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Abstract: An improved version of the Bees Algorithm is proposed for solving dynamic optimisation 

problems. This new formulation of the Bees Algorithm includes new search operators, and a new selection 

procedure that enhances the survival probability of newly formed individuals. The proposed algorithm is 

tested on six benchmark dynamic optimisation problems. The benchmark problems include minimisation 

and maximisation tasks of different levels of complexity. For all the problems, the Bees Algorithm finds 

very satisfactory optima. The very small standard deviation of the results proves the high reliability of the 

proposed technique. Experimental tests show that the Bees Algorithm outperforms the state-of-the-art Ant 

Colony Optimisation algorithm. The Bees Algorithm improves also the best results published in the 

literature for the six benchmark problems. 

 

1. INTRODUCTION 

Many real-world engineering problems imply the dynamic 

optimisation of a system of differential equations. For an 

example, in chemical and biological engineering applications 

the speed of reactions is usually determined by differential 

equations involving various control variables (e.g., pressure, 

temperature, catalyst concentration, degree of steering, etc.). 

The engineer manipulates the control variables over time in 

order to optimise given quality parameters such as product 

quality and yield, minimise the production costs, etc.  

The solution of dynamic control problems is usually complex. 

Several state and control variables are needed to describe the 

system response, and the input-output relationship is often 

highly nonlinear and ill-behaved. Implicit discontinuities and 

constraints on both state and control variables are also 

frequent. The desired control policy is the one that maximises 

a user-defined performance index. The performance index is 

expressed through an objective function (fitness function). 

Different algorithms were proposed in the literature for the 

solution of dynamic optimisation problems. Classical methods 

are based on hill climbing of the fitness landscape (Binder et 

al., 2000). Unfortunately, gradient-based dynamic 

optimisation procedures are prone to sub-optimal convergence 

to local peaks of performance (Angira and Santosh, 2007). 

For this reason, several studies considered the application of 

population-based global search algorithms. Pham (1998; 

2007), Angira and Santosh (2007), and Roubos et al. (1999) 

used different kinds of evolutionary algorithms (Fogel, 2000) 

to solve various dynamic control problems. Ant colony 

optimisation (Dorigo and Stützle, 2004) was applied by 

Rajesh et al. (2001) to a number of chemical engineering 

benchmark problems.  

This paper presents the experimental results achieved by 

applying an improved version of the Bees Algorithm to a 

range of benchmark dynamic control problems. The Bees 

Algorithm was recently developed by Pham (2005; 2006a; 

2006b). The optimisation results obtained by the Bees 

Algorithm are compared to the known best results in the 

literature, and to the results obtained using the popular ant 

colony optimisation algorithm. Section 2 states the problem 

domain. Section 3 describes the proposed algorithm. Section 4 

presents the results of the experimental comparison. Section 5 

concludes the paper. 

2. PROBLEM DOMAIN 

Dynamic control problems in engineering are defined by the 

following equations and constraints: 

y) f(u, Maximize
u(t)

             (1) 

subject to 

] [0,∈= ft   tu(t)), y(t), F(t,  
dt

dy                (2) 

0y  y(0) =               (3) 

maxmin u  u(t)u ≤≤              (4) 

where t is the independent variable (usually the time), y the 

state variable vector (size m), u the control variable vector 

(size n), and tf the final time. The equations are almost always 

integrated numerically.  

The aim of the optimisation problem is to manipulate u(t) in 

order to maximise the objective function f. The interval [0, tf] 

is partitioned into a finite number of time steps (20–40 in this 

work), and each control variable ui is specified at each of 
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these steps. Within each time interval, the control variables 

are assumed to ramp between the end points. Each variable ui 

is represented by a vector of p elements, each vector defining 

p-1 time intervals. The n ui vectors are juxtaposed to form an 

overall solution vector of length n×p, which represents a 

solution to the dynamic optimisation problem.  

3. THE BEES ALGORITHM 

The Bees Algorithm is a stochastic global optimisation 

method that models the foraging behaviour of honey bees. 

The search strategy of the Bees Algorithm combines global 

random exploration with local neighbourhood sampling. 

Explorative search and exploitative search are clearly 

differentiated, and they are independently varied through a set 

of parameters. This clear decoupling between exploration and 

exploitation facilitates the tuning of the algorithm. 

The Bees Algorithm is best suited for objective functions that 

are multimodal, include flat regions and points of 

discontinuity. Being a stochastic global optimisation 

procedure, it is also robust to noisy fitness evaluations. The 

weakness is that for optimisation of smooth unimodal 

functions it is much slower than deterministic methods. 

This section presents the original formulation of the Bees 

Algorithm and the improved version which is used for this 

study. 

3.1  Bees foraging behaviour in nature 

During the harvesting season, a colony of bees keeps a 

percentage of its population as scouts (Von Frisch, 1976) and 

uses them to explore the field surrounding the hive for 

promising flower patches. The foraging process begins with 

the scout bees being sent to the field where they move 

randomly from one patch to another. 

When they return to the hive, those scout bees that found a 

patch of a sufficient quality (measured as the level of some 

constituents, such as sugar content) deposit their nectar and go 

to the “dance floor” to perform a dance known as the “waggle 

dance” (Seeley, 1996). This dance communicates to other 

bees three pieces of information regarding a flower patch: the 

direction in which it will be found, its distance from the hive, 

and its quality rating (or fitness) (Von Frisch, 1976; Camazine 

et al., 2003). This information helps the bees watching the 

dance to find the flower patches without using guides or 

maps. After the waggle dance, the dancer (i.e. the scout bee) 

goes back to the flower patch with follower bees recruited 

from the hive. The number of follower bees will depend on 

the overall quality of the patch. Flower patches with large 

amounts of nectar or pollen that can be collected with less 

effort are regarded as more promising and attract more bees 

(Seeley, 1996; Bonabeau, 1999). In this way, the colony can 

gather food quickly and efficiently. 

3.2  The Bees Algorithm 

This section reviews the main steps of the Bees Algorithm. 

For more details, the reader is referred to Pham (2005; 2006a; 

2006b). Figure 1 shows the pseudo code for the Bees 

Algorithm. The algorithm requires a number of parameters to 

be set, namely: number of scout bees (n), number of sites 

selected for local search (out of n visited sites) (m), number of 

top-rated (elite) sites among m selected sites (e), number of 

bees recruited for the best e sites (nep), number of bees 

recruited for the other (m-e) selected sites (nsp), the initial 

size of each patch (ngh) (a patch is a region in the search 

space that includes the visited site and its neighbourhood), and 

the stopping criterion. The algorithm starts with n scout bees 

randomly distributed in the search space. The fitness of the 

sites (i.e. the performance of the candidate solutions) visited 

by the scout bees is evaluated in step 2. 

In step 4, the m sites with the highest fitnesses are designated 

as “selected sites” and chosen for neighbourhood search. In 

steps 5 and 6, the algorithm searches around the selected sites, 

assigning more bees to search in the vicinity of the e sites of 

highest fitness. Search in the neighbourhood of the best e sites 

– those which represent the most promising solutions - is 

made more detailed. As already mentioned, this is done by 

recruiting more bees for the best e sites than for the other 

selected sites. Together with scouting, this differential 

recruitment is a key operation of the Bees Algorithm.  

Figure 1.  Pseudo code of the basic Bees Algorithm 

In step 6, for each patch only the bee of highest fitness value 

is selected to form the next bee population. In nature, there is 

no such restriction. This restriction is introduced here to 

reduce the number of points to be explored. In step 7, the 

remaining bees in the population are placed randomly around 

the search space to scout for new potential solutions.  

At the end of each iteration, the colony has two parts to its 

new population: representatives from the selected patches, and 

scout bees assigned to conduct random searches. These steps 

are repeated until a stopping criterion is met.  

The algorithm described above is designed for finding the 

optimum solution in a given search space. If a problem 

requires the discovery of the largest possible number of 

1. Initialise population with random solutions. 

2. Evaluate fitness of the population. 

3. While (stopping criterion not met) 

//Forming new population. 

4. Select sites for neighbourhood search. 

5. Recruit bees for selected sites (more bees for 

best e sites) and evaluate fitnesses. 

6. Select the fittest bee from each patch. 

7. Assign remaining bees to search randomly 

and evaluate their fitnesses. 

8. End While 
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solutions that satisfy a given quality criterion, a filtering 

method can be adopted to keep all non-identical satisfactory 

individuals generated during the evaluation process. 

3.3  The Improved Bees Algorithm 

The Bees Algorithm represents candidate solutions as vectors 

of real numbers, each vector encoding a continuous variable. 

To explore the solution space, the Bees Algorithm uses a 

random search operator which is applied within a 

neighbourhood window. The modified Bees algorithm 

complements random search with the following operators: 

mutation, creep, crossover, interpolate and extrapolate.  

The mutation operator assigns random values, uniformly 

distributed within the variables' range, to randomly chosen 

elements of the variables vector. The creep operator applies 

small Gaussian changes (standard deviation equal to 0.001 of 

the variable range) to all elements of the solution vector. The 

crossover operator combines the first e elements of a parent 

vector with the remaining elements of a second parent vector. 

Interpolation is the element-by-element addition of 0.7 times 

the fitter parent and 0.3 times the less fit parent, giving a 

solution which is biased to the first. Extrapolation is the 

element-by-element addition of 1.3 times the fitter parent and 

−0.3 times the less fit parent. Once a solution is selected for 

the application of one of the two-parent modification 

operators, the second parent is chosen randomly from the rest 

of the population. 

The probabilities of the reproduction operators are based on 

previous results (Pham, 2007). 

From one generation to the next, the best of the population is 

retained (truncation selection). Each surviving solution (bee) 

is given an opportunity to improve by evolving a few times 

using the above operators. At each step, if a change results in 

an improvement, the new solution replaces its parent, else the 

original solution is retained. The number of search steps, m, is 

a decreasing function of the fitness rank of the solution: 

( ) 1
1

1int 0 +




















−

−
−=

f

m

Rankm
nm

             (5) 

where Rank is 1 for the fittest member. n0 is the number of 

search steps applied to the fittest member of a generation. The 

least fit selected member always receives only one search 

step. The exponent f is an indication of the selective pressure: 

for f = 1 the number of search steps varies linearly with rank, 

while for f > 1 the number of search steps decreases more 

quickly with rank. 

As in the original version of Bees Algorithm, the least fit 

members are deleted and new random bees are created to 

replace them. However, forcing new solutions to compete 

immediately with previous solutions, which have evolved for 

a long time, is counterproductive, just as it would be in a 

society where newborn were forced to compete with adults 

without going through a period of nurturing. With multimodal 

objective functions in particular, a new solution may land at 

the foot a high peak yet still be worse than old solutions that 

have stalled at a lesser peak. Therefore, this paper introduces a 

new category of "young members", those that have evolved 

for a certain number M of steps or less. Young members only 

compete among themselves, until they reach "adulthood" after 

evolving more than M steps. 

In summary, the algorithm strongly favours the best bees, but 

also continuously create young bees and nurture them, so that 

the pool of "best bees" may be continuously rejuvenated if 

necessary. 

The pseudocode of the modified Bees Algorithm is given in 

Figure 2. 

Figure 2.  Pseudo code of the modified Bees Algorithm 

The pseudocode implies that a very good young bee may be 

selected twice, once as one of the fittest bees, and another 

time as one of the fittest young bees. This feature not only 

makes the algorithm simpler but also encourages exceptional 

newcomers. The possibility of a solution to be selected twice 

is however small, except at the early stages of the algorithm. 

4. EXPERIMENTAL TESTS 

The improved version of the Bees Algorithm is tested on six 

benchmark problems. The level of difficulty of the problems 

is varying to show the ability of the Bees Algorithm to solve 

different problems. The first two problems are minimisation 

problems. In this case, the objective of the optimisation 

process is to maximise the inverse of the fitness function (-f). 

The six benchmark functions are listed in Table 1. and fully 

described by Rajesh et al. (2001).  

The learning results of the Bees Algorithm are compared to 

the results achieved by Ant Colony Optimisation. The Ant 

Colony Optimisation algorithm is considered a good term for 

comparison because it is a popular and well-established state-

Initiate N random bees 

Iterate 

Sort all the bees in the present population 

Select the e fittest bees into the new population 

Sort the young bees (age ≤ M) in the present 

population 

Select the g fittest young bees into the new 

population 

Create N−e−g random new bees and put them in 

the new population 

Let the e fittest bees in the new population 

evolve m times, where m is given by eq.(1) 

(*) 

Let the other bees evolve once each (*) 

Until a stopping criterion is met 

 

(*) In the evolution steps, an offspring replaces its 

parent only if it is better than the parent. 
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of-the-art population-based search algorithm 

4.1 Experimental Settings 

For each of the six dynamic control benchmark problems, the 

Bees Algorithm is run 25 times with different random 

initialisations. The learning results are estimated as the 

average values of the 25 independent learning trials. The 

duration of the Bees Algorithm is set to 263 learning cycles. 

This figure corresponds to 5000 function (i.e. candidate 

solutions) evaluations.  

The optimisation of the Bees Algorithm is carried out 

according to experimental trial and error. Once the learning 

parameters are optimised, they are fixed and kept unchanged 

for all the optimisation problems. Table 2. gives the final 

setting of the learning parameters.  

The optimisation results achieved by the Bees Algorithm are 

compared to the results obtained by Rajesh et al. (2001) using 

Ant Colony Optimisation. For each benchmark problem, the 

results published by Rajesh et al. (2001) are the average value 

of 25 independent runs. For each problem, the function 

optimum found by the Bees Algorithm is also compared to the 

best-so-far optimum reported in the literature (Rajesh et al., 

2001; Pham, 2007). 

4.2 Experimental Results 

For each benchmark problem, Figures 3 to 8 show the 

evolution of the function optimisation process over the 

duration of a sample run. The value of the objective function 

(fitness function) is plotted versus the number of function 

evaluations (search space samples). In the the first two 

optimisation problems, the evolution of the fitness function is 

represented by a descending curve (minimisation problem). In 

the remaining four problems, the curve of the fitness function 

is ascending (maximisation problem). 

In the plot referring to problem 1, after about 400 samples of 

the optimisation landscape the Bees Algorithm localises the 

minimum of the objective function. In problems 2 to 5, the 

Bees Algorithm needs about 1000 evaluations to find the 

optimum of the objective function. In all the cases, the fitness 

evolution curve is characterised by a steep initial 

improvement (descent in the case of problem 1-2, ascent in 

the case of problems 3-6), followed by a slower fine tuning of 

the solution. This behaviour is typical of population-based 

search algorithms. In general, the optimisation results support 

the claim that the Bees Algorithm converges reasonably fast 

to the optimum point.  

Table 1. compares the results obtained by the Bees Algorithm 

to the results obtained using Ant Colony Optimisation, and the 

best optimisation results reported in the literature. Table 1. 

shows that the Bees Algorithm outperforms Ant Colony 

Optimisation in all the benchmark problems. Save for 

Table 2. The Bees Algorithm parameters 
 

Improved Bees Algorithm  

Population Size 6 

Best fitness fraction 0.8 

Best new fraction 0.1 

Maturity age 10 

Max. no. of exploitation steps n0 10 

Distribution exponent f 4 

Number of evaluation 5000 

 

Table 1. Test objective functions 

 

Problem References 
Reported 

Optimum 

Ant Colony 

Optimisation 

Bees 

Algorithm 

 

Standard 

Deviation 
Description 

1 
Rajesh et al. (2001) (Problem 

1), Luus (1991) 
0.76159 0.76238 0.761646 

 

0.000017 

 

Unconstrained math 

system 

2 
Rajesh et al. (2001) (Problem 

2), Luus (1990) 
0.12011 0.12904 0.119690 

 
0.000066 

Non-linear 

unconstrained 

mathematical system 

3 

Rajesh et al. (2001) (Problem 

3), Dadebo and McAuley 

(1995) 

0.57353 0.57284 0.573471 

 

0.000024 
Tubular reactor 

parallel reaction 

4 

Rajesh et al. (2001) (Problem 

4), Dadebo and McAuley 

(1995), Ray (1981) 

0.610775 0.61045 0.610775 

 

0.000007 

Batch reactor 

consecutive 

reactions, A→B→C 

5 

Rajesh et al. (2001) (Problem 

5), Dadebo and McAuley 

(1995) 

0.476946 0.47615 0.477444 

 

0.000015 

Plug flow reactor 

catalyst blend, 

A↔B→C 

6 
Rajesh et al. (2001) (Problem 

6), Tieu et al. (1995) 
0.480047 0.4793 0.480078 

 

0.000013 
Consecutive 

reactions, A→B→C 
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Figure 3.  Evolution of fitness with  

number sampling for Problem 1 
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Figure 4.  Evolution of fitness with  

number sampling for Problem 2 
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Figure 5.  Evolution of fitness with  

number sampling for Problem 3 

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0 1000 2000 3000 4000 5000

Evaluations

F
it

n
e
s

s

 
Figure 6.  Evolution of fitness with  

number sampling for Problem 4 
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Figure 7.  Evolution of fitness with  

number sampling for Problem 5 
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Figure 8.  Evolution of fitness with  

number sampling for Problem 6 
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 problem 1, the Bees Algorithm finds also better solutions 

than the best known solutions reported in the literature. In the 

case of problem 1, the Bees Algorithm approximates very 

closely the known analytical solution.  

For each problem Table 1. reports also the standard deviation 

of the optimisation results over the 25 independent runs. The 

very small variation of the results proves the robustness of the 

proposed algorithm. 

5. CONCLUSIONS 

This paper presented the application results of a new version 

of the Bees Algorithm to six benchmark dynamic optimisation 

problems. The six problems include minimisation and 

maximisation tasks of different levels of complexity. For all 

the problems, the Bees Algorithm finds very satisfactory 

optima. The very low standard deviation of the optimisation 

results over 25 independent optimisation trials proves the 

robustness of the proposed algorithm. In the five cases where 

the optimum is not known, the Bees Algorithm finds better a 

solution than the best known results reported in the literature. 

In the remaining case, the solution found by the Bees 

Algorithm is very close to the known analytical optimum. 

The results obtained by the Bees Algorithm are compared to 

the results obtained on the same benchmark problems by the 

Ant Colony Optimisation algorithm. In all the six cases, the 

Bees Algorithm outperformed Ant Colony Optimisation. 

The Bees Algorithm solves the dynamic optimisation tasks 

without any domain information, apart from the formulation 

of the objective function. In this respect, the Bees Algorithm 

shares the advantages of global search algorithms such as 

Evolutionary Algorithms and Ant Colony Optimisation. 
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