part. By Lemma 2, a RTC is perfect if it contains 
one transition in p1

�, then it must contain all transitions in p1
�. 

�1 = r4t11r1t10r5t7r3t6r4, �2 = r4t5r1t10 r5t7r3 t6r4, �3 = r4t5r1t10r5t7 
r3t6r4t11r1t10r5t9r1t10r5t7r3t6r4, �4 = r2t2r1t10r5t7r3t3r2, and �5 = 
r2t2r1t10r5t7r3t6r4t5r1t10r5t9r1t10r5t7r3t3r2 are RTCs. The S3PR net 
contains only one split operation place p1. By Lemma 3, if a 
perfect RTC contains one output transition of p1, then it must 
contain its all output transitions. Since P�� �[�1] = �, and 
p1
� �[�5] = p1

�, �1 and �5 are perfect. �2, �3 and �4 contain 
one or more transitions in p1

�, but do not contain all of them. 
Hence they are not perfect. 

�1, �2, and �4 are elementary RTCs, while �3 and �5 are not. 
�[�1] = �[�2] = �[�3] = {r1, r3, r4, r5}, �[�1]� � ��[�1] = {t5, 
t6, t7, t9, t10, t11}. $(�1) = $(�2) = �3 is not perfect. The set of all 
perfect RTCs with resource set �[�1], �(�[�1]), contains 
only �1. Thus �1 is an MPC. That is, �(�[�1]) = �1. �[�5] = 
{r1, r2, r3, r4, r5}, �5 � $(�5) = �(�5), and $(�5) is an MPC. 

Any RTC can be expressed as a union of some elementary 
circuits. Let � be an MPC with resource set R. Then there 
exists a set of k elementary RTCs, %  = {�i, i = 1, 2, …, k}, 
such that � = i K �i, where K = {1, 2, …, k}. If $(�i) is 
perfect, then $(�i) � � by the perfectness and maximality of �. 
If all $(�i), �i %, are MPCs, then �  = i K $(�i).  

t1

p1

p5

p0

r4

p8

p7

r1

p6

t5

t3

t8

t4

t7

t12

p2

t2

p3

r3

r5

t11

p9

t9

t10

r2 p4

t6

 
Fig. 1 A simple S3PR 

 

Because �i % is an elementary circuit, if �[�i] P�� �, 
then �i is not perfect. Let t �[�i] P��. Then for each 
transition tj ((p)t)�, there exists an elementary circuit �j % 
such that tj  �[�j], and � = �j is perfect on t, that is, ((p)t)� 
� �[�]. Hence, for each elementary circuit �i %, there 
exists a subset %i of % such that the union of its all elements 
is a perfect RTC.  

Hence, for each nonperfect RTC � contained in a MPC �, we 
can construct a perfect subcircuit � of �, which contains �. 

4. ALGORITHMS FOR FINDING MPCS AND SMSS IN S3PRS 

RTCs are only related to the transitions and resource places 
of N. A transition without input or output resource place 
cannot be in any RTCs. Actually, a transition in an RTC is in 
PR

���PR. Hence, to establish an algorithm for finding all 
MPCs, we consider the subnet of N, defined as follows. 

Definition 5: Let N = (PS P0 PR, T, F) be a S3PR. The 
resource-transition net of N, denoted as NR, is a subnet of N, 
which is generated by R and PR

���PR, that is, NR = N[PR

(PR
��� PR)].  

In order to compute MPCs in N, all elementary RTCs in N 
must be found in our implementation of the procedure. The 
algorithm proposed by Johnson et al. (1975) is used to find 
all elementary circuits in NR. Johnson’s algorithm is 
extremely efficient and can find all elementary circuits in a 
directed graph in time bounded by O((v + e)(c + 1)) if the 
graph has v vertices, e edges, and c elementary circuits.  

Furthermore, in NR, vertices are transitions and resource 
places. The number of transitions is about equal to the 
number of all operations, |PS|, and the edge number of NR is 
twice the number of transitions. Therefore, there are about 
(|PS| + |PR |) vertices and 2�|PS| edges. 

An MPC can be expressed as the union of some elementary 
RTCs. Hence it can be obtained by an iterative method from 
the already-found elementary RTCs. The general idea to find 
all MPCs can be summarized as follows. 

MPC Enumeration Algorithm:  

Step 1 Find all elementary circuits in NR (that is, all 
elementary RTCs in N) with Johnson’s Algorithm. Let &EC be 
the set of all elementary circuits in NR. 

Step 2   For each � = <�[�], �[�] > &EC, if $(�) is perfect, 
then add $(�) into &EC, and delete all other �* &EC, where 
�[�*] = �[�].  

Step 3   Construct recursively the set %C of RTCs from &EC 
as follows: 

At the beginning, %C = �. 

Add all � &EC into %C.   

For each �1 &EC, and for every RTC circuit �2 %C, if �[�1] 
� �[�2]  �, and �1 �2 is not in %C, then add �1 �2 into 
%C. If $(�1 �2) is perfect, then add $(�1 �2) into %C, and 
delete all other � %C, where �[�] = �[�1 �2].  

Step 4 Delete all RTCs in %C which are not perfect; then, 
for a RTC � %C, if $(�) = �, move it into  ; finally, for �
%C, add �(�)=�(�)� into  , and delete all RTCs with resource 
set �(�) from %C.  
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MPC Enumeration Algorithm can enumerate all MPCs in N. 

Combining the one to one mapping from MPC to SMS in 
Lemma 2 with MPC Enumeration Algorithm, an algorithm to 
find all SMSs is obtained.  

5. AN ILLUSTRATIVE EXAMPLE 

Let us consider S3PR N shown in Fig. 2, which is used to 
model an AMS in (Ezpeleta et al., 1995). MPCs and SMSs in 
S3PR are only related with the structure of Petri net models, 
thus, in Fig. 2, the initial marking is omitted. PR = {p20, p21, 
p22, p23, p24, p25, p26}. N contains only one split operation 
place p7, P� = {p7}, and p7

� = {t6, t11}. Then NR is shown as in 
Fig. 3, where for programming simplicity, ti or pi is 
renumbered as k. 

Step 1: All elementary circuits in NR, found By Johnson’s 
Algorithm, are listed in Table 1. 

Step 2: Test the perfectness of $(�) for each � &EC. Only 
$(�6) is not perfect. �[�2] = �[�4], �[�3] = �[�5]. So delete �i, 
i=1, 2, 3, 4, 5, 7, 8, 9, from &EC, and then add $(�i), i=1, 2, 3, 
7, 8, 9 into &EC. Finally, &EC have 7 elements and &EC = 
{$(�1), $(�2), $(�3), �6, $(�7), $(�8), $(�9)}. 

p1

t5 t20
p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p26

p23

p22

p24

p25

t1

t2

t3

t4

t6

t7

t8

t9

t10 t15

t11

t12

t13

t14 t16

t17

t18

t19

 

Fig. 2 A S3PR Model N 

Step 3: From &EC, construct the set of different RTCs, %C, 
which contains 25 RTCs. They are listed in Table 2, where 
only their resource sets are listed because each of them is 
determined uniquely by its resource set.  

Step 4: Check if a RTC � %C is perfect. Since N contains 
only one split operation p24(5). If � contains �6 (or �4 in Table 
2), that is, �6 � �, but 1��[�], then � is not perfect about p24 
(5). Finally, there are 18 perfect RTCs and they are all MPCs 
in N. 

t2=8

t19

t3=9

t6=10

t7=11

t8=12

t9=13

t11=14

t12=15

t13=16

t14=17 t16=18

t17=19

t18=20

t19=21

p20=1

p21=2

p22=3

p24=5

p23=4

p25=6

p26=7  
 

 Fig. 3. The resource-transition net NR of N shown in Fig. 2. 
 

 
Table 1. All nine elementary circuits in NR shown in Fig. 3 
&EC Elementary RTCs  �[�] $(�) perfect?
�1 1 10 5 21 3 20 6 11 1  1 3 5 6 yes 
�2 2 8 6 9 2 2 6 yes 
�3 2 8 6 19 4 18 7 13 2 2 4 6 7 yes 
�4 2 12 9 6 2 2 6 yes 
�5 2 12 6 19 4 18 7 13 2 2 4 6 7 yes 
�6 3 14 5 21 3 3 5 no 
�7 3 20 6 15 3 3 6 yes 
�8 4 16 6 19 4 4 6 yes 
�9 4 18 7 17 4 4 7 yes 

 
Table 2. RTCs in %C and MPCs in NR shown in Fig. 3 

%C �[�] � 
perfect? %C �[�] � 

perfect?
�1 1 5 3 6 Y �14 7 4 2 3 6 Y 
�2 2 6 Y �15 5 3 6 N 
�3 2 6 4 7 Y �16 5 2 3 6 N 
�4 3 5 N �17 5 7 4 2 3 6 N 
�5 3 6 Y �18 3 4 6 Y 
�6 4 6 Y �19 3 2 4 6 Y 
�7 4 7 Y �20 6 4 7 Y 
�8 3 5 1 2 6 Y �21 4 5 3 6 N 
�9 3 5 1 2 6 4 7 Y �22 4 5 2 3 6 N 
�10 3 5 1 4 6 Y �23 7 3 5 1 4 6 Y 
�11 2 3 6 Y �24 7 3 4 6 Y 
�12 2 4 6 Y �25 7 4 5 3 6 N 
�13 2 3 5 1 4 6 Y    
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5. CONCLUSIONS 

In this paper, the algorithms for enumerating all MPC and 
SMS in S3PR are proposed. A graph-based technique is used 
to find all elementary RTC structures of the subnet generated 
by the sets of transitions and operation places. A MPC can be 
expressed as the union of some elementary RTCs. Hence, an 
iterative method is developed to recursively construct all 
MPCs from the already-found elementary RTCs. By the one-
to-one correspondence between SMS and MPC in S3PR, an 
algorithm to enumerate SMS in S3PR is obtained in this work.  

Future work is to improve the presented algorithms, reduce 
the required time, and perform the computational complexity 
analysis. 
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