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Abstract: Perception of dynamic environments is the first and most critical step in mobile robots. Without a good 

perception (e.g. mapping) that is close to the true environment of the robot, no accurate navigation or effective 

obstacle avoidance can be accomplished. This paper addresses the occlusion problem that occurs frequently in 

perception of dynamic environments. The use of the Bayesian Occupancy Filter (BOF) to address these issues is 

proposed in this paper. The BOF using a range sensor is implemented and problems encountered during the 

implementation of the BOF are discussed. Simulation results demonstrate the effectiveness of the proposed approach. 

 

1. INTRODUCTION 

   Research on perception of environment has begun since the 

first Adaptive Cruise Control (ACC) system was introduced 

in the market in 1999. However, few results address the 

dynamic characteristics of the environment. The dynamic 

environment, which has obstacles like the human (which is 

the most common moving object that shares the same 

environment as the autonomous vehicle), will affect the 

performance of the localization algorithm, for example, the 

Simultaneous Localization and Mapping (SLAM) [1], or 

trigger ineffective action to avoid obstacles. 

   In this paper, the focus is on the implementation of 

currently available algorithms, such as occupancy grid 

mapping [2] to store environment information, probability 

perception [3] to include uncertainties in measurements, 

Bayes’ theorem [2] to fuse sensor information over time and 

Bayesian Occupancy Filter [4][8] that makes use of the 

classical Bayes Filter to consider the dynamic characteristic 

of obstacles to solve the occlusion problem. 

In autonomous navigation, dynamic obstacles, such as 

humans, sharing the same environment have been causing 

problems in accurate localization and obstacle avoidance for 

autonomous robots.  

Localization requires features or objects of known location 

in order to localize or correct its position. Thus, moving 

objects, if taken as a reference, will cause in localization 

errors. Therefore, a preferred perception will be one that can 

differentiate between static and dynamic obstacles. 

Obstacle avoidance is tedious if obstacles are dynamic. 

Dynamic obstacles can temporarily disappear and reappear 

due to occlusion, thus causing ineffective avoidance 

movement if an obstacle suddenly reappears in front of the 

robot. If the dynamic characteristic of the obstacle is not 

taken into consideration when determining the avoiding 

action, ineffective avoidance may occur.  

 

Tracking [13][14] is commonly used in order to solve the 

aforementioned problems, which in turn leads to data 

association problems such as the list of objects to track or 

objects to delete from the list. In a normal traffic road 

situation, increasing the number of pedestrians causes an 

increase in computational time in tracking, therefore more 

robust and real-time perception is required.  

In robotic perception, there are three ways to consider the 

dynamic objects in the environment: 

The first way is to consider the dynamic object as a static 

object. This method revolves around taking the 

measurements of all obstacles regardless of whether they are 

moving or stationary and it is the easiest way to implement. 

In this case, SLAM cannot be used and obstacle that is 

moving towards the robot cannot be avoided safely.  

The second way is to ignore the dynamic object [3]. If an 

obstacle appears nearer to the robot than expected, the 

readings are discarded. This is done to allow the robot to 

localize itself in a dynamic environment as only static objects 

are considered. The knowledge of the map is an a priori 

precondition for this.  

The common way is to track the dynamic objects using 

multi-target tracking. This method of considering dynamic 

objects is tedious since as dynamic objects increase, the list 

of objects to track increases as well. Thus, it consumes 

significant amount of computational time and is not feasible 

in environments such as a road with other vehicles.     

The perception algorithm that has been chosen to be 

implemented in this project is the Bayesian Occupancy Filter, 

which is derived from the classical Bayes filter [5]. The 

advantages for using the BOF are that it includes 
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uncertainties in sensor measurements, stores information 

such as velocities and positions of obstacles and avoids 

problems in data association and modeling, thus increasing 

the robustness of the system. This algorithm makes use of 

prediction and estimation steps as illustrated in Figure 1 [4]. 

It predicts the probability of occupying a cell given a prior 

information (position, velocity) of a cell and control 

parameters of the robot. The estimation step will then fuse 

the predicted output with the new sensor measurement to 

give input to the next prediction step and the cycle repeats. 

The output of the prediction can be a probability of a cell or a 

map that can be fed into a path planner to avoid obstacles.    

The occupancy map, besides storing the occupancy 

information of the cell, also stores the relative velocity of the 

cell with respect to the robot, hence allowing the robot to 

choose either a static map for localization or a map that 

includes the dynamic obstacles for effective obstacle 

avoidance. 

 
The symbols are defined as follows: 

C : cell information such as position and relative velocity; 

Ec: occupancy of a cell, C; 

U: control parameters of the robot; 

K:  time instance; 

Z:  sensor measurement; 

P(Ec
k
|C

k
U

k-1
): predicted probability of the cell state (occupied 

or empty) given the cell information and the control 

parameters,   

P(Ec
k
|Z

k
C

k
): estimated probability of the cell state (occupied 

or empty) given the cell information and sensor 

measurements. 

     This paper is organized according to the implementation 

of BOF. Section II reviews the sensor model used for the 

range finder in this project. Section III describes the 

implementation of the occupancy grid map which stores 

information such as the positions and velocities of obstacles 

in the field of view. Section IV discusses the velocity 

estimation algorithm that is required to implement the BOF. 

In Section V, the implementation of the BOF is explained. 

Experimental results are presented at the end of every 

section. 

2. SENSOR MODEL 

Ranger finders are commonly used sensors in robotics 

research. In order to include uncertainties in range 

measurements, probability perception which gives the belief 

of each measurement, can be used. This can be done by 

designing a sensor model that the fits the sensor system in 

this project.  

The sensor used in this project is the SICK LMS291 laser 

range finder. From the technical specifications of SICK 

LMS291 laser, the measurement  error is typically +/- 35mm 

at a range of 1 to 20m. This error is negligible in comparison 

to the cell dimension that will be used to store the sensor 

measurements. Therefore, the maximum error in estimating 

the cell position, which is halve of the cell dimension of 

around 5cm,  is used. 

The sensor measurement is modeled using Gaussian 

estimation as shown in (1).  
2

22

1 ( )
( | ) exp( )           (1)
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− −
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where P(Ec
= 

OCC|Z) is the probability of occupancy, OCC, of 

a cell given Z, the distance of the cell from the sensor,  σ
2
 is 

the variance of the system and the Zmean is the measured 

distance. 

3. OCCUPANCY GRID MAPPING 

Occupancy grid map is made up of cells of equal dimension. 

The dimension of a cell is usually 5cm to 20cm for indoor 

robot and 15cm to 50cm for outdoor robot, and it depends on 

the information the robot needs to capture. One example is 

the environment which consists of the legs of a chair and 

tables. In this case, if these legs are considered as obstacles to 

the robot, the diameter of the legs of the chair can be 

considered as the cell dimension. 

 

The information stored in the cell, C, is the probability of the 

state, Ec, of the cell which is either occupied, OCC, or empty, 

EMP. In this paper, the probability of velocity, Vc of the cell 

is also stored in the cell to implement the BOF.  The cell 

probability of occupancy is calculated using the Bayes’ 

theorem as shown in (2), 
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where P(Ec
= 

OCC|Zt+1) is the probability of occupancy, OCC, 

of a cell given the sensor measurement, Z, at time t+1 and 

P(Zt+1| Ec
= 

OCC) is the belief of the measurement Z at time 

t+1 given that the cell is occupied. 

The Bayes theorem accumulates the probability of 

occupancy of a cell using the previous measurement, thus 

increasing its belief if they coincide and vice versa.  

In practice, the cells are indexed [x, y] which enables easy 

updating of sensor measurement after a simple trigonometry 

conversion as shown in (3) and (4). 
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where [ ∗
x , ∗

y ] is the position of the sensor, 
1θ  is the direction 

of the sensor system facing with respect to north, 
2θ  is the 

angle of the laser beam with respect to the sensor system 

and z  is the distance measured by the sensor. 

Figure 1. BOF as a recursive loop 
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Figure 2a shows the environment set up for mapping. The red 

box is the sensor location and the environment is occupied by 

two obstacles (green and blue rectangle) and bounded by two 

black walls at the sides of the sensor. The sensor used here is 

LMS 291 laser with a configuration of 8m range, 0.5º 

resolution and 180º field of view. The red area in Figure 2b is 

the obstacle with probability of occupancy shown by 

different tones of red. The higher the probability of 

occupancy, the brighter the red will be. The area in green is 

the unknown area and the area in black denotes grids that are 

empty. The belief of each sensor measurement, P(Zt+1| Ec
= 

OCC), is given by the sensor model in Section II. The area 

behind the obstacles is unknown thus causing occlusion if 

dynamic obstacles are to travel behind these static obstacles. 

In this case, there will be appearance and disappearance of 

those dynamic obstacles, hence tracking will be difficult. 

4. VELOCITY ESTIMATION 

In order to consider dynamic obstacles, the dynamic 

characteristics or the velocities of the obstacles must be 

estimated. This can be done by tracking objects of the same 

feature at different times. The change in the position of the 

same obstacle over differences in time between 

measurements will give the velocity of each obstacle. In grid 

mapping, the feature modeled using range sensors will vary if 

the obstacle moves,  therefore it is difficult to track the same 

object at different times. In tracking, data association 

problems such as observation to track and management 

(insert or delete) of objects from the list of objects to track 

must be taken care.    

To address this problem, it is assumed that the dynamic 

grid will only move to its surrounding grid and will not 

change speed before it is captured again by the next scan. By 

virtue of these assumptions, the velocity of object can be 

estimated by comparing two maps sensed at different times. 

The mismatched areas of the map will then be used to 

estimate the velocity. In this way, the problem of modeling 

features and data association problems in tracking can be 

ignored. 

 The problem with velocity estimation by using the 

mismatch area is that only parts of a moving obstacle are 

detected. This is illustrated as shown below. 

 

 
 

Therefore, a preprocessing step such as grouping of occupied 

grids that belong to the same obstacle is required and these 

can be done by using the Breath First Search algorithm [6]. 

The cells that are occupied are given identity values and 

neighboring cells are given the same identity value. If a 

velocity is given to a cell, the same velocity is spread to the 

cells of the same identity value. Using this method, the partial 

mismatch problem is alleviated or even removed.      

    In practice, there will be false or missed estimation of 

velocities due to localization errors of the sensors and the 

obstacles. This problem can be reduced by increasing the 

belief of the velocity sensed only after a few similar scans by 

using the Bayes’ theorem. The belief of the velocity 

estimated is modeled using Gaussian distribution of variance 

depending on the velocity of the obstacle with respect to the 

sensor. The higher the velocity estimated, the higher the 

variance is used. This is true as the errors in estimation will 

be higher for fast moving obstacles.    

The environment set up in Figure 4a is similar to Figure 2a. 

The only difference is that the two obstacles in blue and 

green are dynamic. This experiment is set up to estimate the 

velocity of the moving obstacles. The occupancy grid map in 

Figure 4b shows the grids that are dynamic. The velocities of 

these grids estimated vary around 1ms
-1

 which is close to the 

actual velocities of the obstacles. Although false and missed 

estimation of velocity occur, recursive measurement of the 

positions and velocities of the obstacles reduces the errors. 

    There are some limitations to the velocity estimation 

technique used here. The limitations are due to the use of grid 

mapping. The velocities estimated here can only be discrete 

values and slow moving obstacles, of less than 1 grid change 

per millisecond, are sensed only after they have moved for at 

least one grid length. These limitations can be adjusted by 

changing the grid dimension or the time difference between 

measurements. In this project, these limitations can be 

ignored since slow moving obstacles can be considered as 

static obstacles since they pose less danger of obstructing the 

path planned.   

 

Mismatch 

detected 

Obstacle 

Mismatch 

detected 
Figure 3.  Only parts of an obstacle that is moving are 

detected mismatch. 

 

b

Figure 2. a) An environment with a robot (red) and two obstacles 

(green and blue), bounded by two black walls at the sides. b) The 

occupancy grid map of the environment, with unknown area (green), 

obstacles (red) and empty area (black).    

 

a) 
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5.BAYESIAN OCCUPANCY FILTER 

After occupancy grid mapping and velocity estimation are 

done, the BOF can be implemented. The BOF is derived from 

the Bayes Filter with a prediction stage and an estimation 

stage (as shown in Figure 1). The BOF makes use of the 

occupancy grid mapping to store the probability of 

occupancy and estimated velocities of the cells. This method 

of storing the map information allows a user to choose either 

a static map or a dynamic map (map with dynamic 

characteristic such as velocities of the obstacles in the 

surrounding) for processing. The other advantages are that it 

includes uncertainties in measurements and avoids problems 

in data association and modeling thus increasing the 

robustness of the system.  

 

The prediction stage is based on the previous scanned 

result and control input to predict the next output 

measurement as shown in the following equation:  

 

)5(),,( 11 ���wuxfx kkk −−
=    

where xk  is the obstacle position at time k, xk-1  is the obstacle 

position at time k-1, uk−1 is the control input parameters at 

time k-1 and w is the noise of the control input. 

 

The function, f, is the state transition equation. It depends 

on the system used and the control input of the system. If the 

control input parameters, uk are the changes in positions, the 

function, f will be an addition to the prior position xk−1with 

noise, w. In this paper, the control input is the change in 

positions with Gaussian noise of zero mean and variance 

depending on the velocity of the cell.       

 

The predicted measurements are then fused with the 

current measurements using the Bayes’ theorem to give the 

estimated measurements.  

 

In practice, in order to keep the prior map information for 

fusion, a transformation equation is required. It is used to 

transform the prior map to the same reference coordinate 

system as the current map due to movement of sensors. The 

errors (Figure 5) in rounding up during transformation and 

localization will cause false estimation of velocity of 

stationary object.   

   
(a) (b) 

Figure 5. Pictures a) and b) shows segment of a map with errors. Map with 

localization error in a) and rounding up error in b) due to transformation of 

previous map coordinates to new map coordinates.  

 

Figure 5 a) shows a segment of a map with localization error 

which causes multiple updates of the same obstacle at 

different positions. There are a number of ways to reduce 

these errors. One of the ways is to improve the localization of 

the robot using the map built during run time to predict the 

robot’s next position. Classical kalman filter [7][15] can be 

used to fuse the predicted and measured position to give a 

more accurate position. In Figure 5b), the rounding up error 

causes an originally straight obstacle to be broken into 

several parts. These rounding up errors in transformation can 

be reduced by using the occupancy grid map with smaller 

dimension per cell. Another way is to maintain a global map 

to remove the need for transformation which is used in this 

paper.  

The environment in Figure 6 is set up such that temporary 

occlusion will occur. The mobile robot (blue) is moving from 

left to right at 1ms
-1

 in front of the sensor (red). The velocity 

of the mobile robot is estimated during the period while it is 

still visible (from screenshot a1 to b1) to the sensing robot. 

From screenshots c1 to d1, the mobile robot is blocked by the 

wall in front of the sensing robot but the estimated map from 

c2 to d2 is able to predict its movement behind the wall due 

to the prediction stage of the BOF. The mobile robot is 

predicted to be behind the wall in the prediction stage and the 

output (predicted map) is then fused with the new 

measurements to give an estimated map as shown in a2 to f2.  

 After the mobile robot reappears from e1 to f1, the 

measured position of the robot is fused with the predicted 

position, thus correcting the robot’s position shown in the 

estimated maps e2 to f2. These results verify that the BOF 

algorithm does solve the occlusion problem and provide a 

more informative estimated map for obstacle avoidance. In 

practice, missed and false velocity estimation occurs, and it is 

corrected by the new measurement sensed. These errors are 

caused by slow moving obstacles and sensor localization 

errors. 

 

a) 

Figure 4. a) An environment with a robot, in red, and two obstacles, 

in green and blue, moving at 1ms-1 and -1ms-1 along the x-axis 

respectively. b) The occupancy grid map that shows only grids that 

are dynamic (velocity not equals to zero).    

 

b
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                  (a1)                                             (a2) 

      

                  (b1)                                             (b2) 

   

                  (c1)                                             (c2) 

   

                  (d1)                                             (d2) 

    

                  (e1)                                             (e2) 

   

                  (f1)                                             (f2) 

Figure 6) Screenshots of environment (a1 to f1) set up to test BOF and the 

results of the estimated maps are from a2 to f2. Screenshots a1 to a2 show a 

mobile robot (blue) moving from left to right in front of the stationary sensor 

(red). Temporary occlusion (blue robot blocked by the black wall) occurs 

from screenshots c1 to d1. The mobile robot (blue) reappears from 

screenshots e1 to f1. 

 

 

6. OBSTACLES AVOIDANCE 

The output of the BOF can be for path planning such as D* 

algorithm [10] and motion planning [9], obstacle avoidance 

with arc path [11] and vector field histogram [12], 

localization [1] or even information capture. In this paper, the 

BOF is used to output a map for obstacle avoidance. The 

obstacle avoidance algorithm used here is a simple straight 

line speed selection to avoid obstacles in front of the robot. 

The objective of this section is to verify the use of BOF 

output can improve on obstacle avoidance for temporary 

occluded obstacle.  

 

The speed profile used here is a trapezoidal curve as shown 

in Figure 7, with a maximum speed of 4ms
-1

. The obstacle 

avoidance algorithm selects the maximum speed input to the 

robot if the sensor’s front view has a clearance of greater than 

or equal to 4m. The speed selected decreases linearly with 

respect to sensor’s front clearance as shown in (6).        

 

)6(
4

40

max

��





≥

≤≤
=

cw

cc
Speed    

where c  is the clearance in front of the sensor and maxw  is 

the maximum speed allowed. 

 

 
By using this obstacle avoidance approach, the robot is 

able to move in a straight line avoiding dynamic obstacles 

Figure 7) Trapezoidal Speed Profile 

4 

     0 

wmax(ms-1) 

4

Time(s) 

Figure 8) Environment that is set up for straight line obstacle 

avoidance. 

Figure 9) Plot of speed (ms-1) of robot (red) against time 

(ms) 
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blocking its way. The experiment setup is shown in Figure 8. 

The robot (red) is able to avoid the dynamic obstacle (blue) 

even when temporary occlusion occurs. The speed of the 

robot measured is plotted in Figure 9. The sudden change in 

speed at time 111.5ms is due to avoidance of the dynamic 

obstacles that will be blocking the robot before it even 

appears from behind the wall. This is the advantage of using 

Bayesian Occupancy Filter (BOF) in maintaining the 

occupancy grid map. The dynamic obstacles were constantly 

tracked on the grid map which in turn provides a more 

informative map for the obstacle avoidance algorithm to 

avoid obstacles.     

It is shown that the BOF does help to increase the chances 

of avoiding obstacle temporary occluded in a dynamic 

environment. The algorithm is kept simple, thus increasing its 

robustness for situations which have multiple dynamic 

obstacles appearing and disappearing in its field of view. This 

situation will be common in future robotic field where their 

operation environments are usually filled dynamic obstacles 

such as people.    

7. CONCLUSIONS 

In this paper, the problems caused by dynamic obstacles 

sharing the same workspace as the robot are addressed. The 

perception algorithm carried out to solve these problems 

exploits the use of the BOF. The steps involved, such as 

occupancy grid mapping and velocity estimation, are 

discussed. Simulation results using a laser range finder 

mounted on a robot demonstrate the effectiveness of the 

proposed algorithm. After the implementation of the BOF, 

simple straight line obstacle avoidance test is carried out and 

it is proven to increase the robot’s chances of avoiding 

temporarily occluded obstacles. Given its simplicity, the 

robustness of the perception algorithm is achieved even in 

highly dynamic environments.       
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