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Abstract: On developing modern robot systems, intellectual robots can be designed as multiple modules, 
where the module means the autonomous hardware units performing robot specific tasks. Further, each 
module can be connected with non-unified network interfaces due to a heterogeneous feature of robot 
system. In this manner, one of technical challenges is interoperability to support stable and effective 
communication between such disparate devices. Focusing on this issue, this paper proposes a middleware 
named HERM (Heterogeneous nEtwork-based Robot Middleware). HERM is divided into three layers; (i) 
Network Interface Layer, which abstracts various heterogeneous network interfaces as logical channels, 
(ii) Network Adaptation Layer, which provides addressing strategies and routing service for 
communication between modules, and (iii) Application Support Layer, which manages robot applications 
and transforms application data into a standard format for transmitting over a network. By this layered 
design, HERM provides standardized interfaces to control various heterogeneous network devices, 
supporting transparent and facilitates integration of different module which constitute a robot system. The 
results of implementation and experiment show that HERM is suitable for a module-based robot. 

 

1. INTRODUCTION 

Recently, the interest of robotics research has been moving 
from conventional industrial robots to intellectual service 
robots (Cho et al. 1999). Traditional robots focusing on 
uniform and repeatable tasks are viewed a centralized system, 
which processes all tasks in a processor. On the other hand, 
the intellectual robots are equipped with a number of sensors, 
actuators, and vision devices to provide diverse services. 
Since the number of devices that can be connected to a robot 
is limited to the number of I/O ports a processor supports 
(Taira et al. 2005), the intelligent robots might be difficult to 
be designed as only one centralized system. In this manner, 
they can be designed as a module-based system, where the 
module means the autonomous hardware units performing 
robot specific tasks as shown in Fig. 1. The modular robotics 
systems model robot resources as distinct functional modules. 
In addition, they might be efficient, both in parallelism 
implied by many resources operating at once and in the 
increased usage of resources (Fryer et al. 1997; Dubek et al. 
2003).  

In a modular robot system, each module can be connected 
with a variety of heterogeneous I/O interfaces. Actually, 
since bandwidth required for distinct task execution in each 
module might be different, there is high demand for 
heterogeneity of network interfaces. This makes the 
development of robot’s applications non trivial task, because 
developer often cannot predict on what platform the 
application would be deployed and what network interface 

will be available. In consequence, the integration of such 
heterogeneous devices is required for modular robotics 
research. 

In general, the solution for integration of heterogeneous 
system is to use middleware (Bermstein 1996). There are a 
number of middleware solutions, which have been studied in 
present like DCOM, ICE, and CORBA. However, they have 
lack of support for heterogeneous network. Even though there 
exist several network interfaces which supports IP like IPv6 
over IEEE 1394, those middleware does not consider 
mandatory network such as CAN for real-time control of 
robot and cannot facilitate to attach new device, not 
supporting IP into the given framework. In addition, the main 
focus of middleware so far is to provide application-specific 
services. Therefore, conventional middleware seems to be 
unsuitable for a robot system supporting various 
heterogeneous network interfaces such as USB, IEEE 1394, 

 

 
Fig. 1. The Concept of Modular Robot System 
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CAN, RS232C and Ethernet. In this manner, it is necessary to 
develop new middleware supporting interoperability for 
module-based robot connected through various network. 

In this paper, we propose a communication middleware 
named HERM (Heterogeneous nEtwork-based Robot 
Middleware) for a module-based robot system with various 
heterogeneous network interfaces. HERM consists of the 
three core parts; (i) Network Interface Layer (NIL), (ii) 
Network Adaptation Layer (NAL), and (iii) Application 
Support Layer (ASL). By this layered design, HERM 
provides standardized interfaces to control various 
heterogeneous network devices, supporting transparent and 
facilitates integration of disparate modules which constitute a 
robot system. The results of implementation and experiment 
show that HERM is suitable for a module-based robot.  

This paper is organized as follows. In the following Section, 
we explain the concept of distributed module-based robot 
system. We then present our proposed middleware 
architecture in Section 3. Section 4 explains interoperability 
between modules. In Section 5, we show implementation of 
our middleware. Conclusions are drawn in the last Section. 

2. DISTRIBUTED MODULE-BASED ROBOT SYSYEM 

This section considers a distributed module-based robot 
systems. The term “module” is used to define a self-
contained component of a robotic system that provides a 
robot-specific service. Usually modules are associated with 
hardware components assuming that one hardware 
component provides one robot-specific service. Such 
association is derived from real-time requirements of most 
robot tasks. However, since an application area of intellectual 
robots could demand non-real-time tasks assuming that one 
hardware component could contain several software 
components with each providing a robot-specific task. 
Therefore, further on term “module” can also regards a 
software component that provides a robot-specific task. In 
this paper, we define the module as an autonomous hardware 
unit performing robot specific tasks. 

There are two main approaches for designing robotic systems 
from the point of view of hardware architecture.  

The first one is a centralized architecture and the second one 
is a distributed architecture (Taira et al. 2005). The 
centralized architecture views a robot as a single hardware 
part containing one or several modules. The centralized 
architecture has an advantage of simplicity in a software 
development. However, there are many weak points to 
distributed approach such as the adaptability of such robotic 
systems would decrease with increasing a complexity and a 
number of peripheral devices. Also reliability of a whole 
system would depend on how well a central part performs its 
services. The distributed architecture views a robot as a 
network of several autonomous modules. Each module 
contains one or several I/O interfaces. Modules could freely 
be added or removed from network providing an expansion 
or a reduction of functionality of a robotic system. 

Advantages of the distributed architecture are a potential for 
adaptability and reliability based on a redundancy of services 
from the point of view their physical location. The main 
disadvantage of distributed systems is complexity in software 
design.  

This paper considers robot as a distributed architecture. The 
robot is a network of independent modules connected by 
network interfaces with each other. Currently, there are 
several network interfaces suitable for use in robotic systems, 
such as Ethernet, USB, CAN, RS232 and IEEE1394. Several 
interfaces could be used for connecting different types of 
nodes according to different demands. For example, CAN 
interface could be used to meet high reliability demands 
while Ethernet could be used for an integration of a robot to 
the home LAN and IEEE1394 for multimedia purposes. 
Other reason for use of several network interfaces is to 
provide a redundancy of connections between modules in 
order to meet reliability demands of a robotic system. In 
order to achieve modularity it is necessary to provide an 
interface for modules communications. Such interfaces are 
known as middleware (Bernstein. 1996).  

The middleware for distributed module-based robot systems 
should handle following tasks: handling addition and removal 
of modules, abstraction of heterogeneous network interfaces, 
modules discovery and routing between modules, 
communication protocol and marshalling. 

This paper proposes a middleware for distributed module-
based robot systems with heterogeneous network interfaces 
called HERM (Heterogeneous nEtwork-based Robot 
Middleware). Following section describes the architecture of 
HERM. 

3. THE ARCHITECTURE OF HERM 

In this section, we describe the software architecture of 
HERM in detail. As shown in Fig. 2 below, HERM consists 
of three layers; Network Interface Layer (NIL), Network 
Adaptation Layer (NAL), and Application Support Layer 
(ASL). NIL is responsible for abstracting various 
heterogeneous network interfaces. It defines a logical unit 
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Fig. 2.  The Architecture of HERM. 
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called channel and wraps network-dependent programming 
interfaces to control each network interface up in interfaces 
which channel provides such as open, control, read, write, 
and close. On the other hand, NAL copes with 
communication between modules in a module-based robot 
linked through the disparate devices. For stable and effective 
communication, NAL provides addressing strategies and 
routing service for which network-dependent properties such 
as bandwidth and maximum transmission unit (MTU) are 
considered. Finally, ASL registers robot applications 
presented in a local or remote module into an Application 
Table and periodically manages them. Further, it takes a role 
in presenting application data into a standard format for 
transmitting over a network.  The following Sub-Sections 
give more detailed description of each layer in sequence of 
bottom-to-top. 

3.1 Network Interface Layer 

Network Interface Layer (NIL) is mainly responsible to 
provide a unified access to various network interfaces such as 
CAN, IEEE 1394, USB, RS232C, and Ethernet to an upper 
layer. In other words, none of the upper layer concerns what 
kinds of network interface are connected. To abstract network 
interfaces, NIL creates or terminates a logical channel along 
with a request from the upper layer. After creating the 
channel, NIL stores and maintains it in a Channel Table. 
Each channel wraps network-dependent interfaces to control 
real network interfaces and provides common control 
interface such as open, control, read, write, and close. In 
addition, fragmenting and re-assembling messages are also 
responsibility of NIL because, in some case, the size of a 
message is not suitable for particular network interface like 
CAN. 

3.2 Network Adaptation Layer 

Network Adaptation Layer (NAL) provides addressing 
strategies to indentify each module and routing service for 
communication between modules. By static or dynamic 
addressing strategy, a module should assign a unique address 
that allows identifying and locating any other modules. Static 
addressing is to directly assign it through a pre-defined 
address pool, while dynamic scheme needs negotiation with 
other modules. After addressing, each module recognizes 
other modules through a routing algorithm based on distance-
vector. Especially, that algorithm supports multiple routing 
metrics including hop count, bandwidth, and MTU to 
consider heterogeneous network interfaces.  

3.3 Application Support Layer 

Application Support Layer (ASL) manages robot application 
objects (APOs) and performs binding between APOs. In ASL, 
application objects are separated into two types; remote and 
local. Remote type of APOs acts as a proxy APOs to provide 
transparency to local APOs. Hence, an actual execution of a 
proxy APO is fulfilled in a remote APO and then an 
execution result of the proxy APOs is asynchronously 

forwarded to the local APO executing the proxy APO 
through call-back interface after the completion of the 
execution request. With regard to binding between APOs, 
ASL is capable of discovering other APOs by issuing queries 
based on broadcast and of binding local APOs with the 
discovered APOs.  

4. INTEROPERABILITY BETWEEN MODULES 

4.1 Abstracting heterogeneous network interface 

When a local module perceives a new module, NAL need a 
way to access to the new module. And NAL should use the 
network interface transparently without concerning kinds of 
network interfaces. In this respect, NIL provides IOChannel 
abstracting heterogeneous network API as a logical channel. 
A class diagram indicating relationship between devices and 
channels is shown in Fig. 3. As shown in Fig. 3, to make 
diverse devices as a common interface, design patterns 
(Gamma et al. 1999) such as abstract factory, factory method, 
and flyweight are applied. And for special channels capable 
of fragmenting and re-assembling messages, decoration 
pattern (Gamma et al. 1999) is employed.  

On a basis of the structure, interaction among devices and 
channels to create a new IOChannel is preceded as illustrated 
in Fig 4. When a client, which can be NAL, ASL, or APOs, 
wants make a new IOChannel, it requests creation of a new 
channel with a common device address and a device name to 
IO manager responsible for managing IODevices and 

Fig. 3. A class diagram indication relationship among diverse 
devices and channels (simple diagram) 

Fig. 4. Interaction Diagram of Creating IOChannel for 
IEEE1394 (simple diagram) 
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IOChannels. On receipt of the request, the IO manager finds 
an IODevice having the same name as the passed device’s 
name. Note that, from the viewpoint of IO Manager, the 
found  

IODevice is not the type of IEEE1394 IODevice but the type 
of a base class that abstracts details of diverse network 
interface. Finally, the IO manager forwards the request to the 
IEEE1394 IODevice. The IEEE1394 IODevice creates a new 
IOChannel using the passed device address and subsequently 
returns the IOChannel to the clients. 

4.2 Module  Discovery  

Before recognition of remote modules, each module has to be 
identified as a unique address. To assign an address, NAL 
selectively uses two kinds of strategies. As the first strategy 
is static module addressing, each MId is assigned through 
pre-defined addresses to the categorized modules such as 
main controller module, right/left arm module, vision module, 
or sensor module. On the other hand, the dynamic addressing 
strategy is accepted for the case that behaviour of a module is 
not categorized. In this strategy, a module randomly creates a 
MId and broadcasts message with the generated address to all 
modules over a network. If another module is already using 
the corresponding MId, the module broadcasts to inform 
duplication of the address. Then, the module created the 
duplicate address randomly creates a new MId and broadcasts 
the address information until there should be none address 
collision. 

The routing of HERM is similar to distance-vector routing 
protocol. Each module constructs a vector containing the 
costs (distances) to all other modules and a forwarding list in 
which passing network interface’s information is contained 
(i.e. one cost and one forwarding list is a pair to build the 
routing table) and gives that vector and list to immediate 
neighbor modules via all channels. The module receiving the 
pairs, then updates own routing table. A routing table 
contains the following information; (i) destination module 
address, (ii) next channel index, (iii) routing costs, (iv) hop 
count, and (v) forwarding list. If the pair information has new 
destination, the module adds a routing entry into own routing 
table and put corresponding information into it. For example, 
when a module receives the pair, (8, CAN2.0) for the remote 
module, 0x42 via the second channel with Ethernet interface, 
it adds the routing entry, (0x42, 02, 8 plus computed cost, 2, 
CAN2.0-Ethernet). Even though a module receives that 
information by multiple channels, it has to update that routing 
table as well. In other words, multiple paths can be generated 
in a routing table. In addition, the pairs according to passed 
interface’s bandwidth and MTU are also updated. After 
updating, a module also sends the updated pairs whenever a 
triggered update from another module causes it to change its 
routing table. In accordance with such repeatable procedure, 
all the modules recognize other module’s existence in a robot 
system. 

4.3  Routing Scheme between modules 

When data reaches arrives at NAL, a module needs to be able 
to look at a data’s destination and then determines which of 
the channels is the best choice to get the data. The module 
makes this decision by consulting a routing table. The routing 
algorithm of HERM supports multiple routing metrics 
including hop count, bandwidth and MTU to find the lowest-
cost path between any two modules connected through 
heterogeneous network interfaces. To compare routing costs 
between multiple routes, a formula (1) below is adjusted, 
wherein n, c, D, M, B equals to hop counts, relative 
coefficient for delay, total size of packet, MTU, bandwidth.  

(1) 

Routing metrics for each interface is given in Table 1. On 
routing, the cost can become different whenever data sends to 
any module, because it depends on the total size of packet as 
known through that formula above. To provide efficient 
routing, static costs for routing maintain in routing table. It is 
derived from a case that Di/Mi always equals to 1. After NIL 
receives the data, it checks whether fragmentation is 
necessary. If so, the data is divided into several packets and is 
sent to the desiring module through a physical medium of the 
corresponding channel. 

Table 1. Routing Metrics for Network Interfaces 
Interfaces Bandwidth(bps) MTU(byte) Cost 

UBS 1.1 12,000,000 1023 19 

USB 2.0 480,000,000 1024 3 

IEEE 1394a 400,000,000 4096 4 

IEEE 1394b 800,000,000 8192 1 

CAN 2.0 A / B 1,000,000 8 30 

ETHERNET 100,000,000 1500 10 

RS232C 19,200 32 (user-defined) 47 

 

5. IMPLEMENTATION AND EXPERIMENTS 

The proposed structure has been implemented using C++ 
with Ethernet, IEEE1394, CAN 2.0A, and RS232C as a 
network interface. To exemplify HERM, we developed a 
remote application for regularly transmitting sensed value to 
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Fig. 5. Testbed Configuration for HERMES’s Experiment
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any remote module, and a local application reading sensor 
value. 

5.1  Testbed Configuration 

In order to demonstrate HERM, we have built up a testbed. 
As shown in Fig. 5, four modules are connected with 
heterogeneous network interfaces, RS232C, IEEE1394, 
Ethernet, and CAN. The system specification for each 
module is given in Table 2 running the Windows XP 
operating system. Additionally, one embedded board with 
AVR Atmega 128 MCU is connected with the sensor module 
via RS232C and it contains SRF04 ultrasonic sensor. Note 
that we assume wheel and camera depicted in Fig. 5 virtually 
exist.  

Table 2. System Specifications for Testbed 
Module System specifications 
Sensor Pentium IV 1.6GHz, 512MB (RAM) 

Main controller AMD Sempron™ 2800+ 1.61GHz, 1GB  
Vision Intel Pentium IV 1.5GHz, 512MB  
Mobile AMD Sempron™ 2800+ 1.61GHz, 512MB  

5.2  Experimental Scenario 

In this subsection, we show how HERM In this sub-section, 
we show how HERM supports interoperability in a module-
based robot system linked with non-unified interfaces. To 
verify interoperability, we experimented on a scenario about 
communication between modules. In scenario, every module 
periodically transmits sensed data to the main controller 
module via each network interface. As shown in Fig. 6 below 
when the vision module sends data, it has to pass through 
mobile module, because there is any interface to directly 
connect with main controller module. Therefore, the mobile 
module has to be operated as a router module. We assumed 

all the modules assign their addresses by the static addressing 
strategy introduced in Section 4.  

Ultrasonic sensor regularly sent a sensed value every 30 
seconds to the sensor module via RS232C. This value arrived 
at the local application object in the module. For delivering 
this value to a remote module, we set that if the sensor 
module gathers ten sensing values, it starts to send them to 
the main controller module, using a remote application object. 
When the sensor module sent the data through the second 
channel, RS232C, it was fragmented into two packets 
because of MTU. On the other hand, the vision module also 
sent the vision information to main module via the mobile 
module every 60 seconds. To cope with this, we set timer in 
the remote application in the mobile module. We assumed 
that the size of the information is 100 bytes. This data was 
sent through the first channel, IEEE 1394. After the mobile 
module received the data from the second own channel, IEEE 
1394, it then reassembled two packets into one. Since the 
data is not for the mobile module, it starts to routing service. 
As shown in Fig. 6, the mobile module maintains a routing 
entry for destination of the main controller module, 0x4E. 
Therefore, the data was forwarded through the first channel, 
Ethernet. Finally, the main controller module periodically 
received data from distributed modules. As we have shown in 
this section, the proposed middleware works well under 
heterogeneous and distributed environment.  

5.  CONCLUSIONS 

Module-based robot concept enables a robot system to make 
a distributed network-based structure. Due to feasible 
structure that a module can be easily exchanged, added, or 
removed, the module-based robot system contributes on 
reducing complexity and engineering costs followed by 
system integration, operation, and maintenance. Focusing on 
module-based robot, this paper proposed the middleware 
called HERM (Heterogeneous nEtwork-based Robot 
Middleware). HERM consists of three layers; Network 
Interface Layer (NIL), Network Adaptation Layer (NAL), 
and Application Support Layer (ASL). Based on the layered 
design, HERM provided standardized interfaces to control various 
heterogeneous network devices, supporting transparent and 
facilitates integration of disparate modules which constitute a robot 
system. To verify the proposed architecture, it has been 
implemented using C++ and some experiment scenarios have 
been achieved. Consequently, HERM can be adaptable for 
module-based robot system and help robot application 
developers to weave applications without dependency of 
network interfaces.  
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