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Abstract: Ariadne is an in-progress open environment to design algorithms for computing
with hybrid automata, that relies on a rigorous computable analysis theory to represent
geometric objects, in order to achieve provable approximation bounds along the computations.
In this paper we discuss the problem of reachability analysis of hybrid automata to decide
safety properties. We describe in details the algorithm used in Ariadne to compute over-
approximations of reachable sets. Then we show how it works on a simple example. Finally,
we discuss the lower-approximation approach to the reachability problem and how to extend
Ariadne to support it.

1. INTRODUCTION

In many applicative fields there is the need to model
systems having a mixed discrete and continuous behaviour
that cannot be characterized faithfully using either only
discrete or continuous models. This is the case, for exam-
ple, of automotive powertrain systems, where a four stroke
engine is modelled by a switching continuous system and
is controlled by a digital controller. Such systems consist
of a discrete control part that operates in a continuous
environment and are named hybrid systems because of
their mixed nature.

In order to model and specify hybrid systems in a formal
way, Alur et al. (1992) and Maler et al. (1991) intro-
duced the notion of hybrid automata. Intuitively, a hybrid
automaton is a “finite-state automaton” with continuous
variables that evolve according to dynamics characterizing
each discrete node. Of particular importance in the study
of a hybrid automaton is the reachable set, which consists
of all states that can be reached under the dynamical
evolution starting from a given initial state set. Hybrid au-
tomaton states consist of a discrete location paired with a
vector of continuous variables, and therefore they have the
cardinality of continuum. Because of this, the reachable
set is, in general, not decidable, as it has been proved in
Henzinger et al. (1995). Many papers therefore propose ap-
proximation techniques to estimate the reachable set (see
Halbwachs et al. (1994); Dang and Maler (1998); Asarin
et al. (2000); Kurzhanski and Varaiya (2000); Botchkarev
and Tripakis (2000); Silva et al. (2001)). However, even
the computation of approximations to the reachable set is

not straightforward; indeed, it may not even be possible
to compute a sequence of over-approximations convergent
to the reachable set (Collins (2005)).

Many tools have been developed to compute or approx-
imate reachable sets for hybrid systems, using differ-
ent approaches. Tools like Kronos (Daws et al. (1995);
Yovine (1997)) and UPPAAL (Larsen et al. (1997))
compute the reachability relation for systems based on
timed automata. Other tools, such as d/dt (Asarin
et al. (2002)), VeriShift (Botchkarev and Tripakis (2000)),
HSOLVER (Ratschan and She (2007)), HybridSal (Ti-
wari (2008)), and HyTech (Henzinger et al. (1997)) com-
pute approximations to the reachable set for hybrid au-
tomata with linear continous dynamics. PHAVer (Frehse
(2005)) allows to set an arbitrary level of precision; Check-
Mate (Clarke et al. (2003)) can compute approximations to
the reachable set for hybrid automata with non-linear dy-
namics. Additionally, general-purpose tools for set-based
analysis, such as GAIO (Dellnitz et al. (2001)), COSY In-
finity (Makino and Berz (2006)) and Mitchell’s Toolbox
of Level Set Methods (Tomlin et al. (2003)) may be used.
These tools also include many interesting features such as
model checking capabilities or graphical modeling inter-
faces.

However, most of these tools are unable to handle nonlin-
ear dynamics and constraints and have restrictive licences,
and some are even closed source. Without access to the
source code, users can neither customize or optimize them
for a specific class of instances of the reachability problem,
nor check that the algorithms are correctly implemented.
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To overcome these limitations, in Balluchi et al. (2006)
we have recently proposed a framework for hybrid system
verification. This tool, called Ariadne, is a development
environment in which to construct space representation
techniques and algorithms for reachability analysis. It in-
tegrates and implements existing and new algorithms and
representation techniques with a high degree of flexibility
and customization, to let users choose the best methods for
their needs. The package is released as an open source dis-
tribution, so that different research groups may contribute
with new data structures, algorithms and heuristics. In
this paper we concentrate on the algorithm used in Ari-

adne to compute over-approximations of reachable sets.
Because of the modular structure of the package, it can
work with many different types of numeric representations
of real numbers, continuous functions and regions of space.
It can be also easily extended to cover different classes
of hybrid automata. Furthermore, it relies on a rigorous
computable analysis theory to represent geometric objects,
in order to achieve provable approximation bounds along
the computations.

The paper is organized as follows. In Section 2 we briefly
introduce both syntax and semantics of hybrid automata.
In Section 3 we describe the reachability problem and
give possible approaches for its solution. In Section 4 we
describe in details the algorithm used in Ariadne to
compute over-approximations of reachable sets, while in
Section 5 we give a simple example of how the algorithm
works. In Section 6 we discuss the lower-approximation
approach to the reachability problem. Finally, Section 7
ends the paper discussing the current implementation
status and future work.

2. HYBRID SYSTEMS AND AUTOMATA

We first give a formal definition of a hybrid automaton,
based on an underlying discrete automaton.

Definition 1. (Hybrid Automaton). A hybrid automaton
is a tuple H = 〈Q,E,X, Inv ,Dyn,Act ,Reset〉 such that:

(1) 〈Q,E〉 is a finite directed graph; the vertexes, Q, are
called locations or control modes, and the directed
edges, E, are called control switches;

(2) Each location q ∈ Q is labeled by the predicate
Inv(q) on the set X and the transitive relation Dyn(q)
on X × X × R≥0 such that if Inv(q)[p] is true then
Dyn(q)[p, p, 0] is true;

(3) Each edge e ∈ E is labeled by the predicate Act(e) on
X and the relation Reset(e) on X × X.

The predicate Inv(q) is the invariant condition of q, and
Dyn(q) is the dynamic law of q, while Act(e) is the ac-
tivation condition of e and Reset(e) is the reset relation
of e. Dyn(q) is a transitive relation, i.e., ∀x, y, z ∈ X,
Dyn(q)[x, z, t1 + t2] is true if and only if both Dyn(q)[x, y, t1]
and Dyn(q)[y, z, t2] are true.

We specify Inv , Act and Reset by a formula in some
language over the reals, while we use differential equations
to define Dyn. In this setting the dynamic law Dyn(q) of a
location q can be obtained by integrating the correspond-
ing differential equations, with the intuitive meaning that
if Dyn(q)[z, z′, t] holds, then the continuous flow can reach
z′ from z after time t. This definition of hybrid automata is

quite general. As an example, O-minimal hybrid automata
(see Lafferriere et al. (2000); Brihaye et al. (2004)) are a
subclass of our hybrid automata, since we do not impose
restrictions on the formulæ and on the resets, and rectan-
gular hybrid automata (see Henzinger and Kopke (1996))
can be easily mapped into our definition.

Example 1. Consider a tank that is controlled through a
monitor, which continuously senses the water level and
turns the pump on and off. Water enters the tank from
the top and leaves through an orifice in its base. The rate
at which water leaves is proportional to the water level,
denoted by the variable y, and it is such that ẏ = −0.1y.
When the pump is on, the rate at which water enters is
constant and equal to 2.0. Furthermore, from the time that
the monitor signals to change the status of the pump to
the time that the change becomes effective, there is a 2
seconds delay.

An hybrid automaton H = 〈Q, E, X, Inv , Dyn, Act ,
Reset〉, that models this example, is depicted in Figure 1.
The automaton has four locations: in locations q0 and q1

the pump is turned on, while in locations q2 and q3 the
pump is turned off. The continuous state variable x is used
to model the delays, while the continuous state variable y
is the water level. The monitor signals to stop the pump
when the water level raises to 10 and signals to start the
pump when the level decreases to 4.5.

q0

ẋ = 1
ẏ = 2 − 0.1y

y ≤ 10

q1

ẋ = 1
ẏ = 2 − 0.1y

x ≤ 2

q2

ẋ = 1
ẏ = −0.1y

y ≥ 4.5

q3

ẋ = 1
ẏ = −0.1y

x ≤ 2

y = 10
x := 0

x = 2

y = 4.5
x := 0

x = 2

Fig. 1. Water level monitor.

In Section 5 we will show how this hybrid automaton can
be analyzed using Ariadne.

To formalize the semantics of hybrid automata, we first
need to define the concept of hybrid automaton’s state.

Definition 2. (Hybrid Automaton - States). Let H be a
hybrid automaton. A state ℓ of H is a pair 〈v, r〉, where
v ∈ Q is a location and r ∈ Rk is an assignment of values
for the continuous variables. A state 〈v, r〉 is said to be
admissible if Inv(v)[r] holds.

Intuitively, an execution of a hybrid automaton corre-
sponds to a sequence of transitions from a state to an-
other. Hybrid automata have two kinds of transitions: con-
tinuous reachability transitions, capturing the continuous
evolution of a state, and discrete reachability transitions,
capturing the changes of location. More formally, we can
define hybrid automaton semantics as follows.

Definition 3. (Hybrid Automaton - Semantics). Let H be
a hybrid automaton. The continuous transition relation
t
−→C between admissible states, where t ≥ 0 is the elapsed
time of the transition, is defined as follows:
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The chain-reachability algorithm of Ariadne takes as
inputs an hybrid automaton, a finite (hybrid) grid, an
initial set and a bounding set (represented as sets of cells of
the hybrid grid). It computes an over approximation of the
infinite-time chain-reachable set of the automaton starting
from the initial set and staying withing the bounding set.
Since the infinite-time chain-reachable set of an hybrid
automaton is (in general) not computable, we need to
constrain the search space of the algorithm to assure
termination. In our case, by giving a bounding set we
restrict the algorithm to a bounded region of space that
can be represented by a finite number of cells of the grid.
The grid is used also to control the precision of algorithm
(the finer the grid, the more accurate the computed region)
and to store inputs, outputs and intermediate results by
using a constant amount of memory (a region in a grid is
represented by marking the corresponding cells).

The chain-reachability algorithm alternates continuous
evolution and discrete evolution of the automaton until
a fixpoint is reached, and it proceeds as follows.

(1) Start from the initial set and compute the continuous
evolution of the automaton as long as possible. Mark
the cells of the grid that are touched during the
continuous evolution.

(2) When no more cells can be marked, compute a single
discrete evolution step. Mark the new cells of the grid
that are reached by the discrete step.

(3) If new cells are reached, go to (1). Otherwise, stop.

The algorithm terminates since the bounding set is divided
into a finite number of cells by the underlying grid. Hence,
after a finite number of steps either no more cells are
marked or the whole search space is marked. In the
following we describe in details how the continuous and
the discrete evolution of an hybrid automaton is computed
in Ariadne.

4.1 Computing the continuous evolution

The continuous evolution of the system is computed by
means of an integrator. Ariadne’s modularity allows
the user to choose between different types of integrators
included in the tool (we currently have an integrator
for affine systems, the Euler integrator, and the Lohner
integrator), or to add new custom integration methods.

Given a location q ∈ Q of the hybrid automaton, the
computation of the continuous evolution in q starts from
a set of cells of the hybrid grid and proceeds as follows.
First, the initial set of cells is approximated as a union of
basic sets. Then each basic set is integrated for a number
of integration steps using the dynamic law Dyn(q). The
length of the integration step is adaptively determined,
between user-specified minimum and maximum values. If
a basic set becomes too large, the error in the evolution
step becomes large, and the basic set may be subdivided
to avoid catastrophic loss of accuracy. Finally, after a
specified number of integration steps, the evolved sets are
over-approximated or “locked” back to the grid. Figure 3
depicts this procedure.

Locking to the grid causes a loss of accuracy due to the
over-approximation, but it is necessary for termination.
After locking to the grid, the algorithm checks if new

Fig. 3. Integration of a basic set with integration step h.

cells have been reached or not. In the former case, it
continues with the integration phase starting from the
newly reached cells. In the latter case, a fixpoint in the
continuous evolution of the system has been reached and
a number of “snapshots” of the system evolution have
been computed, one for each locking-to-grid phase. The
algorithm ends with a reachability step that computes an
over approximation of the flow of the system starting from
such snapshots. This last step is explained in Figure 4.

Fig. 4. Computing the flow of the system.

4.2 Computing the discrete evolution

Computing the discrete evolution of an hybrid automaton
is simpler than computing its continuous evolution. Given
an hybrid set of reached cells, we proceed as follows.

(1) For every control switch e ∈ E we determine the set
of cells that intersects with Act(e);

(2) if such set is not empty, we apply the reset function
Reset(e) to obtain the set of cells reached by the
transition.

The discrete evolution of the system is computed using
upper semantics: when there are multiply enabled tran-
sitions, or when the system exhibits grazing (tangential
contact between a reached region and an activation set),
the system evolves nondeterministically with all possible
courses of action being taken. This guarantees that every
point that can be reached by the automaton is included
in the result, and thus that the algorithm computes an
over-approximation of the reachable set.

5. AN EXAMPLE

In this section, we present a test case of reachability
analysis for the hybrid automaton H defined in Example 1.
The automaton models a water level monitor system:
suppose that we start from an empty tank and that we
want to guarantee that the water level is always between
3 and 13, except for the initial phase.

We start the reachability algorithm of Ariadne from the
initial location q0 with initial values for the continuous
variables x = 0 and y = 0. The first step of the algorithm is
the computation of the continuous evolution of the system
in the location q0, that is depicted in Figure 5.a. During
this phase, the water level increases up to 10. Then, the
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algorithm checks if there are active transitions. In this
case, we have that the transition 〈q0, q1〉 is active: the
controller signals to switch off the pump and goes to
location q1. The reset function of 〈q0, q1〉 is applied: x is
reset to 0, y keeps its value (10) and the computation
of the continuous evolution starts again from location q1.
Figure 5.b portraits the reach set after the continuous
evolution in q1.

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

q0
(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

q0

q1

Fig. 5. Computing the continuous evolution in q0 and q1.

The water level continue to increase during the 2 seconds
delay, then the transition 〈q1, q2〉 is activated: the pump
is switched off and the water level decreases following
the dynamics of location q2, until it reaches 4.5 (see Fig-
ure 6.a). Then the controller signals to switch on the pump:
transition 〈q2, q3〉 is activated and the continuous evolution
of the system proceeds in location q3. When the compu-
tation of this last continuous evolution is terminated the
algorithm activates the transition 〈q3, q0〉. By doing this
the system reaches a region that has been reached already
during the computation of the continuous evolution in q0.
Hence, a fixpoint has been found: the algorithm stops and
returns the reached set depicted in Figure 6.b.
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q2 (b)
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q1
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Fig. 6. Computing the continuous evolution in q2 and q3.

It is easy to see that, except for the initial phase, the water
level is always between 3 and 13, and thus that the safety
property we want to check is verified.

An over-approximation of the system evolution for a
certain time can be computed by adding a new time
variable t to the hybrid automaton (its dynamics is ṫ = 1
in every discrete location and its value is never reset by

 0
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Fig. 7. Evolution of the water level with respect to time.

discrete transitions). Figure 7 represents the evolution of
the water level for 40 time units. The system shows an
oscillating behaviour that keeps the water level into the
desired boundaries. Since we added a new variable to
the automaton, Figure 7 is not directly comparable with
the previous pictures. In particular, the solution’s loss of
precision over time is caused by over-approximation errors
on the new variable t, and cannot be completely eliminated
even by increasing the precision of the algorithm.

6. LOWER APPROXIMATION

In the previous sections we have described how Ariadne

computes over-approximations of reachable sets. However,
there are some cases where over-approximations are not
sufficient to determine if a system is safe or not. Let
ϕ be a safety property, R ⊆ Q × X an initial set, and
suppose that we have computed an over-approximation S
of ReachSetH(R). If S ⊆ Sat(ϕ), we can conclude that
the system is safe. However, if S * Sat(ϕ) we cannot say
anything about the safety of the system: it could be the
case that the system is safe, but the points in S \ Sat(ϕ)
have been included in S because of over-approximation
errors.

A possible way to determine if a system is unsafe is to
compute an under-approximation of the reachable set, that
is, a set S ⊆ ReachSetH(R). In this case, if S * Sat(ϕ) we
can conclude that the system does not satisfy the safety
property ϕ. Unfortunately, in most cases, it is not possible
to compute an under-approximation of the reachable set,
or we have that the only possible under-approximation
is the empty set (this is the case, for instance, of single
points and single trajectories). To overcome the problems
with under-approximations, and to establish whether a
system respect a safety property in a sufficiently large
class of practical applications, we are currently extending
Ariadne to support lower-approximations of reachable
sets. Given a set T ⊆ Q × X, a lower-approximation of
T is any finite union of basic sets S =

⋃n

i=1
Si such that

for every i = 1, . . . , n, Si ∩ T 6= ∅ (there is at least one
point of T in each Si). Now, let ϕ be a safety property
and R ⊆ Q × X be an initial set. If S =

⋃n

i=1
Si is a

lower-approximation of ReachSetH(R) and there exists an
Si that is completely disjoint from Sat(ϕ), we can conclude
that there is at least one point of ReachSetH(R) that sits
outside Sat(ϕ), and thus that the system is unsafe.

Computing lower-approximations of reachable sets is
harder than computing over-approximations. Additional
care should be taken in order to guarantee that the com-
puted set is indeed a lower-approximation of the reachable
set. The main problems that arise are the following.

• During the computation of the continuous evolution
basic sets cannot be split. If B is a basic set of a
lower-approximation of ReachSetH(R) (that is, B is
such that B∩ReachSetH(R) 6= ∅) and we split it into
B1 and B1, it is not guaranteed that both B1 and B2

satisfy the lower-approximation property.
• During the computation of the discrete evolution of

the system, if there are multiply enabled transitions,
or if the system exhibits grazing, it may be impossible
to determine whether a transition is really activated
or not.
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All these problems should be considered and correctly
solved in order to obtain an algorithm that computes
lower-approximations of reachable sets.

7. CONCLUSION

In this paper we described the algorithm used in Ari-

adne to compute over-approximations of reachable sets of
hybrid automata. We discussed also how to extend it to
support lower-approximations as well.

Currently Ariadne supports both linear and non-linear
discrete-time systems, continuous-time systems and hybrid
systems in its C++ kernel. For all these systems it can
compute over-approximations of the evolution and of the
reachable set. A Python scripting interface is available
and can be used for a fast and easy modeling and testing
of real-world applications. We are working on extending
the evaluation engine in order to fully support lower-
approximations and timed reachability for hybrid system,
and higher-order algorithms for discrete transitions.
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