

Dynamic Optimisation of Chemical Engineering Processes

 Using the Bees Algorithm

D.T. Pham*, Q.T. Pham**, A. Ghanbarzadeh*

,
 ***, M. Castellani*

* Manufacturing Engineering Centre, Cardiff University, CF24 3AA, U.K. (Tel: +44-(0)2920874429; e-mail: phamdt,

ghanbarzadeha1, castellanim, @cardiff.ac.uk).

** University of New South Wales, Sydney 2052, Australia (e-mail: tuan.pham@unsw.edu.au)

*** Mechanical Engineering Department, Engineering Faculty, Shahid Chamran University, Ahvaz, Iran

Abstract: An improved version of the Bees Algorithm is proposed for solving dynamic optimisation

problems. This new formulation of the Bees Algorithm includes new search operators, and a new selection

procedure that enhances the survival probability of newly formed individuals. The proposed algorithm is

tested on six benchmark dynamic optimisation problems. The benchmark problems include minimisation

and maximisation tasks of different levels of complexity. For all the problems, the Bees Algorithm finds

very satisfactory optima. The very small standard deviation of the results proves the high reliability of the

proposed technique. Experimental tests show that the Bees Algorithm outperforms the state-of-the-art Ant

Colony Optimisation algorithm. The Bees Algorithm improves also the best results published in the

literature for the six benchmark problems.

1. INTRODUCTION

Many real-world engineering problems imply the dynamic

optimisation of a system of differential equations. For an

example, in chemical and biological engineering applications

the speed of reactions is usually determined by differential

equations involving various control variables (e.g., pressure,

temperature, catalyst concentration, degree of steering, etc.).

The engineer manipulates the control variables over time in

order to optimise given quality parameters such as product

quality and yield, minimise the production costs, etc.

The solution of dynamic control problems is usually complex.

Several state and control variables are needed to describe the

system response, and the input-output relationship is often

highly nonlinear and ill-behaved. Implicit discontinuities and

constraints on both state and control variables are also

frequent. The desired control policy is the one that maximises

a user-defined performance index. The performance index is

expressed through an objective function (fitness function).

Different algorithms were proposed in the literature for the

solution of dynamic optimisation problems. Classical methods

are based on hill climbing of the fitness landscape (Binder et

al., 2000). Unfortunately, gradient-based dynamic

optimisation procedures are prone to sub-optimal convergence

to local peaks of performance (Angira and Santosh, 2007).

For this reason, several studies considered the application of

population-based global search algorithms. Pham (1998;

2007), Angira and Santosh (2007), and Roubos et al. (1999)

used different kinds of evolutionary algorithms (Fogel, 2000)

to solve various dynamic control problems. Ant colony

optimisation (Dorigo and Stützle, 2004) was applied by

Rajesh et al. (2001) to a number of chemical engineering

benchmark problems.

This paper presents the experimental results achieved by

applying an improved version of the Bees Algorithm to a

range of benchmark dynamic control problems. The Bees

Algorithm was recently developed by Pham (2005; 2006a;

2006b). The optimisation results obtained by the Bees

Algorithm are compared to the known best results in the

literature, and to the results obtained using the popular ant

colony optimisation algorithm. Section 2 states the problem

domain. Section 3 describes the proposed algorithm. Section 4

presents the results of the experimental comparison. Section 5

concludes the paper.

2. PROBLEM DOMAIN

Dynamic control problems in engineering are defined by the

following equations and constraints:

y) f(u, Maximize
u(t)

 (1)

subject to

] [0,∈= ft tu(t)), y(t), F(t,
dt

dy (2)

0y y(0) = (3)

maxmin u u(t)u ≤≤ (4)

where t is the independent variable (usually the time), y the

state variable vector (size m), u the control variable vector

(size n), and tf the final time. The equations are almost always

integrated numerically.

The aim of the optimisation problem is to manipulate u(t) in

order to maximise the objective function f. The interval [0, tf]

is partitioned into a finite number of time steps (20–40 in this

work), and each control variable ui is specified at each of

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6100 10.3182/20080706-5-KR-1001.4047

these steps. Within each time interval, the control variables

are assumed to ramp between the end points. Each variable ui

is represented by a vector of p elements, each vector defining

p-1 time intervals. The n ui vectors are juxtaposed to form an

overall solution vector of length n×p, which represents a

solution to the dynamic optimisation problem.

3. THE BEES ALGORITHM

The Bees Algorithm is a stochastic global optimisation

method that models the foraging behaviour of honey bees.

The search strategy of the Bees Algorithm combines global

random exploration with local neighbourhood sampling.

Explorative search and exploitative search are clearly

differentiated, and they are independently varied through a set

of parameters. This clear decoupling between exploration and

exploitation facilitates the tuning of the algorithm.

The Bees Algorithm is best suited for objective functions that

are multimodal, include flat regions and points of

discontinuity. Being a stochastic global optimisation

procedure, it is also robust to noisy fitness evaluations. The

weakness is that for optimisation of smooth unimodal

functions it is much slower than deterministic methods.

This section presents the original formulation of the Bees

Algorithm and the improved version which is used for this

study.

3.1 Bees foraging behaviour in nature

During the harvesting season, a colony of bees keeps a

percentage of its population as scouts (Von Frisch, 1976) and

uses them to explore the field surrounding the hive for

promising flower patches. The foraging process begins with

the scout bees being sent to the field where they move

randomly from one patch to another.

When they return to the hive, those scout bees that found a

patch of a sufficient quality (measured as the level of some

constituents, such as sugar content) deposit their nectar and go

to the “dance floor” to perform a dance known as the “waggle

dance” (Seeley, 1996). This dance communicates to other

bees three pieces of information regarding a flower patch: the

direction in which it will be found, its distance from the hive,

and its quality rating (or fitness) (Von Frisch, 1976; Camazine

et al., 2003). This information helps the bees watching the

dance to find the flower patches without using guides or

maps. After the waggle dance, the dancer (i.e. the scout bee)

goes back to the flower patch with follower bees recruited

from the hive. The number of follower bees will depend on

the overall quality of the patch. Flower patches with large

amounts of nectar or pollen that can be collected with less

effort are regarded as more promising and attract more bees

(Seeley, 1996; Bonabeau, 1999). In this way, the colony can

gather food quickly and efficiently.

3.2 The Bees Algorithm

This section reviews the main steps of the Bees Algorithm.

For more details, the reader is referred to Pham (2005; 2006a;

2006b). Figure 1 shows the pseudo code for the Bees

Algorithm. The algorithm requires a number of parameters to

be set, namely: number of scout bees (n), number of sites

selected for local search (out of n visited sites) (m), number of

top-rated (elite) sites among m selected sites (e), number of

bees recruited for the best e sites (nep), number of bees

recruited for the other (m-e) selected sites (nsp), the initial

size of each patch (ngh) (a patch is a region in the search

space that includes the visited site and its neighbourhood), and

the stopping criterion. The algorithm starts with n scout bees

randomly distributed in the search space. The fitness of the

sites (i.e. the performance of the candidate solutions) visited

by the scout bees is evaluated in step 2.

In step 4, the m sites with the highest fitnesses are designated

as “selected sites” and chosen for neighbourhood search. In

steps 5 and 6, the algorithm searches around the selected sites,

assigning more bees to search in the vicinity of the e sites of

highest fitness. Search in the neighbourhood of the best e sites

– those which represent the most promising solutions - is

made more detailed. As already mentioned, this is done by

recruiting more bees for the best e sites than for the other

selected sites. Together with scouting, this differential

recruitment is a key operation of the Bees Algorithm.

Figure 1. Pseudo code of the basic Bees Algorithm

In step 6, for each patch only the bee of highest fitness value

is selected to form the next bee population. In nature, there is

no such restriction. This restriction is introduced here to

reduce the number of points to be explored. In step 7, the

remaining bees in the population are placed randomly around

the search space to scout for new potential solutions.

At the end of each iteration, the colony has two parts to its

new population: representatives from the selected patches, and

scout bees assigned to conduct random searches. These steps

are repeated until a stopping criterion is met.

The algorithm described above is designed for finding the

optimum solution in a given search space. If a problem

requires the discovery of the largest possible number of

1. Initialise population with random solutions.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

//Forming new population.

4. Select sites for neighbourhood search.

5. Recruit bees for selected sites (more bees for

best e sites) and evaluate fitnesses.

6. Select the fittest bee from each patch.

7. Assign remaining bees to search randomly

and evaluate their fitnesses.

8. End While

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6101

solutions that satisfy a given quality criterion, a filtering

method can be adopted to keep all non-identical satisfactory

individuals generated during the evaluation process.

3.3 The Improved Bees Algorithm

The Bees Algorithm represents candidate solutions as vectors

of real numbers, each vector encoding a continuous variable.

To explore the solution space, the Bees Algorithm uses a

random search operator which is applied within a

neighbourhood window. The modified Bees algorithm

complements random search with the following operators:

mutation, creep, crossover, interpolate and extrapolate.

The mutation operator assigns random values, uniformly

distributed within the variables' range, to randomly chosen

elements of the variables vector. The creep operator applies

small Gaussian changes (standard deviation equal to 0.001 of

the variable range) to all elements of the solution vector. The

crossover operator combines the first e elements of a parent

vector with the remaining elements of a second parent vector.

Interpolation is the element-by-element addition of 0.7 times

the fitter parent and 0.3 times the less fit parent, giving a

solution which is biased to the first. Extrapolation is the

element-by-element addition of 1.3 times the fitter parent and

−0.3 times the less fit parent. Once a solution is selected for

the application of one of the two-parent modification

operators, the second parent is chosen randomly from the rest

of the population.

The probabilities of the reproduction operators are based on

previous results (Pham, 2007).

From one generation to the next, the best of the population is

retained (truncation selection). Each surviving solution (bee)

is given an opportunity to improve by evolving a few times

using the above operators. At each step, if a change results in

an improvement, the new solution replaces its parent, else the

original solution is retained. The number of search steps, m, is

a decreasing function of the fitness rank of the solution:

() 1
1

1int 0 +




















−

−
−=

f

m

Rankm
nm

 (5)

where Rank is 1 for the fittest member. n0 is the number of

search steps applied to the fittest member of a generation. The

least fit selected member always receives only one search

step. The exponent f is an indication of the selective pressure:

for f = 1 the number of search steps varies linearly with rank,

while for f > 1 the number of search steps decreases more

quickly with rank.

As in the original version of Bees Algorithm, the least fit

members are deleted and new random bees are created to

replace them. However, forcing new solutions to compete

immediately with previous solutions, which have evolved for

a long time, is counterproductive, just as it would be in a

society where newborn were forced to compete with adults

without going through a period of nurturing. With multimodal

objective functions in particular, a new solution may land at

the foot a high peak yet still be worse than old solutions that

have stalled at a lesser peak. Therefore, this paper introduces a

new category of "young members", those that have evolved

for a certain number M of steps or less. Young members only

compete among themselves, until they reach "adulthood" after

evolving more than M steps.

In summary, the algorithm strongly favours the best bees, but

also continuously create young bees and nurture them, so that

the pool of "best bees" may be continuously rejuvenated if

necessary.

The pseudocode of the modified Bees Algorithm is given in

Figure 2.

Figure 2. Pseudo code of the modified Bees Algorithm

The pseudocode implies that a very good young bee may be

selected twice, once as one of the fittest bees, and another

time as one of the fittest young bees. This feature not only

makes the algorithm simpler but also encourages exceptional

newcomers. The possibility of a solution to be selected twice

is however small, except at the early stages of the algorithm.

4. EXPERIMENTAL TESTS

The improved version of the Bees Algorithm is tested on six

benchmark problems. The level of difficulty of the problems

is varying to show the ability of the Bees Algorithm to solve

different problems. The first two problems are minimisation

problems. In this case, the objective of the optimisation

process is to maximise the inverse of the fitness function (-f).

The six benchmark functions are listed in Table 1. and fully

described by Rajesh et al. (2001).

The learning results of the Bees Algorithm are compared to

the results achieved by Ant Colony Optimisation. The Ant

Colony Optimisation algorithm is considered a good term for

comparison because it is a popular and well-established state-

Initiate N random bees

Iterate

Sort all the bees in the present population

Select the e fittest bees into the new population

Sort the young bees (age ≤ M) in the present

population

Select the g fittest young bees into the new

population

Create N−e−g random new bees and put them in

the new population

Let the e fittest bees in the new population

evolve m times, where m is given by eq.(1)

(*)

Let the other bees evolve once each (*)

Until a stopping criterion is met

(*) In the evolution steps, an offspring replaces its

parent only if it is better than the parent.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6102

of-the-art population-based search algorithm

4.1 Experimental Settings

For each of the six dynamic control benchmark problems, the

Bees Algorithm is run 25 times with different random

initialisations. The learning results are estimated as the

average values of the 25 independent learning trials. The

duration of the Bees Algorithm is set to 263 learning cycles.

This figure corresponds to 5000 function (i.e. candidate

solutions) evaluations.

The optimisation of the Bees Algorithm is carried out

according to experimental trial and error. Once the learning

parameters are optimised, they are fixed and kept unchanged

for all the optimisation problems. Table 2. gives the final

setting of the learning parameters.

The optimisation results achieved by the Bees Algorithm are

compared to the results obtained by Rajesh et al. (2001) using

Ant Colony Optimisation. For each benchmark problem, the

results published by Rajesh et al. (2001) are the average value

of 25 independent runs. For each problem, the function

optimum found by the Bees Algorithm is also compared to the

best-so-far optimum reported in the literature (Rajesh et al.,

2001; Pham, 2007).

4.2 Experimental Results

For each benchmark problem, Figures 3 to 8 show the

evolution of the function optimisation process over the

duration of a sample run. The value of the objective function

(fitness function) is plotted versus the number of function

evaluations (search space samples). In the the first two

optimisation problems, the evolution of the fitness function is

represented by a descending curve (minimisation problem). In

the remaining four problems, the curve of the fitness function

is ascending (maximisation problem).

In the plot referring to problem 1, after about 400 samples of

the optimisation landscape the Bees Algorithm localises the

minimum of the objective function. In problems 2 to 5, the

Bees Algorithm needs about 1000 evaluations to find the

optimum of the objective function. In all the cases, the fitness

evolution curve is characterised by a steep initial

improvement (descent in the case of problem 1-2, ascent in

the case of problems 3-6), followed by a slower fine tuning of

the solution. This behaviour is typical of population-based

search algorithms. In general, the optimisation results support

the claim that the Bees Algorithm converges reasonably fast

to the optimum point.

Table 1. compares the results obtained by the Bees Algorithm

to the results obtained using Ant Colony Optimisation, and the

best optimisation results reported in the literature. Table 1.

shows that the Bees Algorithm outperforms Ant Colony

Optimisation in all the benchmark problems. Save for

Table 2. The Bees Algorithm parameters

Improved Bees Algorithm

Population Size 6

Best fitness fraction 0.8

Best new fraction 0.1

Maturity age 10

Max. no. of exploitation steps n0 10

Distribution exponent f 4

Number of evaluation 5000

Table 1. Test objective functions

Problem References
Reported

Optimum

Ant Colony

Optimisation

Bees

Algorithm

Standard

Deviation
Description

1
Rajesh et al. (2001) (Problem

1), Luus (1991)
0.76159 0.76238 0.761646

0.000017

Unconstrained math

system

2
Rajesh et al. (2001) (Problem

2), Luus (1990)
0.12011 0.12904 0.119690

0.000066

Non-linear

unconstrained

mathematical system

3

Rajesh et al. (2001) (Problem

3), Dadebo and McAuley

(1995)

0.57353 0.57284 0.573471

0.000024
Tubular reactor

parallel reaction

4

Rajesh et al. (2001) (Problem

4), Dadebo and McAuley

(1995), Ray (1981)

0.610775 0.61045 0.610775

0.000007

Batch reactor

consecutive

reactions, A→B→C

5

Rajesh et al. (2001) (Problem

5), Dadebo and McAuley

(1995)

0.476946 0.47615 0.477444

0.000015

Plug flow reactor

catalyst blend,

A↔B→C

6
Rajesh et al. (2001) (Problem

6), Tieu et al. (1995)
0.480047 0.4793 0.480078

0.000013
Consecutive

reactions, A→B→C

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6103

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 1000 2000 3000 4000 5000

Evaluations

F
it

n
e
s

s

Figure 3. Evolution of fitness with

number sampling for Problem 1

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000

Evaluations

F
it

n
e
s

s

Figure 4. Evolution of fitness with

number sampling for Problem 2

0.5

0.52

0.54

0.56

0.58

0.6

0 1000 2000 3000 4000 5000

Evaluations

F
it

n
e
s

s

Figure 5. Evolution of fitness with

number sampling for Problem 3

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0 1000 2000 3000 4000 5000

Evaluations

F
it

n
e
s

s

Figure 6. Evolution of fitness with

number sampling for Problem 4

0.4

0.42

0.44

0.46

0.48

0.5

0 1000 2000 3000 4000 5000

Evaluations

F
it

n
e
s

s

Figure 7. Evolution of fitness with

number sampling for Problem 5

0

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000 4000 5000

Evaluations

F
it

n
e
s

s

Figure 8. Evolution of fitness with

number sampling for Problem 6

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6104

 problem 1, the Bees Algorithm finds also better solutions

than the best known solutions reported in the literature. In the

case of problem 1, the Bees Algorithm approximates very

closely the known analytical solution.

For each problem Table 1. reports also the standard deviation

of the optimisation results over the 25 independent runs. The

very small variation of the results proves the robustness of the

proposed algorithm.

5. CONCLUSIONS

This paper presented the application results of a new version

of the Bees Algorithm to six benchmark dynamic optimisation

problems. The six problems include minimisation and

maximisation tasks of different levels of complexity. For all

the problems, the Bees Algorithm finds very satisfactory

optima. The very low standard deviation of the optimisation

results over 25 independent optimisation trials proves the

robustness of the proposed algorithm. In the five cases where

the optimum is not known, the Bees Algorithm finds better a

solution than the best known results reported in the literature.

In the remaining case, the solution found by the Bees

Algorithm is very close to the known analytical optimum.

The results obtained by the Bees Algorithm are compared to

the results obtained on the same benchmark problems by the

Ant Colony Optimisation algorithm. In all the six cases, the

Bees Algorithm outperformed Ant Colony Optimisation.

The Bees Algorithm solves the dynamic optimisation tasks

without any domain information, apart from the formulation

of the objective function. In this respect, the Bees Algorithm

shares the advantages of global search algorithms such as

Evolutionary Algorithms and Ant Colony Optimisation.

ACKNOWLEDGEMENTS

The authors are members of the EC FP6 Innovative

Production Machines and Systems (I*PROMS) Network of

Excellence.

REFERENCES

Angira, R. and Santosh, A. (2007). Optimization of dynamic

systems: A trigonometric differential evolution approach.

Computers and Chemical Engineering 31, 1055–1063

Binder, T., Cruse, A., Villar, C.A.C., and Marquardt, W.

(2000). Dynamic optimizationusing a wavelet based

adaptive control vector parameterization strategy.

Computers and Chemical Engineering, 24, 1201–1207.

Bojkov, B. and Luus, R. (1992). Use of random admissible

values for control initerative dynamic programming. IEC

Research, 31, 1308–1314.

Bonabeau, E., Dorigo, M. and Theraulaz G. (1999). Swarm

Intelligence: from Natural to Artificial Systems. New

York: Oxford University Press.

Camazine, S., Deneubourg, J.L. Franks, N.R. Sneyd, J.

Theraulaz, G. and Bonabeau, E. (2003). Self-

Organization in Biological Systems. Princeton: Princeton

University Press.

Dadebo, S.A. and McAuley, K.B. (1995). Dynamic

optimization of constrained chemical engineering

problems using dynamic programming. Computers and

Chemical Engineering, 19, 513–525.

Fogel, D.B. (2000). Evolutionary Computation: Toward a

New Philosophy of Machine Intelligence. 2nd edition,

IEEE Press, New York.

Lapidus, L. and Luus, R. (1967). Optimal Control of

Engineering Processes. Blaisdell Pub., Waltham, MA,

pp.155-229.

Luus, R. (1990). Optimal Control by Dynamic Programming

Using Systematic Reduction in Grid Size. Int. J. Control,

51, 995–1013.

Luus, R. (1991). Application of iterative dynamic

programming to state constrained optimal control

problems. Hung. J. Ind. Chem., 19, 245–254.

Pham, D.T., Ghanbarzadeh, A. Koc, E., Otri, S., Rahim S. and

Zaidi, M. (2005). Technical Note: Bees Algorithm.

Manufacturing Engineering Centre, Cardiff University.

Pham, D.T., Ghanbarzadeh, A. Koc, E. and Otri, S. (2006a).

Application of the Bees Algorithm to the Training of

Radial Basis Function Networks for Control Chart Pattern

Recognition. in 5th CIRP International Seminar on

Intelligent Computation in Manufacturing Engineering

(CIRP ICME '06). 711-716. Ischia, Italy.

Pham, D.T., A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim and

M. Zaidi (2006b). The Bees Algorithm, A Novel Tool for

Complex Optimisation Problems. in 2nd Int Virtual Conf

on Intelligent Production Machines and Systems

(IPROMS 2006) 454-459.

Pham, Q.T. (1998). Dynamic optimization of chemical

engineering processes by an evolutionary method.

Computers and Chemical Engineering, 22, 1089–1097.

Pham Q.T. (2007). Using statistical analysis to tune an

evolutionary algorithm for dynamic optimization with

progressive step reduction. Computers and Chemical

Engineering 31, 1475–1483.

Rajesh, J., Gupta, K., Kusumakar, H.S., Jayaraman, V.K. and

Kulkarni, B.D. (2001). Dynamic optimization of chemical

processes using ant colony framework. Computers and

Chemical Engineering, 25, 583–595.

Ray, W.H. (1981). Advanced process control. New York:

McGraw-Hill.

Roubos, J.A., van Straten, G. and van Boxtel, A.J.B. (1999).

An evolutionary strategy for fed-batch bioreactor

optimization: Concepts and performance. Journal of

Biotechnology, 67, 173–187.

Seeley, T.D. (1996). The Wisdom of the Hive: The Social

Physiology of Honey Bee Colonies. Cambridge,

Massachusetts: Harvard University Press.

Tieu, D., Cluett, W.R. and Penlidis, A. (1995). A comparison

of collocation methods for dynamic optimization

problems. Comput. Chem. Engng, 19, 375–381.

Von Frisch, K. (1976). Bees: Their Vision, Chemical Senses

and Language. Revised Edition ed, Ithaca, N.Y.: Cornell

University Press.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6105

