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Abstract: This paper proposes a swarm optimized fuzzy logic based power system stabilizer 
(SFLPSS). The fuzzy logic stabilizer membership functions parameters, inputs and outputs 
gains and fuzzy rules are tuned and optimized using particle swarm optimization (PSO) 
technique. Optimization parameters were subject to realistic constraint. The optimization is 
done using a seventh order nonlinear model of a single synchronous machine connected to 
infinite bus bar.  A Guided simulation technique using stability limits check is used to 
accelerate the PSO algorithm search for optimized parameters.  Optimization results in 
reduction of fuzzy rules. Transient tests of the optimized controller performance showed 
better performance over conventional controllers. Copyright © 2008 IFAC  
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1. INTRODUCTION 

Transient stability of power systems is a classical 
dynamic problem. Power generators are 
conventionally equipped with automatic voltage 
regulators (AVRs) to improve their dynamic limits 
and control their terminal voltages. Unfortunately, 
AVRs introduce negative damping torques which 
adversely affect stability (DeMello, et. al. 1969). 
Following disturbances, such as short circuits and 
operating point variations, power systems may 
exhibit unacceptable oscillations or loose 
synchronism. Power system stabilizers are normally 
incorporated to suppress these oscillations and damp 
them quickly (Yu, 1983). Conventional power 
system stabilizers (CPSS) are normally tuned at a 
certain operating point. If the system drifts from the 
original operating point, the performance of a CPSS 
degrades significantly and an expert control engineer 
has to retune the CPSS.  

To overcome fixed parameters controller limitations, 
the application of adaptive control of the machine 
excitation to enhance the transient stability has been 
given much attention in literature (Malik, 1986; 
Wang, 1994; Shen, 2003). The implementation of an 
adaptive power system stabilizer faces some 
technical difficulties. For example, the estimator, 
which is the heart of any adaptive controller, will not 
produce reliable estimates unless the measurements 
are persistently exciting. Furthermore, the 

performance of adaptive controllers during the 
learning phase is usually unacceptable (Wang, 1994). 

Fuzzy-logic control has emerged as a promising 
design technique of power system stabilizers (El-
Metwally, 1995; Hosseinzadeh, 1999; Saleh, 2000). 
Fuzzy logic provides a convenient method for 
constructing nonlinear controllers via the use of 
heuristic knowledge.  However, the design of a 
FLPSS requires the selection of the size of the rule 
base and the shape and parameters of the 
membership functions. Many researchers focused 
their efforts to enhance its’ performance using 
different tuning and adaptation methods. These 
methods include self organizing fuzzy controller 
(Rojas, 2000 and Tung, 2002) and adaptive fuzzy 
tuning methods (Elshafei, 2005) and genetic 
algorithm (Leung, 2004 and Chou, 2006).  

This paper proposes a new particle swarm 
optimized fuzzy logic power system stabilizer 
(SFLPSS) and overcomes the drawbacks of the 
regular heuristic tuning of fuzzy controllers. The 
proposed stabilizer is based on the optimization of 
input membership shapes, controller gains as well as 
fuzzy controller rules.  

After a power system model description given in 
Section 2, Section 3 describes briefly the basis of the 
FLPSS. Section 4 discusses the theoretical 
background of the particle swarm optimization. 
Section 5 Optimizes the FLPSS using the guided 
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PSO. Section 6 compares the Optimized SFLPSS 
with the conventional CPSS under small and large 
disturbances. The conclusions are given in section 7. 
 

2. POWER SYSTEM MODEL 

A power system model represented by a synchronous 
machine connected to a constant voltage bus through 
a double circuit transmission line is considered as a 
case study. The system consists of a seventh order 
nonlinear model of a synchronous generator, a 
governor, a turbine and an automatic voltage 
regulator. Model details are given in Appendix 
A.1,A.2 (El-Metwally, 1995). A schematic diagram 
of the power system is shown in Fig. 1. 

For the sake of comparison, the system was 
configured to switch between different control 
techniques. The main objective is to show the 
improvement of the SFLPSS over the standard 
FLPSS. 

 
Figure 1 Schematic of the power system model. 
 

3. FUZZY LOGIC POWER SYSTEMS 
STABILIZER 

The T-S fuzzy-logic configuration is adapted to 
implement the FLPSS. The T-S fuzzy controller is 
composed of three parts: the fuzzifier, the inference 
engine and the defuzzifier (Elshafei, 2005); see Fig. 
2. The fuzzifier consists of two inputs uses five 
normalized membership functions for each input in 
addition to the input gain. The five memberships 
represent the fuzzy sets variation from negative big 
to positive big (NB, NS, Z, PS, PB) as shown in 
Fig.3. In the current FLPSS, the speed deviation, Δω, 
and active power deviation, ΔPe, of the synchronous 
machine are chosen as the inputs. The input gains are 
named KΔω , KΔp. 
The second part is the inference engine which is 
responsible of generating the fuzzy decision based on 
defined fuzzy rules. The rules used in 
implementation are given in Table 1.  The last part is 
the defuzzifier which consists of fuzzy 25 singletons 

covering the input space. Control signal from the 
FLPSS, Upss, is injected to the summing point of the 
machine AVR; see Fig.1. 

In standard fuzzy logic controllers, of the above 
mentioned structure is simply implemented as a feed-
forward neural network for purposes of simulation or 
hardware implementation. 
 

 
Table 1 Initialization of Fuzzy Logic PSS rules 

 Accelerating Real Power 
Speed 

Deviation NB NS Z PS PB 
NB -1 -1 -1 -0.5 0 
NS -1 -0.5 -0.5 0 0.5 
Z -1 -0.5 0 0.5 1 

PS -0.5 0 0.5 0.5 1 
PB 0 0.5 1 1 1 

 
Figure 2. The basic structure of the T-S fuzzy controller 
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Figure 3 Five membership functions for each input   

 
4. PARTICLE SWARM OPTIMIZATION 

The particle swarm optimization (PSO) method is a 
probabilistic optimization algorithm originally 
proposed by J. Kennedy as a simulation of social 
behavior in (Kennedy, 1995). The algorithm starts 
with a population of potential solutions (particles) to 
the problem under consideration and uses them to 
probe the search space.  A particle, i, is defined as a 
moving point of position coordinate 
Xi=(xi1,xi2,….xiD)T in a D-dimension hyperspace. For 
each particle, each individual of the population has 
an adaptable velocity (position change) 
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Vi=(vi1,vi2,…,viD,)T, according to which it moves in 
the search space. Each individual particle 
performance is evaluated by the objective function. 
The best particle position of the current population, 
the local best, Plb, and the best particle position of all  
previous iterations, the global best, Pgb,   are stored 
and used for adaptation of the new particle speed and 
position(Parsopoulos, 2002 and Clerc,  2002). The 
adaptation of the particles speeds and position is 
given by the following two equations: 

 )()(1 n
id

n
gb

n
id

n
lb

n
id

n
id xPxPvwv −+−+⋅=+ βα   (1)             

11 ++ += n
id

n
id

n
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Where, n is the iteration number, i is current 

particle, d is the current dimension index, α,β are 
bounded positive uniform distribution random 
numbers to control particle global minimum 
approaching mechanism. The speed of the particle is 
bounded to ±Vmax to prevent search explosion. An 
important source of the swarm’s search capability is 
the interactions among particles as they react to one 
another’s findings. The algorithm in pseudo code is 
given as follows: 

 
 

 
 
 
 

5. CONSTRAINED SFLPSS GUIDED WITH 
STABILITY LIMITS CHECK 

The particle swarm optimization algorithm is used to 
optimize six input parameters of the fuzzy controller; 
the three controller gains (kΔω, kΔp, kυ) and three 
parameters to adjust the input memberships. In 
addition it optimizes the 25 output fuzzy singletons 
as well. This sums up to a total of 30 optimzed 
parameters. The generalized bell function and the 
sigmoid functions given in (3) and (4) are used to 
describe the input membership functions as in Fig. 3. 
The use of the sigmoid functions in the upper and 
lower boundary of the variable (-1,1)  is important in 

order to ensure open sets. These open sets are 
necessary to provide the correct fuzzy decision in 
case of input lies outside the minimum and 
maximum range. 
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All membership centroids (c–parameter) are fixed 
and symmetrically distributed over the normalized 
range (-1, 1) while the parameters a, b, τ, are used as 
optimization parameters. Figure 4 shows the effect of 
the selected parameters variations on the shape of the 
generalized bell and the sigmoid functions.  
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Figure 4 Sigmoid and generalized bell functions 
 
Realistic constrains applied to bound the PSO search 
space were; [0.15,0.4]a ∈ , [1,10]b∈ , [5,15]τ ∈ , and  

[ 1,1]ciu ∈ − . [ 1.2,1.2]uk ∈ − . Parameters kΔω , kΔp were 
left unconstrained. 
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The particle swarm optimization tuning of the fuzzy 
power system stabilizer parameters was done using 
nonlinear simulation with guided stability limit 
checks (Al-Hinai, 2007). The developed technique 
facilitates using the PSO in nonlinear simulation 
environments. It provides more robust controller 
design since it considers disturbances based on 
nonlinear simulations rather than linearization 
around selected operating conditions. Moreover, the 
role of guided stability limits is to provide faster PSO 
searching by ignoring the undesired solutions that 
exceeds specified conversions limits thus allowing 
the selection of only stable runs to affect the 
performance objective function. Figure 5 illustrates 
the stability limits set to early detect the divergent 
simulations and saving simulation time. The 
objective function used for the PSO was set as the 
sum square error of the system speed deviation as: 

2
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 Figure 5 Guided PSO using Stability limits check    
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Figure 6 Objective function index conversion   

The optimization was started with 40 birds,  α=2.2, 
β=2.1 and a Vmax=5. The particles inertia weight 
factor w was set to 0.5+rand(.)/2 to provide better 
conversion as adapted in (Bergh, 2004).  The global 
index  optimization index conversion is shown in 

Fig. 6 while the initial and final rules contours  
variations are shown in Fig 7. It worth mentioning 
that this optimization is done for only 2-inputs with 5 
membership functions each, i.e. only 25 rules. This is 
close to 50% less the comenly used number of rules 
in literature which is 49 (El-Metwally, 1995).  

a) Initial rules contours 
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b) Final rules contours 
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Figure 7 a) Initial and b) Final rules contours  

 

6. SIMULATION RESULTS 

The SFLPSS was tested for a sever 3 phase to 
ground test disturbances while working on a full load 
at 0.95 pu. active power and 0.9 power factor lagging 
and compared with the conventional stabilizer CPSS 
(CPSS Malik, 1986). Figure 8 shows the response of 
the system speed deviation with SFLPSS, CPSS and 
No PSS cases. Both controllers have the same 
overshoot however the SFLPSS reaches the steady 
state faster than the conventional CPSSS. This result 
shows the ability of the optimize controller to 
stabilize the power system under sever disturbance.  

The response of the controller was also tested at light 
loading conditions with a 0.3 pu. active power and 
0.8 pf lagging with a disturbance of 0.2 pu. input 
torque at 0.5 second and the disturbance was released 
at 5 sec. This type of disturbance is enough to force 
the system to work near the saturation limits at these 
conditions. The proposed controller also showed a a 
better overshoot reduction and faster response 
compared wit the performance of conventional one 
as shown in Fig.9.   
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A final test was done on the machine at leading 
power factor case (0.3 pu. active power & 0.8 
leading pf) with a similar 0.2 pu. input torque 
disturbance. The speed deviation in Fig.10 shows 
better behavior of the SFLPSS in overshoot 
reduction and in settling time.  

 
7. CONCLUSIONS 

The paper proposes an optimized tuning of the 
fuzzy logic power system stabilizers parameters and 
rules. Both fuzzy inputs membership functions and 
the fuzzy rules were tuned and optimized using 
particle swarm optimization technique. The 
optimization is done using realistic parameters 
constrains. The PSO algorithm is guided with 
simulation stability limits check to speed up search 
and reject unstable responses.  The optimization was 
done for 31 parameters representing the fuzzy 
controller input/output gains and the membership 
functions shapes and 25 rules singleton. This tuning 
enables the use of only 25 rules FLPSS instead of 49 
rules previously reported in literature. Simulation 
results showed better performance in both overshoot 
reduction and settling time of the SFLPSS over 
conventional CPSS at different loading conditions 
and different system disturbances. 
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Figure 8 Response to 3-phase to ground disturbance  

 
Figure 9 Response to 0.2 pu input torque disturbance  

Figure 10 Response to 0.2 pu. input torque 
disturbance at leading power factor  
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APPENDIX 

 

A.1 The generating unit is modeled by a 
seventh ordered model as follows: 
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A.2 AVR model 
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