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Abstract: This paper proposes a parameter-dependent state-feedback controller for the 2-D
discrete linear parameter-varying (LPV) system with the Fornasini-Machesini (FM) first model.
To find the stabilizing conditions of the system, we first transform the closed-loop system to a
Roesser-type model, and then derive the conditions to linear matrix inequalities (LMIs) using
a parameter-dependent Lyapunov function (PDLF) and a relaxation technique. The simulation
results show that the designed controller is valid and the system asymptotically converges to
the origin.
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1. INTRODUCTION

For several decades, there has been much interest in
the analysis of two-dimensional (2-D) systems, which
has introduced some 2-D dynamic models: for examples,
Fornasini-Machesini (FM) first (Fornasini and Marchesini
[1976], Kar and Singh [2003], Tong Zhou [2006]) and sec-
ond model (Fornasini and Marchesini [1978], Hinamoto
[1997], Ooba [2000]), Roesser model (Roesser [75]) and so
on. These 2-D system theories can be applied not only
to the theoretical areas such as iterative learning control
(ILC) and signal processing but also to the practical sys-
tems such as thermal processes, water steam heating, etc
(Bose [1982], Kaczorek [1985], Du and Xie [2002]).

Many of practical systems have included non-linearities
such as sector-bounded conditions, input saturations or
other non-linear functions. In this case, these systems can
be often modeled in the linear parameter-varying (LPV)
systems. Thus, in the paper, we consider that the 2-D
system has a certain non-linearity, which is described as
the LPV system (Becker et al. [1993], Apkarian et al.
[1995], Apkarian and Tuan [2000], Park and Choi [2001]).
Here, our goal is to propose a method for stabilizing the
2-D LPV system using a parameter-dependent Lyapunov
function (PDLF), where the system is regarded as the FM
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first model and the controller is designed as the state-
feedback. To the best of our knowledge, not much academic
research has been studied on this area.

The resulting conditions for stabilization can be expressed
with linear matrix inequalities (LMIs) using the relaxation
technique in Park and Choi [2001], which is solved by
the LMI toolbox in MATLAB. In addition, the numerical
example shows that the proposed controller is valid.

The paper is organized as follows. Section 2 describes
the system handling in the paper and explains the prob-
lem. Section 3 explains a new approach and designs the
controller for stabilization of 2-D LPV system in detail.
Section 4 shows the simulation results. Finally, section 5
concludes the paper with summarization.

2. PROBLEM FORMULATION

Consider the 2-D discrete LPV system with the FM first
model:

x(t + 1, k + 1) = A1(θt)x(t, k + 1) + A2(θt)x(t + 1, k)

+A3(θt)x(t, k) + B(θt)u(t, k), (1)

where x(t, k) ∈ Rn is the state vector, u(t, k) ∈ Rm is
the control input, and θt ∈ Rr denotes a time-varying
parameter vector of time-varying parameters θt,i with
respect to the index t such that, for i = 1, · · · , r,

θt = [ θt,1, · · · , θt,r ]
T

, (2)

which satisfies the following condition

r
∑

i=1

θt,i = 1, 0 ≤ θt,i ≤ 1, |θt,i − θt−1,i| ≤ δi. (3)
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Then, the system matrices can be described such as

A1(θt) =

r
∑

i=1

θt,iA1,i, A2(θt) =

r
∑

i=1

θt,iA2,i,

A3(θt) =

r
∑

i=1

θt,iA3,i, B(θt) =

r
∑

i=1

θt,iBi. (4)

The objective of the paper is to design a parameter-
dependent state-feedback controller for stabilizing the sys-
tem (1), which is chosen as

u(t, k) = K1(θt, θt−1)x(t, k + 1) + K2(θt, θt−1)x(t + 1, k)

+K3(θt, θt−1)x(t, k), (5)

where θt−1 denotes the one-step-past vector of time-
varying parameters θt.

Substituting (5) into (1), we have the closed-loop system
as follows:

x(t +1, k + 1) = Ā1(θt, θt−1)x(t, k + 1)

+Ā2(θt, θt−1)x(t + 1, k) + Ā3(θt, θt−1)x(t, k), (6)

where

Ā1(θt, θt−1) = A1(θt) + B(θt)K1(θt, θt−1),

Ā2(θt, θt−1) = A2(θt) + B(θt)K2(θt, θt−1),

Ā3(θt, θt−1) = A3(θt) + B(θt)K3(θt, θt−1).

Let

z(t, k + 1)
△
= x(t + 1, k + 1) − Ā1(θt, θt−1)x(t, k + 1),

then (6) can be described as a Roesser-type model:

E(θt, θt−1)

[

x(t + 1, k)
z(t, k + 1)

]

= F (θt, θt−1)

[

x(t, k)
z(t, k)

]

, (7)

where

E(θt, θt−1) =

[

I 0
−Ā2(θt, θt−1) I

]

,

F (θt, θt−1) =

[

Ā1(θt, θt−1) I
Ā3(θt, θt−1) 0

]

.

3. STABILIZING THE 2-D LPV SYSTEM USING THE
PARAMETER-DEPENDENT LAYPUNONV

FUNCTION

Let us consider a candidate PDLF for the 2-D discrete
system such as

V (

[

x(t, k)
z(t, k)

]

) =

[

x(t, k)
z(t, k)

]T

P (θt−1)

[

x(t, k)
z(t, k)

]

, (8)

whose difference is given by

∆V (

[

x(t, k)
z(t, k)

]

) =

[

x(t + 1, k)
z(t, k + 1)

]T

P (θt)

[

x(t + 1, k)
z(t, k + 1)

]

−

[

x(t, k)
z(t, k)

]T

P (θt−1)

[

x(t, k)
z(t, k)

]

< 0,

(9)

where

P (θt−1)
△
= P1(θt−1) ⊕ P2(θt−1),

P (θt)
△
= P1(θt) ⊕ P2(θt),

and ⊕ means the direct sum.

Using (9), in the following theorem, we provide a PDLF-
based stabilizer in terms of parameterized linear matrix
inequalities (PLMIs).

Theorem 1. The closed-loop system (7) is globally asymp-
totically stable, if there exist matrices P̄1(θt), P̄2(θt),
P̄1(θt−1), P̄2(θt−1), W1(θt), W2(θt), W3(θt), K̄1(θt, θt−1),
K̄2(θt, θt−1) and K̄3(θt, θt−1) such that







P̄ (θt−1) (∗) (∗)

F (θt, θt−1)P̄ (θt−1)
E(θt, θt−1)W

T (θt)
+(∗)

(∗)

0 WT (θt) P̄ (θt)






> 0,

P̄ (θt−1) > 0, P̄ (θt) > 0,

(10)

where

P̄ (θt−1) = P̄1(θt−1) ⊕ P̄2(θt−1),

P̄ (θt) = P̄1(θt) ⊕ P̄2(θt),

WT (θt) =

[

WT
1

(θt) 0
WT

2
(θt) WT

3
(θt)

]

.

In this case, the state-feedback controller (5) is given by

K1(θt, θt−1) = K̄1(θt, θt−1)P̄
−1

1
(θt−1),

K2(θt, θt−1) = K̄2(θt, θt−1)W
−T
1

(θt),

K3(θt, θt−1) = K̄3(θt, θt−1)P̄
−1

1
(θt−1).

Proof. From the Lyapunov difference (9), we can derive

the following PLMI: for P̄ (θt−1)
△
= P−1(θt−1), P̄ (θt)

△
=

P−1(θt),

[

P̄ (θt−1) (∗)
F (θt, θt−1)P̄ (θt−1) (2, 2)

]

> 0,

(11)

where

(2, 2) = E(θt, θt−1)P̄ (θt)E
T (θt, θt−1).

Using the following relation for (2,2) of (11),

0≤ (E − WP̄−1)P̄ (ET − P̄−1WT ),

EP̄ET ≥EWT + WET − WP̄−1WT , (12)

and using the Schur-complement with respect to
WP̄−1WT , then we have the resultant PLMIs (10).

Unfortunately, it is extremely difficult to directly solve
the parameter-dependent conditions of the Theorem 1
because it is required to solve an infinite number of LMIs.
Therefore, it is important to reduce the solvability of PLMI
to the solvability of a finite number of LMIs. To do this,
we use the convex relaxation technique in Park and Choi
[2001] with the following assumptions:
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P̄1(θt) =

r
∑

i=1

θt,iP̄1,i, P̄1(θt−1) =

r
∑

i=1

θt−1,iP̄1,i,

P̄2(θt) =
r

∑

i=1

θt,iP̄2,i +
r

∑

i=1

r
∑

j=1

θt,iθt,jP̄2,i,j ,

P̄2(θt−1) =

r
∑

i=1

θt−1,iP̄2,i +

r
∑

i=1

r
∑

j=1

θt−1,iθt−1,jP̄2,i,j ,

K̄1(θt, θt−1) =

r
∑

i=1

θt,iK̄1,t,i +

r
∑

i=1

θt−1,iK̄1,t−1,i,

K̄2(θt, θt−1) =
r

∑

i=1

θt,iK̄2,t,i +
r

∑

i=1

θt−1,iK̄2,t−1,i,

K̄3(θt, θt−1) =

r
∑

i=1

θt,iK̄3,t,i +

r
∑

i=1

θt−1,iK̄3,t−1,i,

W1(θt) =

r
∑

i=1

θt,iW1,i, W2(θt) =

r
∑

i=1

θt,iW2,i,

W3(θt) =

r
∑

i=1

θt,iW3,i.

Corollary 2. (Simplified stabilizing condition via LMI)
The closed-loop system (7) is globally asymptotically
stable, if there exist matrices P̄1,i, P̄2,i, P̄2,i,j , K̄1,t,i,
K̄1,t−1,i, K̄2,t,i, K̄2,t−1,i, K̄3,t,i, K̄3,t−1,i, W1,i, W2,i, W3,i,
Λ, Λi, Σ, Σi and Ξi such that, for all i = 1, · · · , r,
j = 1, · · · , r,





Υ (∗) (∗)
[ Γij ]

r×1
[ ∆ij ]

r×r
(∗)

[ Ωij ]
r×1

[ Πij ]
r×r

[ Ψij ]
r×r



 > 0, (13)

P̄1,i > 0, P̄2,i > 0, P̄2,i,j > 0, (14)

Λ + ΛT ≥ 0, Λi + ΛT
i ≥ 0, (15)

Σ + ΣT ≥ 0, Σi + ΣT
i ≥ 0, (16)

Ξi + ΞT
i ≥ 0, (17)

where

Υ = N0,

Γi1 = M1−i + N1−i,

Ωi1 = M2−i + N2−i,

∆ij =

{

M3−ii + N3−ii i = j,

M̄3−ij + N3−ij i 6= j,

Πij =

{

M4−ii + N4−ii i = j,
M4−ij i 6= j,

Ψij = M5−ij + N5−ij ,

M1−i =











Θ Θ Θ

Θ

[

W1,i W2,i

0 W3,i

] [

W1,i W2,i

0 W3,i

]

Θ Θ

[

1

2
P̄1,i 0
0 1

2
P̄2,i

]











,

M2−i =







[

1

2
P̄1,i 0
0 1

2
P̄2,i

] [

0 0
P̄2,i 0

]

Θ

Θ Θ Θ
Θ Θ Θ






,

M3−ii =















Θ (∗) (∗)
[

BiK̄1,t,i 0
BiK̄3,t,i 0

]





0 (∗)
−A2,iW

T
1,i

−BiK̄2,t,i 0



 (∗)

Θ Θ

[

0 0
0 P̄2,i,i

]















,

M̄T
3−ij =















Θ Θ Θ
[

BiK̄1,t,j 0
BiK̄3,t,j 0

]





0 0
−A2,iW

T
1,j

−BiK̄2,t,j 0



 Θ

Θ Θ

[

0 0
0 1

2
P̄2,i,j

]















,

MT
4−ij =















Θ Θ Θ






A1,iP̄1,j+
BiK̄1,t−1,j 0
A3,iP̄1,j+
BiK̄3,t−1,j 0







[

0 0
−BiK̄2,t−1,j 0

]

Θ

Θ Θ Θ















,

M5−ij =











[

0 0
0 P̄2,i,j

]

(∗) (∗)
[

0 P̄2,i,j

0 0

]

Θ (∗)

Θ Θ Θ











,

Θ = [ 0 ]
2n×2n

,

N0 = (Λ + ΛT ) + (Σ + ΣT ) −

r
∑

i=1

δ2

i (Ξi + ΞT
i ),

N1−i = (−Λi) + (−2Λ),

N2−i = (−Σi) + (−2Σ),

N3−ij =

{

(Λ + ΛT ) + (Λi + ΛT
i ) + (Ξi + ΞT

i ) i = j,
Λ i 6= j,

N4−ii = (−2Ξi),

N5−ij =

{

(Σ + ΣT ) + (Σi + ΣT
i ) + (Ξi + ΞT

i ) i = j,

(Σ + ΣT ) i 6= j.

Proof. With the following vector:

[ I, θt,1I, · · · , θt,rI, θt−1,1I, · · · , θt−1,rI ]
T

,

PLMIs (10) can be relaxed into the LMIs conditions (13)–
(17), which are the discrete-time version of Park and Choi
[2001]. For more details of relaxation, refer to Park and
Choi [2001].

4. SIMULATION RESULTS

We consider the 2-D LPV discrete-time FM first model (1)
under the conditions:
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r = 2, δ1 = δ2 = 1, θt,1 = sin2t, θt,2 = cos2t,

A1,1 =

[

0.1 1.0
0.1 1.5

]

, A1,2 =

[

0.2 1.0
0.5 1.5

]

,

A2,1 =

[

0.1 1.0
0.1 −1.5

]

, A2,2 =

[

0.0 1.0
0.2 −2.0

]

,

A3,1 =

[

0.0 1.0
0.0 1.3

]

, A3,2 =

[

−0.1 1.0
0.0 2.0

]

,

B1 =

[

0.0
1.0

]

, B2 =

[

0.5
1.6

]

.

Assume that the boundary conditions {x(1, k), x(t, 1)|t ≥
1, k ≥ 1} of the state are set to uniformly distributed
random numbers between 0 and 1 except the initial con-
ditions:

x(1, 1) =

[

50
100

]

, x(2, 1) =

[

25
150

]

, x(1, 2) =

[

100
75

]

.

(18)

By the LMI toolbox in the Matlab, solutions of (13) can
be obtained as follows:

K̄1,t,1 = [ 2.055 −1.919 ] , K̄1,t−1,1 = [−43.253 −10.955 ] ,

K̄1,t,2 = [ 0.363 −0.608 ] , K̄1,t−1,2 = [−37.886 −10.477 ] ,

K̄2,t,1 = [−3.664 10.119 ] , K̄2,t−1,1 = [−0.211 −0.140 ] ,

K̄2,t,2 = [−8.982 1.925 ] , K̄2,t−1,2 = [ 0.164 0.102 ] ,

K̄3,t,1 = [ 0.135 0.204 ] , K̄3,t−1,1 = [−12.649 −9.725 ] ,

K̄3,t,2 = [ 0.211 −0.185 ] , K̄3,t−1,2 = [−15.149 −8.502 ] ,

P̄1,1 =

[

113.512 9.945
9.945 7.776

]

, P̄1,2 =

[

99.275 11.969
11.969 7.201

]

,

P̄2,1 =

[

24.254 1.503
1.503 0.872

]

, P̄2,2 =

[

21.669 1.467
1.467 1.002

]

,

P̄2,1,1 =

[

3.143 0.219
0.219 0.109

]

, P̄2,2,1 =

[

1.581 0.102
0.102 0.276

]

,

P̄2,1,2 =

[

9.465 0
0 9.465

]

, P̄2,2,2 =

[

2.054 0.130
0.130 0.120

]

,

W1,1 =

[

77.035 1.923
0.768 6.274

]

, W1,2 =

[

87.760 2.274
7.964 2.387

]

,

W2,1 =

[

2.288 0.148
1.466 0.089

]

, W2,2 =

[

1.657 0.119
0.566 0.043

]

,

W3,1 =

[

23.859 1.495
1.420 0.903

]

, W3,2 =

[

21.044 1.350
1.377 1.034

]

.

Fig. 1 and Fig. 2 show the state trajectory according to
t and k. As shown in the figures, the 2-D LPV system
is asymptotically stablized by the designed parameter-
dependent controller.

5. CONCLUSION

In this paper, we proposed the parameter-dependent state
feedback controller for the 2-D discrete LPV system with
the FM first model. To find the stabilizing conditions of
the system, we first transformed the FM first model to the
Roesser model, and then using the PDLF, the relaxation

technique and constraint elimination, the conditions for
stabilization were reduced to an LMI term. Numerical
examples verified that the designed controller was valid
and the state asymptotically converged to the origin.
As further works, we shall handle the 2-D discrete LPV
system with the FM second model and the output feedback
case.
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Fig. 1. The state trajectory of x1 with respect to t and k.
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Fig. 2. The state trajectory of x2 with respect to t and k.
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