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Abstract: Nonlinear process identification for control is studied. In identification test, the process is only tested 
(excited) along its operating-trajectory that includes various working points and transition periods. In model 
identification, a linear parameter varying (LPV) model is used. First linear models are identified using data sets at 
various working-points exclusive transition data; then the LPV model is identified by interpolating the linear models 
using total data. Sufficient conditions for a unique solution in parameter estimation will be given. Simulation study 
will be used to verify the effectiveness of the method. The identified model is suitable for model predictive control 
(MPC). 

 

1. INTRODUCTION 

Nonlinear MPC has limited industrial applications when 
compared to linear MPC. The main obstacle is the high cost 
of modelling and identification of nonlinear processes. 
Therefore, finding a low cost method in nonlinear process 
identification is very important for industrial applications of 
nonlinear MPC.  
 
A theoretically rigorous solution for nonlinear MPC is to use 
nonlinear models derived from first principles or from 
nonlinear system identification. At present, this approach is 
very often not feasible because of its high cost in modelling 
industrial process units. Developing a first principle model of 
a given industrial process costs a lot of manpower; the 
accuracy of first principle models is often not high enough 
for dynamic control. When system identification is used for 
modelling, excite the plant to cover the whole operation 
range is mostly not permitted because of to too large 
disturbances and of too much production losses. 
 
Although most industrial processes are nonlinear in their 
operation ranges, not a single process will run chaotically in 
its whole operation range. Industrial processes are designed 
to perform certain processing tasks that convert raw materials 
to certain products. Hence they are operated in certain 
“orderly” ways. The orderly way of an industrial process can 
be expressed by the so-called operating-trajectory. This 
concept can be used for both batch processes and continuous 
processes. For a batch process, its operating trajectory is its 
serial and/or parallel operations (called batch program) 
carried out to produce a product. For a continuous process, its 
operating trajectory consists of its typical working points and 
related transition periods.  
 
This work will focus on continuous processes and the study 
of batch processes will be carried out elsewhere. Examples of 
continuous nonlinear processes are: lubricate oil units that 

produce products of different viscosities; polymer plants that 
produce different product grades; electrical power plants that 
operate on different loads. In general, the control of this class 
of processes has two requirements: 1) good regulation 
(disturbance reduction) and optimization of the process 
operation at each working points and 2) fast transition control 
when the process changes working point. In general, 
processes behave so differently at different working points 
(grades or loads) that an MPC using a single linear model do 
not perform well for this class of processes.  
 
In identification for control, it is sufficient to have a model 
that can approximately represent the process behaviour in a 
thin envelop covering its operating trajectory. Therefore, the 
idea of our method is to only test and identify process models 
alone their operating trajectories. This will result in a low 
cost testing method and simple and reliable identification 
computations. A simple linear parameter varying (LPV) 
model structure is used in model identification. Linear local 
models are identified using data sets at corresponding 
working-points; then the LPV model is obtained by 
interpolating the linear models using total data. 
 
The terminology of LPV was first introduced in Shamma and 
Athans (1991) in the study of gain scheduling control. 
Applications of LPV (or gain scheduling) control have been 
reported in the control of electro-mechanical systems; see 
Rugh and Shamma (2000). The work on LPV model 
identification can be found in (Nemani, Ravikanth and 
Bamieh, 1995), Bamieh and Giarre (2002), Verdult and 
Verhaegen (2002, 2005) and Wei (2006). A common 
approach of current LPV methods is to parametrize the 
parameters of the transfer function (or state space) model as a 
nonlinear function of the scheduling parameter. 
 
In Section 2, the identification method is outlined and some 
analysis is given; in Section 3, a simulation study is used to 
demonstrate the method; Section 4 is the conclusion. 
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2. PLANT TESTS AND MODEL IDENTIFICATION 

One convenient way to represent an operating-trajectory 
model is to use the so called LPV model. Given a multi-input 
single-output (MISO) LPV system, denote the m inputs as 
u1(t), ..., um(t) at time t and output as y(t). Assume that the 
inputs and output data are generated by a sampled LPV 
system:  
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is the transfer function from ui(t) to y(t) which is stable, di is 
the delay from ith input to the output, q-1 denotes unit delay 
operator and v(t) is the unmeasured output disturbance. Here 
we assume that the disturbance v(t) is a stationary stochastic 
process with zero mean and bounded variance.   
 
The variable w(t) will be called working-point variable which 
determines the working point of the process operation. It is a 
measured variable from the process or can be calculated from 
measurable process variables. Examples of working point 
variables are: load of a power plant, air feed rate of an air 
separation process, product viscosity of a lubricate oil unit, 
and product grade of a polymer unit.  
 
Remark 1: In the literature the working-point variable w(t) is 
often call scheduling variable and is denoted as p(t). We call 
it working-point variable due to two reasons: 1) it better 
represent the process control environment; and 2) the word 
scheduling can be misleading because scheduling is an 
important layer in total plant control systems in process 
industries which consist of regulatory control layer, advanced 
control layer, real-time optimization layer, scheduling layer 
and planning layer.  
 
 
Denote the parameter vector of the model as )(),...,(1 qGqG m
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In Bamieh and Giarre (2002) and Wei (2006), the authors 
parametrize each parameter in vector )(wθ  as a nonlinear 
function of the working-point variable w(t) and use recursive 
least-squares method to estimate model parameters. For large 
scale industrial control, this approach has some difficulties. 
Long test in the whole process operation range is necessary 
which is often not permitted. Recursive least-squares method 
uses ARX (or equation error) models. It is well known that an 
ARX model with low order has large bias for industrial data 
due to high level unmeasured disturbances. Use high order 
ARX model will leads to too many parameters. 
 

Here we will propose a simpler method: we only test and 
identify the LPV model alone its operating-trajectory. 
Assume that the process operating-trajectory is determined 
by the working-point variable w(t) which is in the range 
  ],[)( hilo wwtw ∈             (3) 
where and are low and high limits of w(t). Then (1), 
(2) and (3) define an operating-trajectory model of an 
industrial process. 

low hiw

 
Identification Test 
 
The test used here only covers the trajectory of the process 
operation.  
 
1) Working point test. At each working point, perform a 

normal identification test for linear model identification 
using small test signals; see, e.g., Zhu (2001). The test 
can be in open loop or in closed-loop. Proper test signals 
(excitation) should be used during the tests.  

 
2) Transition test. Perform normal transition control 

(manually or automatically); add small test signals to the 
inputs during the transition periods.   

 
Industrial experiences have shown that working point tests 
can be applied without problems in linear MPC control. 
Transition tests do not add additional production cost than 
normal transition control because the only difference is the 
addition of small test signals. Therefore, this test approach is 
low cost.  
 
This test approach is very similar to that of Banerjee and 
Arkun (1998) for the identification of nonlinear ARX 
models, except that they do not use test signals during 
transition periods.  
 
LPV Model Identification 
 
1) Identify linear models for each working-point 
Each linear model is identified using the data at each working 
point. Several linear identification methods can be used here: 
prediction error method class, subspace method (Ljung, 
1999) and ASYM (Zhu, 2001). For closed-loop test, one 
needs to use a method that gives unbiased estimate for 
closed-loop data.  
 
Without loss of generality, assume that the process has 3 
working points at 
 
 321 www <<  
 
Denote the 3 identified linear working-point models as 
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The variable w is dropped in the models because they are 
linear at their working-points.  
 
2) Obtain LPV model by interpolation 
Instead of identifying a full LPV model in (1) and (2), we use 
an approximation model to model the process in the 
operating-trajectory as follows 
 

          (5) 
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where )(1 wα ,  and )(2 wα )(3 wα  are weights which are 
functions of the working point variable w(t).  
 
Assume that the process parameters such as gains and time 
constants vary as monotone functions of w(t) between each 
two neighbouring work-points, the simplified model (5) can 
be a good approximation of the original model (1) and (2) 
alone the operating-trajectory. 
 
Remark 2. Several methods developed in the literature also 
use local models. Johansen and Foss (1998) developed a so-
called operating-regime-based identification method. In their 
approach, first principle modelling and system identification 
are combined to solve nonlinear process identification 
problems. First, the selection of operating regimes using 
several characteristic variables is performed. Then local 
(linear or nonlinear) models are estimated using globally 
tested data. The global nonlinear model is obtained by 
calculating the weights. Their aim is to obtain a global 
nonlinear model and the concept of working-point variable is 
not used explicitly. In Banerjee and Arkun (1998), the 
authors suggested the use of testing data sets from various 
working points and transition periods; in model 
identification, they used local linear models to identify 
nonlinear ARX models.   
 
 
A good way to determine the weights is to estimate them 
from total testing data which should include transition 
periods. The weight functions )(1 wα ,  )(2 wα  and  )(3 wα  can 
be parametrized as cubic splines, polynomials, or piece-wise 
linear function. The estimation method is illustrated using 
cubic splines.  
 
Denote a set of knots {k1, k2, …, km} for the working-point 
variable w(t) which are real numbers and satisfy  
 
                      (6) max2min1 ... kkkkk m =<<<=
 
A cubic spline function for )(1 wα  is given as  
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where  are the parameters to be estimated. 
Here m can be called the order of the cubic splines. It can be 
verified that the function (7) is a smooth function. The same 
can be defined for 

] ..., , ,[ 11
2

1
1 mβββ

)(2 wα and )(3 wα . Assume that, for the 
moment, all three weighting functions use the same knots as 
in (6). The knots should span in the process operation range, 
namely 
 
    himaxlomin1   and  wkkwkk m ====              (8) 
 
A good way to knots distribution is to use different knots for 
each weighting functions except at the high/low limits; and 
distribute the knots (nearly) uniformly in range [wmin, wmax]. 
The order of the cubic splines m depends on the number of 
working points and the amount of data. Higher order can be 
used when there are more working points and more transition 
data.  
 
Now, the weighting functions )(1 wα ,  )(2 wα  and  )(3 wα  will 
be estimated using total testing data. Assume that the test 
data set is in one piece obtained by moving the process 
passing all the working points w1, w2 and w3. This is only for 
notation convenience. It is also possible to use different 
pieces of transition test data from discontinuous transition 
tests. Denote the data set as  
 
    ZN = {u1(t), ..., um(t), y(t), w(t) t = 1, 2, ..., N }         (9) 
 
Simulate the three working point models using test data ZN 
as: 
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Denote the parameter vector as the weighting functions as  
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Note that the superscripts in (10) and (11) are used for 
numbering and they are not used as powers. Then the 
parameters of weighting functions can be determined by 
minimizing the output error loss function: 
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Now, the data of working-point variable w(t) is used.  
 
Denote the data vectors related to cubic splines weighting 
functions as 
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Then the output error can be written as 
 
       (15) θϕϕϕ )](ˆ)(    )(ˆ)(   )(ˆ)([)()( 332211 tyttyttyttyteOE −=
 
Because the output error is linear in the weighting 
function parameters, the optimization in (12) is a linear least-
squares problem and has the following solution: 

)(teOE

 
                (16) YTT ΦΦΦ= −1][θ̂
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Some conditions of the data are needed so that data matrix Φ 
has a full column rank and (16) has a unique solution. They 
are listed here: 
 
A1: During the test, the working-point variable w(t) takes a 

number of distinct values in the range [wmin, wmax] that is 
greater than 3 times the order of cubic splines.   

A2: The true process is given in (1) and it is stable for all 
values of w(t) and the three identified working-point 
models are also stable.  

A3: Denote n as the highest order of the working-point 
models. The inputs u1, u2, …, um are persistent exciting 
with an order higher than 2n and not linearly dependent. 

 
Notice the special structure of the data matrix Φ. From linear 
algebra, we know that Φ will have full column rank if the two 
matrixes 
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and  
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both have full column ranks. Because different knots are used 
for each weighting functions, the first matrix will have full 
column rank if condition A1 holds. The second matrix will 
have full column rank if conditions A2 and A3 hold. Hence, 
we have: 
 
Theorem 1. Given the LPV model (5) and assume that the 
same knots are used for all the weighting functions.  Then 
data matrix Φ has full column rank and (16) has a unique 
solution if conditions A1 to A3 hold. 
 
Remark 3. If the linear models are dynamically different, 
meaning that their time constants (or poles and zeros) are 
different, then, the same knots can be used for all the 
weighting functions. This is because that, under the condition, 
the matrix in (18b) will always have a full column rank and 
hence the data matrix in (17b) will always have a full column 
rank. 
  
Trivial Interpolation 
Assume that no tests in transition periods are permitted due to 
economical considerations. The best we can do is to let the 
weightings equal to the distances between the current 
working-point and the working point of the linear models. 
Then the weights can be given directly without estimation: 
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Although very simple, the LPV model given in (19) can give 
reasonably good approximation of the nonlinear process 
alone its operating-trajectory, at least much better than an 
averaging linear model.  
 
The Use of Two Working Point Variables 
Up to now, only one working-point variable is used to 
explain the ideas. Although seems over simplified, the LPV 
model with one working-point variable can properly 
represent many industrial processes for control purpose. If 
not enough, a second working-point variable can be 
introduced, which does not bring any challenge in our 
approach. We believe that the use of one or two working 
point variables will be sufficient to model most of industrial 
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processes along their operating-trajectories, although this 
may not be enough to provide a global nonlinear model.  
 
Assume that two working point variables are used in the LPV 
model  
 
            (20) ],[)(],,[)( ,2,22,1,11 hilohilo wwtwwwtw ∈∈
 
The LPV model (5) can be easily modified to incorporate the 
two working-point variables 
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where ),( 211 wwα , ),( 211 wwα  and ),( 211 wwα are bivariate 
cubic spline functions. Then, the same algorithm just 
introduced can be used to solve the parameter estimation of 
the weighting functions. Note that more working point tests 
and transition tests may be needed for LPV models with two 
working point variables. 
 

3. SIMULATION 

Given a first order process, the transfer function in the 
continuous-time is   
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In the operation range  process gain changes 
nonlinearly more than 10 times and time constant changes 10 
times. Thus a linear model cannot give good approximation 
of the process behaviour in the whole operation trajectory.  

]4 ,1[∈w

 
Here, we will show how well the proposed LPV model can 
approximate the process over the whole operation trajectory. 
For generating input-output data, the process is simulated at a 
sampling time of 1 second. First, noise-free data are used to 
test the approximation capability of the proposed method; 
then noisy data are used to check the noise-reduction 
capability of the method.  
 
In order to obtain linear local models, the process (21) and 
(22) will be tested at three working-points: 
  4  ,25.2  ,1 321 === www
The following test simulation is performed: 
 
- First period: 500 seconds, at working-point w = 1 
- Second period: 1500 seconds, working point w varies 

linearly in time from 1 to 2.25 
- Third period: 500 seconds, at working point w = 2.25 
- Forth period: 1500 seconds, working point w varies 

linearly in time from 2.25 to 4 
- Fifth period: 500 seconds, at working point w = 4. 

 
The input is a GBN (generalized binary noise) signal with 
average switch time of 35 seconds; the output signal is noise-
free. Note that the five test periods do not need to be 
performed continuously as the identification method applies 
equally well to data with discontinuous periods. 
 
Three first order output-error (linear) models are identified 
using the data at working-points w = 1 (first period), w = 2.25 
(third period) and w = 4 (fifth period). The three obtained 
models are perfect because the data are noise-free. Denote the 
LPV model based on the two working-point models as  
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where , and are the three output-error 

models. Then, weighting functions 
)(ˆ 1 qG )(ˆ 2 qG )(ˆ 3 qG

)(1 wα , )(2 wα and 
)(3 wα are estimated using the total data set. The knots for the 

three weighing functions are the same and the order of cubic 
splines is 7.   

 
Figure 1. Step responses of the LPV model. Blue solid lines, 

true step responses; black dashed lines, LPV model; red 
dashdot lines, trivial interpolation 

 

 
Figure 2. Weighting functions of the LPV model. Blue solid 

line, weighting 1; black dashed line, weighting 2; red dahsdot 
line, weighting 3 
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Then, the simulated output is corrupted by a filtered white 
noise as 

4. CONCLUSION 

A method of nonlinear model identification for control is 
proposed. In plant test, working point tests and transition 
tests are used which can be called low cost tests. In model 
identification, a simple LPV model is used to represent 
process behaviour. It consists of linear local models and 
weighting functions. Sufficient conditions for unique solution 
of identified model have been derived. The simulation 
example has shown high approximation power of the 
proposed LPV model. The advantages of the developed 
method are: the LPV model can represent a very large class 
of industrial processes, both continuous and batch; the plant 
tests are low cost because small test signals are used alone 
operating-trajectories; the identification method is simple and 
numerically reliable; and finally, it is easy to assure the 
stability of the model for stable processes.  

 

    )(
9.01

)( 1 te
z
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where e(t) is a white noise sequence and the constant c is 
adjusted at the three working points so that the noise is about 
3% of the noise-free output in power.  
 
The noisy data are used to obtain an LPV models the same 
way as before. The estimated LPV model step responses and 
weighting functions are shown in Figure 3 and Figure 4. One 
can see that good quality LPV model can be obtained using 
noisy data.  
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