

Abstract— A Model-Based Development (MBD) Framework is

proposed in this brief-paper. The paper motivates the need for

integrating automotive control system development activities and

describes engineering roles in such an environment. It also

outlines the features of an integrated development environment

designed to support these roles.

I. INTRODUCTION

It is an interesting era for automotive control system

designers. On one hand, control system designers drive

innovation in technologies that provide reduced fuel

consumption, reduced emissions, improved vehicle dynamics,

and active safety. Thus it appears control engineers will play an

important role for the foreseeable future. On the other hand,

control system development is very time consuming and, thus,

in conflict with the industry’s constant push to shorter

development cycles. Consider that engine control development

is on the critical path in automotive development and thus can

constrain vehicle offerings. A challenge, then, for automotive

control system designers is to deliver ever more complex and

mission-critical systems with dramatically increased

productivity.

We have identified model-based development for concurrent

plant and controller engineering as a measure to deliver more

complex systems with quality and improved productivity [1],

[2], [3]. The purpose of this brief-paper is to focus more

specifically on the control system design domain and identify

critical areas for control-system-development-environment

research and development. This paper includes a presentation

of the major development roles (Section II) in a model-based

automotive control system development process. Section III

describes features that should be considered when constructing

an integrated development environment for the roles described

in Section II. We conclude with an illustrative verification and

validation use-case for the integrated development environment

in Section IV.

II. DEVELOPMENT ROLES

The control system development process we consider is shown

in Figure 1. This is a generalized and abstract rendition of the

‘V’ process that is familiar to automotive engineers. Here we

map model-based development roles onto the process. The

basic principle is to use models at each stage of ‘left-side’

development to a) confirm prior to advancing to the next stage

and b) establish test scenarios (and expected behavior) for

‘right-side’ verification and validation [4].

Fig.1. Automotive Control System Development Process [3]

Fig. 2 Model Based Development Framework

There are four major activities in control system development.

Each activity is supported by many services in the MBD

Framework. The model and data instances are managed as

shown in Fig.2.

A. Control Design

The control engineer establishes the externally driven

product and project requirements, confirms traceability

between requirements and design elements, assists with change

impact analysis, and confirms that all requirements are

validated or verified. He sets the architecture of the control

system, specifies plant model behavioral phenomena needed

for design and confirmation, and cascades system requirements

to sensor, actuator, and control algorithm developers. The

Improving Model-based Design for Automotive Control

Systems Development

Akira Ohata, Toyota Motor Corporation,

Kenneth R. Butts, Toyota Motor Engineering and Manufacturing, North America

Control System

Development Activities

Model/Data

Management

Database

Model/Data/Process/

Architecture/Schedule

Process

Management

Requirement

Management

Analysis &

Methodologies

Model

Execution

Control Design

Calibration

Verification &

Validation

Plant Modeling

Model/Data

Management

Database

Model/Data/Process/

Architecture/Schedule

Process

Management

Requirement

Management

Analysis &

Methodologies

Model

Execution

Control Design

Calibration

Verification &

Validation

Plant Modeling
Services

Model/Data Management

Model

Architecture

Model

Architecture

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 1062 10.3182/20080706-5-KR-1001.4053

 system engineer will make extensive use of open and

closed-loop simulation and analysis. He uses model-based and

heuristic control synthesis techniques to create an “executable

specification” model of the desired software module behavior.

A. Plant Modeling

The plant modeler develops models of the physical plant to

be controlled. Each model should be ‘purpose-built’ to support

the engineering task at hand: requirements analysis, control

design, or verification and validation.

B. Calibration

The calibration engineer sets the tuning parameters within

the control system to meet performance criteria and confirms

(validates) the system from a customer perspective. Note that

even though calibration is traditionally executed at the last

stage of control system development, some level of calibration

is required in a model-based process in order proceed from

‘left-side’ design stage to stage.

C. Verification and Validation

The Verification and Validation engineer designs and

executes test-plans to confirm the development at each stage of

process. These test-plans will be model-based wherever

possible because model-based testing admits more exhaustive

testing using coverage-based and extended scenario techniques,

scenario and results reuse, automation, and formal verification.

III. FEATURES FOR A CONTROL SYSTEM DEVELOPMENT

ENVIRONMENT

Automotive control system development is a large and

inter-disciplinary effort, thus an effective control system

development environment should provide project collaboration

support as well as domain specific engineering and project

management methods. Moreover, the environment should

provide integrated access to past project work products to

facilitate consistency and reuse across the product-line. In this

section we outline useful development environment features in

seven categories. Features marked with (D) indicate that, in our

judgement, significant development is needed while features

marked with (I) require mainly framework integration.

A. Process and Project Management

Process and Project Management features to be addressed

include:

• Requirements Management and Analysis (I)

• Process Definition (I)

• Process Integration (I)

• Project Planning and Scheduling (I)

• Project Status Reporting (I)

B. Plant Modeling

Plant Modeling features to be addressed include:

• Conservative Modeling Methods (D)

• Statistical Modeling Methods (I)

• Model Simplification Methods (D)

• Parameter Identification Methods (I)

• Integration of Physical and Statistical Models (D)

• Solvers for Acausal Model formulations (D)

• Model Confirmation & Validation Methods (D)

C. Control Design

Control Design features to be addressed include:

• Control architecture approach (I)

• Model-based Control Synthesis Methods (I)

• Control simplification methods (D)

• Controller Quality Evaluation Methods (D)

• Controller Specification Methods (I)

• Data Dictionary (I)

• Automatic Code Generation Methods (I)

D. Calibration

Calibration features to be addressed include:

• Test facility specification and management (I)

• Test and Measurement Automation Methods (D)

• Optimization Methods (I)

• Empirical Modeling Methods (I)

• Design-of-Experiments Methods (I)

• Calibration Quality Evaluation Methods (D)

E. Verification and Validation

Verification and Validation features to be addressed include:

• Open-Loop Verification Services (D)

• Closed-Loop Verification Services (D)

• System Assertion Definition (D)

• Verification and Validation Manager (D)

• Verification and Validation Platform (D)

F. Model and Data Management

Model and Data Management features to be addressed include:

• Global Repository Services (I)

• Versioning Services (I)

• Model Architectural Services (D)

• Configuration Management Services (I)

• Model Compilation Services (D)

• Search and Query Services (I)

G. Model Execution

Model Execution features to be addressed include:

• Model- (I), Software- (D), Processor- (D), and

Hardware- in-the-Loop (I) Services

• Reusable Test-plans (D)

• Distributed Computation Services (D)

• Automated Execution Methods (D)

• Simulation Monitoring and Evaluation Services (I)

IV. SAMPLE DEVELOPMENT ENVIRONMENT USE CASE:

VERIFICATION AND VALIDATION

In the following, we partially describe, via use case

format, how an engineer could use the integrated framework

to verify a newly designed control algorithm.

In our architecture, we call the development activities

mentioned earlier ‘domains’. A domain consists of people,

processes, methods, work products, and templates / standards.

Referring to Figure 3, the Domain Manager is responsible for

coordinating the flow of information within the domain and at

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1063

the domain interface to the core framework. This component

diagram also shows the primary services to be accessed by the

V &V domain.

Fig. 3 V & V Framework Component Diagram

Figure shows the top-level use case diagram for the V & V

domain. The use case describes the activities of the Customer,

Team Lead, Field Specialist Engineer, and V & V Engineers.

Fig. 4 Top-level Use Case: V & V Domain

Once the V&V Request has been accepted, then it must be

performed. This ‘Perform V&V’ use case is still high level, and

is comprised five sub-use cases. These five use cases are:

1. Gather Requirements and Plan

2. Create Test Materials

3. Perform Testing

4. Analyze, Verify, and Report Results

5. Package, Document, and Release

Note that these steps could, in-turn, have further sub-use

cases. In general, the order of the sub-use cases (left to right)

reflects the ordering that the use cases should be completed.

One of these sub-use cases, ‘Perform Testing’, is shown in

Figure 5. For this step, engineers execute the V&V activities

while confirming that the results are valid (not that the work

product passes, but that the test results are not flawed.)

Fig. 5 Perform Testing Use Case

Finally, in Figure 6, we reach the leaf nodes in this portion of

the use case structure. At this point we can introduce the

sequence diagram to show actual transactions between actors

and elements in the framework. Figures 7 and 8 are the

sequence diagrams for ‘Execute Tests’ and ‘Check

Diagnostics’ respectively.

Fig. 6 Perform Functional Testing Use Case

Fig. 7 Execute Tests Sequence Diagram

We notice that the sequence diagrams reference use cases

multiple times. Consider the ‘Manage Items’ use case: this

action contains interaction with the core framework database

that allows multiple users to share their work in a collaborative,

and geographically distributed development environment. In

general, this action involves creating, reading (i.e,. fetching a

copy of something), updating (committing and tracking the

modifications), and deleting items. ‘Update Project Status’ is

another common use case that can be seen in Figure 8. This

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1064

action updates the project status for coordination and

monitoring purposes thereby further facilitating distributed

project development and project management. Thus, we can

see an example of how the V&V engineer provides information

to the Team Lead who may be interacting with the framework

via the ‘Process Management’ service.

Fig. 8 Check Diagnostics Sequence Diagram

As we elaborate the various use cases, we can collect all of

the reusable (typically low-level) use cases into a special

container called ‘Common’. Figure 9 shows all of the common

use cases that we have collected for the V&V Domain.

Inspection reveals that some (e.g. ‘Use COTS Tool’) are

domain specific and others are more general (e.g. ‘Arrange

Meeting’). The more general use cases will likely be collected

into a ‘Framework Common’ container. Regardless, the

common container indicates opportunities for data / service

integration and automation across the framework.

Fig. 9 V&V Common Use Cases

Acknowledgements

The authors would like to acknowledge Emmeskay, Inc. who

are helping establish the user requirements for the integrated

development environment described in this paper. In particular,

Section IV is taken almost verbatim from their work.

References
[1] T. Ueda, A. Ohata, “Trends of Future Powertrain Development and the

Evolution of Powertrain Control Systems,” in Proc. 2004 SAE

–Convergence Conference, October, 2004.

[2] A. Ohata, K. Butts, “Towards a Concurrent Engine System Design

Methodology,” Proc. American Control Conference, Portland, OR, June

2005.

[3] T. Ueda, “Innovative Development Methodology Based on the Toyota

Way,” Internationales Wiener Motorensymposium, 2007.

[4] K. Butts, J. Cook, C, Davey, J. Friedman, P. Menter, S. Raman, N.

Sivashankar, P. Smith, and S. Toeppe, “Automotive Powertrain

Controller Development using CACSD,” Chapter15, Perspectives in

Control Engineering Technolgies, Applications, and New Directions, T.

Samad, editor, Wiley-IEEE Press, 2000.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1065

