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Abstract: We propose in this paper how Fisher discriminant analysis can be applied for
differentiating classes of semiconductor data from different tools or chambers. The tool and
chamber matching analysis can be useful not only from a process characterization standpoint,
but also for identifying the proper fault detection and classification strategy. If the FDA analysis
shows that the chambers or tools are not matched, it is likely that either preventive maintenance
will be needed, or a separate fault detection and diagnosis model will be required for each tool
or chamber. Alternatively, if the match fraction is large enough, a global model should be
considered for monitoring a plurality of tools or chambers to reduce the model maintenance
effort. Contribution analysis is also applied to identify variables responsible for tool mis-
matching.
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1. INTRODUCTION

An important characteristic of semiconductor fabrication
is the rather significant amount of multiplicity present in
both the devices being produced and the machines that are
used to produce them. For example, multiple products are
manufactured in the same facility, and the product mix
is always changing as new technologies are introduced.
Wafers for each product undergo multiple operations to
create devices that meet certain electrical specifications.
At any given operation, multiple processing tools are often
available in order to meet productivity requirements based
on customer demand. Additionally, many of these tools
contain multiple processing chambers that have their own
independent subsystems for processing individual wafers.

During the manufacturing cycle, all of these sources of
multiplicity create obstacles to the fabrication of a con-
sistent product from lot to lot and wafer to wafer. While
multivariate analysis with principal component analysis
(PCA) has been applied to provide early warnings when
product or process information no longer agrees with his-
torical behavior, the multiplicity present in the factory
creates challenges related to the creation and maintenance
of the multivariate analysis models. In the most extreme
case where a unique model would be needed for every
product in the fab, every critical operation in the line,
every tool at each operation, and every chamber in those
tools, the model maintenance effort required would be
overwhelming. In response to these challenges, we present
in this paper how Fisher discriminant analysis (FDA) can
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be used to characterize the differences between data from
multiple factory contexts and alleviate the risks of model
adaptation. The results will identify tools that are not
adequately matched, and indicate when the multiplicity
problem can be reduced by sharing model parameters
across contexts.

Previous work has been published in which PCA scores
have been used for characterizing differences between pro-
cessing chambers, Skumanich et al. [2004], Smith et al.
[2004]. However, we recommend FDA analysis in this work
because it has the objective of finding the optimal direc-
tions to discriminate between the different classes of data.
In contrast, PCA generates a model by identifying the
main sources of variation, taking the entire data popula-
tion as a whole regardless of the class contexts. While a re-
view of the PCA scores may facilitate discrimination when
the class groupings are not known a priori, Krzanowski
[1979], FDA will be more reliable for discrimination.

The organization of this paper is as follows. The next
section presents the basics of the FDA algorithm and
provides an illustrative example of its use. Section 3 then
provides case study simulation results for etcher chamber
matching and rapid thermal anneal chamber matching.
The last section gives conclusions.

2. FDA ALGORITHM

As described in the next few subsections, the FDA algo-
rithm as used for comparing multiple classes of data is
broken down into three steps. The first step is to define the
classes that are to be compared with one another and to
characterize the multivariate distributions of each of those
classes. Next, the optimal directions for discriminating
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between the classes are calculated, thus establishing the
Fisher discriminant rule. Finally, the maximum likelihood
rule is applied to create a single metric that can be used to
assess the similarities and differences between the classes.

2.1 Class Definition and Distributions

Semiconductor manufacturing facilities make multiple
products on multiple tools. There are also many tools that
have more than one chamber and adaptive models may
be required to track the normal drift of certain processes.
In the algorithm that follows, the term ‘class’ is used to
distinguish between each of these subgroups. Each class
would then be described by its own unique set of statistics
that describe its multivariate distribution.

Data that follow the multivariate normal distribution can
be described by the variable means and covariance matrix,
or equivalently by the variable means, variable standard
deviations, and correlation matrix. These quantities are
required in order to build a principal component analysis
model that can then be used for process monitoring using
Hotelling’s T 2, the squared prediction error (SPE), or the
combined index (ϕ), each with their respective control
limits, Jackson [1991], Nomikos and MacGregor [1995],
Yue and Qin [2001].

If a set of tools perform a certain operation, then each
tool could be considered an individual class. Let class k
be used to describe one of those tools. A raw data matrix
gathered from historical operation of that tool would be
given as X0

k ∈ R
nk,×m, with nk samples and m variables.

The variable means, bk, and variable standard deviations,
σk, would be used to scale the data matrix to zero-mean
and unit variance, thus giving the normalized matrix Xk.
The correlation matrix would then be calculated by

Rk =
1

nk − 1
XT

k Xk. (1)

Thus, the multivariate distribution for tool k is parame-
terized by bk, σk, and Rk. The subsequent application of
FDA will therefore indicate the level of similarity between
all tools in the set.

Figure 1 graphically illustrates this and the remaining
steps in the analysis procedure. For this example data
set, data are artificially created for two variables and two
classes. The leftmost plot shows a scatter plot with •’s
for data from class 1 and ◦’s for data from class 2. The
means for classes 1 and 2 are then plotted with the � and
�, respectively. The standard deviations and correlation
matrices, which complete the parametrization of the dis-
tributions, are then used to construct the elliptical regions
that are centered about the means for each class. In the
figure, these ellipses are based on a 99% confidence limit
and are denoted with dotted and dash-dotted lines for
classes 1 and 2, respectively. The subplot on the right and
the remaining four elements of the leftmost plot will be
described in the subsections that follow.

2.2 Fisher Directions and the FDA Rule

Once the means, standard deviations, and correlation
matrices have been collected for a set of c chamber classes
or adaptive model classes, Fisher discriminant analysis can

then be applied, Chiang et al. [2000], Hardle and Simar
[2003]. Weighting all classes equally, the overall mean
vector for the entire population is calculated by

b̄ =

c
∑

k=1

bk

c
. (2)

The overall mean can alternatively be defined by taking
into account the number of samples in each class, but in
this work we assume that all classes make an equivalent
contribution. For our example displayed in Figure 1, the
overall mean is depicted with a ⋆ situated directly be-
tween the two class means.

The within-class scatter matrix for class k, which is equiv-
alent to the covariance of that class, is then determined
by

Sk(i, j) = Rk(i, j)σk(i)σk(j) for all i, j (3)

where Sk(i, j) denotes row i and column j of Sk.

Summing up all of the within-class scatter matrices for all
classes then gives the overall within-class scatter matrix,

Sw =

c
∑

k=1

Sk, (4)

which quantifies the typical correlation between the vari-
ables when considering the classes separately. Conversely,
the between-class scatter matrix provides a measure of how
the classes relate to each other as

Sb =

c
∑

k=1

(bk − b̄)(bk − b̄)T . (5)

The within-class and between-class scatter matrices are
respectively depicted with the solid ellipse and solid line
in the leftmost plot in Figure 1. Because only two classes of
data are being compared, the between-class scatter matrix
is depicted by a line, whereas an additional class of data
would be represented by an ellipse.

The next step in the procedure is to find the Fisher optimal
discriminant directions, which are based on maximizing
the ratio of the between-class scatter to the within-class
scatter,

J(a) =
aT Sba

aT Swa
. (6)

This is equivalent to the following generalized eigenvalue
problem that is solved for the Fisher directions using

S−1
w Sba = λa. (7)

Several Fisher directions corresponding to the significant
generalized eigenvectors can be used to separate the classes
by projecting the original data for a sample, x0, into the
Fisher space using the linear transformation

y = AT x0. (8)

where columns of A are composed of the generalized
eigenvectors. It follows that the means and covariances of
the transformed data are represented by

ȳk = AT bk (9)

and
Ωk = AT SkA, (10)

respectively. The transformed data from our example
problem are represented in the plot on the right in Fig-
ure 1. As shown, the original bivariate data have been
transformed to a single variable in the Fisher space, with
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the probability densities generated from the means and
variances from Equations (9) and (10). The two classes
are clearly separable, with only a small region of overlap
between them that is shaded in the figure.

Given a new data point, y, the Fisher discriminant rule
classifies it into class j according to

j = arg min
k

| y − ȳk |, (11)

which is equivalent to finding the class mean in the Fisher
space that has the smallest Mahalanobis distance from the
sample of interest. This rule is depicted by the vertical
line with •’s at its endpoints in the plot on the right
in Figure 1. The Fisher discriminant rule would classify
samples projected to the left of this line into class 1, while
samples projected to the right would be classified into class
2.

2.3 Maximum Likelihood Rule and Class Overlap

In contrast to the Fisher discriminant rule, the maximum
likelihood (ML) rule classifies according to

j = arg max
k

| fk(y) |, (12)

which identifies the class with the largest probability
density for the point in the Fisher space, Anderson
[2003]. In (12), the probability density function follows a
multivariate normal distribution as

fk(y) = (2π)−
1

2
(c−1) | Ωk |−

1

2 e−
1

2
(y−ȳk)T Ω

−1

k
(y−ȳk).

(13)
For our example problem, the maximum likelihood rule is
denoted by the vertical line with ×’s at its endpoints. It
is only slightly to the left of the Fisher discriminant rule,
which can be accounted for by the slight differences in
variance between the two distributions. If the covariances
of the classes after transformation are equivalent, then
the Fisher discriminant rule will provide an equivalent
classification boundary as the maximum likelihood rule.

While the Fisher discriminant and maximum likelihood
rules could be useful for classifying samples, that is not
our final objective. Instead, we proceed to calculate the
actual error rate to define a single measure for comparing
the different classes in more general terms, Hardle and
Simar [2003]. After defining a classifier function using the
maximum likelihood rule as

φj(y) =

{

1 if j = arg max
k

| fk(y) |

0 otherwise
, (14)

the probability of classifying y into class i even though it
belongs in class j is determined by

pij =

∫

φi(y)fj(y)dy. (15)

The actual error rate, which is defined by

AER =

∑c

i=1

∑c
j=1
j 6=i

pij

c
, (16)

then gives a measure of the ‘overlap’ between the classes.
If the classes are completely separable, the AER will
be close to zero. On the other hand, classes that are
indistinguishable will have an AER that approaches a
maximum of c−1

c
. By dividing by the maximum, we define

a match fraction as

MF =
c

c − 1
AER, (17)

which takes a value between 0 and 1 and can be used to
assess the overall overlap among the classes.

3. INDUSTRIAL CASE STUDIES

In the case studies that follow, the method of He et al.
[2005] will be employed. As previously published, the
method consists of two steps. The first step is to apply
an overall FDA model to visualize all class clusters in the
Fisher space, which can be useful for assessing whether or
not a fault has occurred. Next, that analysis is followed
by additional FDA for every individual pair of classes,
which can be used for fault diagnosis. Although the same
techniques will be implemented in this paper, the objec-
tive is not to identify and diagnose faults. Instead, the
objective of this work can be more generally stated as the
quantification of the differences between the classes and
the identification of the variables that contribute most to
those differences.

3.1 Plasma Etch Chamber Matching

To demonstrate how the techniques of Section 2 can be
applied to identify differences between tools and chambers,
we consider a set of three dual-chamber etch tools. The rea-
soning behind tool matching comes from the expectation
that consistency between processing tools will facilitate the
fabrication of a more consistent product. For this study
the means, standard deviations, and a correlation matrix
were calculated from 16 sensor summary statistics for each
of the six chambers for a single recipe. The summary
statistics were calculated from two main processing steps
for the sensors that were deemed important. The first nine
summary statistics were calculated from one step, while
the remaining six were calculated from another.

Application of FDA simultaneously to all classes of the
etcher data set yielded the results shown in Figure 2. In
addition to the data samples that have been projected onto
the first two Fisher directions, elliptical regions defined
using Equations 9 and 10 are also displayed in the figure
using 99% confidence thresholds. The plot makes it very
easy to distinguish between all of the chambers using FDA,
which was also evident by a calculated match fraction
of 0%. But even though all chambers are distinct, it is
interesting to observe that for all three tools, the chambers
from the same tools are adjacent to each other in the plot,
which indicates at least some degree of similarity between
chambers on the same tool.

Figure 3 shows the results of applying FDA pair-wise to a
few of the chambers. The axes in the plots on the left show
the probability distributions of each of the classes in the
Fisher space, which can be used to asses how similar each
set of data is to the other. The FDA and ML rules are also
provided in the probability plots. It is observed that when
the distributions have similar variances, the FDA and ML
rules are closely matched. However, when the variances
differ, the FDA and ML rules are shifted away from each
other.

The right set of plots in the figure provides bar charts of
the Fisher direction, which indicates the main contributing
variables that discriminate between the two classes, He
et al. [2005]. Of the 16 variables included, either one
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or both of variable 7 and variable 9 were the main
differentiators between all chambers.

This etcher case study showed how the FDA algorithm
was able to quickly indicate that the sensor summary
statistic data collected were clearly not matched from
chamber to chamber. Based on a final evaluation of these
differences, the chamber differences were judged to be
irrelevant with respect to product performance, and no
chamber matching would be required. Instead, the models
deployed for fault detection and diagnosis would need to
be maintained independently for each chamber to provide
adequate sensitivity to future excursions.

3.2 Rapid Thermal Anneal Chamber Matching

The second case study for the FDA algorithm has the
objective of matching chambers from a set of dual-chamber
rapid thermal anneal (RTA) tools. As with the etcher
study, data from three tools were available, so a total of six
chambers will be compared against each other. However,
in contrast to the etcher study, the variables that make up
the data matrices are not summary statistics. Instead, in-
terpolation was used to construct multi-way data matrices
by extracting 10 samples from a single processing step for
8 sensors, yielding a total of 80 variables after unfolding.
Preprocessing was performed with the shape-preserving
piecewise cubic spline interpolation method, Mathworks
[2005], de Boor [1978].

Figure 4 displays the results of applying FDA to all six
chambers. In the first plot in the figure, the sample points
are overlayed with the 99% confidence limits, while in the
second plot, only the class means are overlayed with the
limits. Of the six chambers, 1A and 1B were found to
be completely separable from all other chambers, while
3B was somewhat separable. Alternatively, chambers 2A,
2B, and 3A were relatively well-matched for the variables
captured from the tools. The overall match fraction was
31%.

To further investigate the similarities and differences be-
tween the RTA chambers, the pair-wise FDA match frac-
tions are summarized in Table 1. As displayed in the
table, we again observe that chambers 1A and 1B were
completely separable, with pair-wise match fractions of 0%
when compared against all other chambers. Chambers 2A,
2B, and 3A exhibited match fractions ranging from 46% to
59% when compared against each other. Finally, chamber
3B matched 2A, 2B, and 3A with match fractions of 6%,
9%, and 8%, respectively.

Table 1. Summary of pair-wise RTA chamber
overlap

Chambers 1B 2A 2B 3A 3B

1A 0 0 0 0 0

1B - 0 0 0 0

2A - - 0.53 0.59 0.06

2B - - - 0.46 0.09

3A - - - - 0.08

An example of two chambers with a high degree of overlap
is displayed in Figure 5 for chambers 2A and 3A. With
a match fraction of 59%, this is as close as any of the
chambers got to each other. Other comparisons between

chambers 2A, 2B, and 3A showed similar results. The most
significant contributions for the chamber difference was
from sensor 6 at the first time index. However, the high
degree of overlap indicates that the differences were not
enough to clearly distinguish between them.

To conclude the RTA study, Figure 6 plots the chamber
means of the raw data for sensor 6 across all 10 time indices
in the batch. The data are centered against the recipe
setpoint such that a value of zero is on target. This plot
clearly shows discrepancies between the values observed
for both chambers of tool 1. While there is some variability
for the other chambers early on in the batch, they quickly
converge to the setpoint at time index 2. In contrast, 1A
and 1B are much slower to converge, and are even slightly
offset from the setpoint at the very end of the processing
step.

4. CONCLUSIONS

We demonstrate in this paper how Fisher discriminant
analysis can be applied for differentiating classes of semi-
conductor data from different tools or chambers. The tool
and chamber matching analysis can be useful not only
from a process characterization standpoint, but also for
identifying the proper fault detection and classification
strategy. When applied to historical data from a set of
etcher chambers, the algorithm identified discrepancies in
sensor data that ultimately did not pose a risk to product
performance. For this case, the differences indicated that
a separate fault detection and diagnosis model would be
required for each chamber. Conversely, the data captured
from the RTA chambers highlighted issues with three pro-
cessing chambers where they were not converging to their
setpoints as quickly as they should have. The application
of preventive maintenance on the chambers could be used
to match them and thus facilitate sharing of a single
multivariate analysis models across all of them.
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