

The Software Architecture for Module-based Robot System Supporting
Heterogeneous Network Interfaces

Kwang Koog Lee*, Seong Hoon Kim*, Vitaly Li, Sun Hee Choe*, Hong Seong Park*, Sung Hoon Kim**

Jung Bae Kim (RSA)**

*Electronics and Telecommunication Engineering Department, Kangwon National University, Chun-Cheon, Korea, (e-mail:
kwangkooglee@gmail.com, {bs99018, shchoe}@control.kangwon.ac.kr, hspark@kangwon.ac.kr)
** Intelligent Robot Research Division, Electronics and Telecommunication Research Institute,

Daejun, Korea, (e-mail: {saint, jjkim}@etri.re.kr)

Abstract: On developing modern robot systems, intellectual robots can be designed as multiple modules,
where the module means the autonomous hardware units performing robot specific tasks. Further, each
module can be connected with non-unified network interfaces due to a heterogeneous feature of robot
system. In this manner, one of technical challenges is interoperability to support stable and effective
communication between such disparate devices. Focusing on this issue, this paper proposes a middleware
named HERM (Heterogeneous nEtwork-based Robot Middleware). HERM is divided into three layers; (i)
Network Interface Layer, which abstracts various heterogeneous network interfaces as logical channels,
(ii) Network Adaptation Layer, which provides addressing strategies and routing service for
communication between modules, and (iii) Application Support Layer, which manages robot applications
and transforms application data into a standard format for transmitting over a network. By this layered
design, HERM provides standardized interfaces to control various heterogeneous network devices,
supporting transparent and facilitates integration of different module which constitute a robot system. The
results of implementation and experiment show that HERM is suitable for a module-based robot.

1. INTRODUCTION

Recently, the interest of robotics research has been moving
from conventional industrial robots to intellectual service
robots (Cho et al. 1999). Traditional robots focusing on
uniform and repeatable tasks are viewed a centralized system,
which processes all tasks in a processor. On the other hand,
the intellectual robots are equipped with a number of sensors,
actuators, and vision devices to provide diverse services.
Since the number of devices that can be connected to a robot
is limited to the number of I/O ports a processor supports
(Taira et al. 2005), the intelligent robots might be difficult to
be designed as only one centralized system. In this manner,
they can be designed as a module-based system, where the
module means the autonomous hardware units performing
robot specific tasks as shown in Fig. 1. The modular robotics
systems model robot resources as distinct functional modules.
In addition, they might be efficient, both in parallelism
implied by many resources operating at once and in the
increased usage of resources (Fryer et al. 1997; Dubek et al.
2003).

In a modular robot system, each module can be connected
with a variety of heterogeneous I/O interfaces. Actually,
since bandwidth required for distinct task execution in each
module might be different, there is high demand for
heterogeneity of network interfaces. This makes the
development of robot’s applications non trivial task, because
developer often cannot predict on what platform the
application would be deployed and what network interface

will be available. In consequence, the integration of such
heterogeneous devices is required for modular robotics
research.

In general, the solution for integration of heterogeneous
system is to use middleware (Bermstein 1996). There are a
number of middleware solutions, which have been studied in
present like DCOM, ICE, and CORBA. However, they have
lack of support for heterogeneous network. Even though there
exist several network interfaces which supports IP like IPv6
over IEEE 1394, those middleware does not consider
mandatory network such as CAN for real-time control of
robot and cannot facilitate to attach new device, not
supporting IP into the given framework. In addition, the main
focus of middleware so far is to provide application-specific
services. Therefore, conventional middleware seems to be
unsuitable for a robot system supporting various
heterogeneous network interfaces such as USB, IEEE 1394,

Fig. 1. The Concept of Modular Robot System

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12685 10.3182/20080706-5-KR-1001.4026

CAN, RS232C and Ethernet. In this manner, it is necessary to
develop new middleware supporting interoperability for
module-based robot connected through various network.

In this paper, we propose a communication middleware
named HERM (Heterogeneous nEtwork-based Robot
Middleware) for a module-based robot system with various
heterogeneous network interfaces. HERM consists of the
three core parts; (i) Network Interface Layer (NIL), (ii)
Network Adaptation Layer (NAL), and (iii) Application
Support Layer (ASL). By this layered design, HERM
provides standardized interfaces to control various
heterogeneous network devices, supporting transparent and
facilitates integration of disparate modules which constitute a
robot system. The results of implementation and experiment
show that HERM is suitable for a module-based robot.

This paper is organized as follows. In the following Section,
we explain the concept of distributed module-based robot
system. We then present our proposed middleware
architecture in Section 3. Section 4 explains interoperability
between modules. In Section 5, we show implementation of
our middleware. Conclusions are drawn in the last Section.

2. DISTRIBUTED MODULE-BASED ROBOT SYSYEM

This section considers a distributed module-based robot
systems. The term “module” is used to define a self-
contained component of a robotic system that provides a
robot-specific service. Usually modules are associated with
hardware components assuming that one hardware
component provides one robot-specific service. Such
association is derived from real-time requirements of most
robot tasks. However, since an application area of intellectual
robots could demand non-real-time tasks assuming that one
hardware component could contain several software
components with each providing a robot-specific task.
Therefore, further on term “module” can also regards a
software component that provides a robot-specific task. In
this paper, we define the module as an autonomous hardware
unit performing robot specific tasks.

There are two main approaches for designing robotic systems
from the point of view of hardware architecture.

The first one is a centralized architecture and the second one
is a distributed architecture (Taira et al. 2005). The
centralized architecture views a robot as a single hardware
part containing one or several modules. The centralized
architecture has an advantage of simplicity in a software
development. However, there are many weak points to
distributed approach such as the adaptability of such robotic
systems would decrease with increasing a complexity and a
number of peripheral devices. Also reliability of a whole
system would depend on how well a central part performs its
services. The distributed architecture views a robot as a
network of several autonomous modules. Each module
contains one or several I/O interfaces. Modules could freely
be added or removed from network providing an expansion
or a reduction of functionality of a robotic system.

Advantages of the distributed architecture are a potential for
adaptability and reliability based on a redundancy of services
from the point of view their physical location. The main
disadvantage of distributed systems is complexity in software
design.

This paper considers robot as a distributed architecture. The
robot is a network of independent modules connected by
network interfaces with each other. Currently, there are
several network interfaces suitable for use in robotic systems,
such as Ethernet, USB, CAN, RS232 and IEEE1394. Several
interfaces could be used for connecting different types of
nodes according to different demands. For example, CAN
interface could be used to meet high reliability demands
while Ethernet could be used for an integration of a robot to
the home LAN and IEEE1394 for multimedia purposes.
Other reason for use of several network interfaces is to
provide a redundancy of connections between modules in
order to meet reliability demands of a robotic system. In
order to achieve modularity it is necessary to provide an
interface for modules communications. Such interfaces are
known as middleware (Bernstein. 1996).

The middleware for distributed module-based robot systems
should handle following tasks: handling addition and removal
of modules, abstraction of heterogeneous network interfaces,
modules discovery and routing between modules,
communication protocol and marshalling.

This paper proposes a middleware for distributed module-
based robot systems with heterogeneous network interfaces
called HERM (Heterogeneous nEtwork-based Robot
Middleware). Following section describes the architecture of
HERM.

3. THE ARCHITECTURE OF HERM

In this section, we describe the software architecture of
HERM in detail. As shown in Fig. 2 below, HERM consists
of three layers; Network Interface Layer (NIL), Network
Adaptation Layer (NAL), and Application Support Layer
(ASL). NIL is responsible for abstracting various
heterogeneous network interfaces. It defines a logical unit

N
et

w
or

k
In

te
rf

ac
e

La
ye

r

N
et

w
or

k
A

da
pt

at
io

n
La

ye
r

A
pp

lic
at

io
n

Su
pp

or
t

La
ye

r

Fig. 2. The Architecture of HERM.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12686

called channel and wraps network-dependent programming
interfaces to control each network interface up in interfaces
which channel provides such as open, control, read, write,
and close. On the other hand, NAL copes with
communication between modules in a module-based robot
linked through the disparate devices. For stable and effective
communication, NAL provides addressing strategies and
routing service for which network-dependent properties such
as bandwidth and maximum transmission unit (MTU) are
considered. Finally, ASL registers robot applications
presented in a local or remote module into an Application
Table and periodically manages them. Further, it takes a role
in presenting application data into a standard format for
transmitting over a network. The following Sub-Sections
give more detailed description of each layer in sequence of
bottom-to-top.

3.1 Network Interface Layer

Network Interface Layer (NIL) is mainly responsible to
provide a unified access to various network interfaces such as
CAN, IEEE 1394, USB, RS232C, and Ethernet to an upper
layer. In other words, none of the upper layer concerns what
kinds of network interface are connected. To abstract network
interfaces, NIL creates or terminates a logical channel along
with a request from the upper layer. After creating the
channel, NIL stores and maintains it in a Channel Table.
Each channel wraps network-dependent interfaces to control
real network interfaces and provides common control
interface such as open, control, read, write, and close. In
addition, fragmenting and re-assembling messages are also
responsibility of NIL because, in some case, the size of a
message is not suitable for particular network interface like
CAN.

3.2 Network Adaptation Layer

Network Adaptation Layer (NAL) provides addressing
strategies to indentify each module and routing service for
communication between modules. By static or dynamic
addressing strategy, a module should assign a unique address
that allows identifying and locating any other modules. Static
addressing is to directly assign it through a pre-defined
address pool, while dynamic scheme needs negotiation with
other modules. After addressing, each module recognizes
other modules through a routing algorithm based on distance-
vector. Especially, that algorithm supports multiple routing
metrics including hop count, bandwidth, and MTU to
consider heterogeneous network interfaces.

3.3 Application Support Layer

Application Support Layer (ASL) manages robot application
objects (APOs) and performs binding between APOs. In ASL,
application objects are separated into two types; remote and
local. Remote type of APOs acts as a proxy APOs to provide
transparency to local APOs. Hence, an actual execution of a
proxy APO is fulfilled in a remote APO and then an
execution result of the proxy APOs is asynchronously

forwarded to the local APO executing the proxy APO
through call-back interface after the completion of the
execution request. With regard to binding between APOs,
ASL is capable of discovering other APOs by issuing queries
based on broadcast and of binding local APOs with the
discovered APOs.

4. INTEROPERABILITY BETWEEN MODULES

4.1 Abstracting heterogeneous network interface

When a local module perceives a new module, NAL need a
way to access to the new module. And NAL should use the
network interface transparently without concerning kinds of
network interfaces. In this respect, NIL provides IOChannel
abstracting heterogeneous network API as a logical channel.
A class diagram indicating relationship between devices and
channels is shown in Fig. 3. As shown in Fig. 3, to make
diverse devices as a common interface, design patterns
(Gamma et al. 1999) such as abstract factory, factory method,
and flyweight are applied. And for special channels capable
of fragmenting and re-assembling messages, decoration
pattern (Gamma et al. 1999) is employed.

On a basis of the structure, interaction among devices and
channels to create a new IOChannel is preceded as illustrated
in Fig 4. When a client, which can be NAL, ASL, or APOs,
wants make a new IOChannel, it requests creation of a new
channel with a common device address and a device name to
IO manager responsible for managing IODevices and

Fig. 3. A class diagram indication relationship among diverse
devices and channels (simple diagram)

Fig. 4. Interaction Diagram of Creating IOChannel for
IEEE1394 (simple diagram)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12687

IOChannels. On receipt of the request, the IO manager finds
an IODevice having the same name as the passed device’s
name. Note that, from the viewpoint of IO Manager, the
found

IODevice is not the type of IEEE1394 IODevice but the type
of a base class that abstracts details of diverse network
interface. Finally, the IO manager forwards the request to the
IEEE1394 IODevice. The IEEE1394 IODevice creates a new
IOChannel using the passed device address and subsequently
returns the IOChannel to the clients.

4.2 Module Discovery

Before recognition of remote modules, each module has to be
identified as a unique address. To assign an address, NAL
selectively uses two kinds of strategies. As the first strategy
is static module addressing, each MId is assigned through
pre-defined addresses to the categorized modules such as
main controller module, right/left arm module, vision module,
or sensor module. On the other hand, the dynamic addressing
strategy is accepted for the case that behaviour of a module is
not categorized. In this strategy, a module randomly creates a
MId and broadcasts message with the generated address to all
modules over a network. If another module is already using
the corresponding MId, the module broadcasts to inform
duplication of the address. Then, the module created the
duplicate address randomly creates a new MId and broadcasts
the address information until there should be none address
collision.

The routing of HERM is similar to distance-vector routing
protocol. Each module constructs a vector containing the
costs (distances) to all other modules and a forwarding list in
which passing network interface’s information is contained
(i.e. one cost and one forwarding list is a pair to build the
routing table) and gives that vector and list to immediate
neighbor modules via all channels. The module receiving the
pairs, then updates own routing table. A routing table
contains the following information; (i) destination module
address, (ii) next channel index, (iii) routing costs, (iv) hop
count, and (v) forwarding list. If the pair information has new
destination, the module adds a routing entry into own routing
table and put corresponding information into it. For example,
when a module receives the pair, (8, CAN2.0) for the remote
module, 0x42 via the second channel with Ethernet interface,
it adds the routing entry, (0x42, 02, 8 plus computed cost, 2,
CAN2.0-Ethernet). Even though a module receives that
information by multiple channels, it has to update that routing
table as well. In other words, multiple paths can be generated
in a routing table. In addition, the pairs according to passed
interface’s bandwidth and MTU are also updated. After
updating, a module also sends the updated pairs whenever a
triggered update from another module causes it to change its
routing table. In accordance with such repeatable procedure,
all the modules recognize other module’s existence in a robot
system.

4.3 Routing Scheme between modules

When data reaches arrives at NAL, a module needs to be able
to look at a data’s destination and then determines which of
the channels is the best choice to get the data. The module
makes this decision by consulting a routing table. The routing
algorithm of HERM supports multiple routing metrics
including hop count, bandwidth and MTU to find the lowest-
cost path between any two modules connected through
heterogeneous network interfaces. To compare routing costs
between multiple routes, a formula (1) below is adjusted,
wherein n, c, D, M, B equals to hop counts, relative
coefficient for delay, total size of packet, MTU, bandwidth.

(1)

Routing metrics for each interface is given in Table 1. On
routing, the cost can become different whenever data sends to
any module, because it depends on the total size of packet as
known through that formula above. To provide efficient
routing, static costs for routing maintain in routing table. It is
derived from a case that Di/Mi always equals to 1. After NIL
receives the data, it checks whether fragmentation is
necessary. If so, the data is divided into several packets and is
sent to the desiring module through a physical medium of the
corresponding channel.

Table 1. Routing Metrics for Network Interfaces
Interfaces Bandwidth(bps) MTU(byte) Cost

UBS 1.1 12,000,000 1023 19

USB 2.0 480,000,000 1024 3

IEEE 1394a 400,000,000 4096 4

IEEE 1394b 800,000,000 8192 1

CAN 2.0 A / B 1,000,000 8 30

ETHERNET 100,000,000 1500 10

RS232C 19,200 32 (user-defined) 47

5. IMPLEMENTATION AND EXPERIMENTS

The proposed structure has been implemented using C++
with Ethernet, IEEE1394, CAN 2.0A, and RS232C as a
network interface. To exemplify HERM, we developed a
remote application for regularly transmitting sensed value to

Et
he

rn
et

Et
he

rn
et

Fig. 5. Testbed Configuration for HERMES’s Experiment

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12688

any remote module, and a local application reading sensor
value.

5.1 Testbed Configuration

In order to demonstrate HERM, we have built up a testbed.
As shown in Fig. 5, four modules are connected with
heterogeneous network interfaces, RS232C, IEEE1394,
Ethernet, and CAN. The system specification for each
module is given in Table 2 running the Windows XP
operating system. Additionally, one embedded board with
AVR Atmega 128 MCU is connected with the sensor module
via RS232C and it contains SRF04 ultrasonic sensor. Note
that we assume wheel and camera depicted in Fig. 5 virtually
exist.

Table 2. System Specifications for Testbed
Module System specifications
Sensor Pentium IV 1.6GHz, 512MB (RAM)

Main controller AMD Sempron™ 2800+ 1.61GHz, 1GB
Vision Intel Pentium IV 1.5GHz, 512MB
Mobile AMD Sempron™ 2800+ 1.61GHz, 512MB

5.2 Experimental Scenario

In this subsection, we show how HERM In this sub-section,
we show how HERM supports interoperability in a module-
based robot system linked with non-unified interfaces. To
verify interoperability, we experimented on a scenario about
communication between modules. In scenario, every module
periodically transmits sensed data to the main controller
module via each network interface. As shown in Fig. 6 below
when the vision module sends data, it has to pass through
mobile module, because there is any interface to directly
connect with main controller module. Therefore, the mobile
module has to be operated as a router module. We assumed

all the modules assign their addresses by the static addressing
strategy introduced in Section 4.

Ultrasonic sensor regularly sent a sensed value every 30
seconds to the sensor module via RS232C. This value arrived
at the local application object in the module. For delivering
this value to a remote module, we set that if the sensor
module gathers ten sensing values, it starts to send them to
the main controller module, using a remote application object.
When the sensor module sent the data through the second
channel, RS232C, it was fragmented into two packets
because of MTU. On the other hand, the vision module also
sent the vision information to main module via the mobile
module every 60 seconds. To cope with this, we set timer in
the remote application in the mobile module. We assumed
that the size of the information is 100 bytes. This data was
sent through the first channel, IEEE 1394. After the mobile
module received the data from the second own channel, IEEE
1394, it then reassembled two packets into one. Since the
data is not for the mobile module, it starts to routing service.
As shown in Fig. 6, the mobile module maintains a routing
entry for destination of the main controller module, 0x4E.
Therefore, the data was forwarded through the first channel,
Ethernet. Finally, the main controller module periodically
received data from distributed modules. As we have shown in
this section, the proposed middleware works well under
heterogeneous and distributed environment.

5. CONCLUSIONS

Module-based robot concept enables a robot system to make
a distributed network-based structure. Due to feasible
structure that a module can be easily exchanged, added, or
removed, the module-based robot system contributes on
reducing complexity and engineering costs followed by
system integration, operation, and maintenance. Focusing on
module-based robot, this paper proposed the middleware
called HERM (Heterogeneous nEtwork-based Robot
Middleware). HERM consists of three layers; Network
Interface Layer (NIL), Network Adaptation Layer (NAL),
and Application Support Layer (ASL). Based on the layered
design, HERM provided standardized interfaces to control various
heterogeneous network devices, supporting transparent and
facilitates integration of disparate modules which constitute a robot
system. To verify the proposed architecture, it has been
implemented using C++ and some experiment scenarios have
been achieved. Consequently, HERM can be adaptable for
module-based robot system and help robot application
developers to weave applications without dependency of
network interfaces.

Acknowledgement

This work was supported by the IT R&D program of
MIC/IITA. [2005-S033-03, Embedded Component
Technology and Standardization for URC]

REFERENCES

CAN specification Part A and Part B.

Mid: 0x14

Sensor Module’s
Channel Lists

Index Interface
1
2

RS232C
RS232C

Vision Module’s
Channel Lists

Index Interface
1 IEEE1394

Main Contoller Module’s
Channel Lists
Index Interface

1 Ethernet
2 RS232C

Mobile Module’s
Channel Lists
Index Interface

1 Ethernet

: Remote Connection with modules
: Direct Connection with local devices

Mobile Module Routing Table
Dest. Module Next Ch.

0x9F -
0x4E 1
0x3A 2
0x32 1

Hops
0
1
1
2

Status
Active
Active
Active
Active

Forwarding Channel List
-

Ethernet
IEEE 1394

Ethernet RS232C

Mid: Module Identifier

Mobile Module

Vision Module

E
th

er
ne

t

CAN Bus

IEEE 1394

Main Control
Module

RS232C

Ultrasonic
Sensor

Wheels

IEEE 1394

Camera

Mid: 0x9F

Mid: 0x4E

RS232C

E
th

er
ne

tHub

Sensor Module
Mid: 0x32

Mid: 0x3A

Mid: 0x142 IEEE1394

Fig. 6. Experiment Procedure

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12689

Distributed Programming with ICE (2007) (Internet
Communications Engine), Revision 3.2.1,
http://zeroc.com

DCOM (Distributed Component Object Model), Microsoft.
IEEE standard for a High Performance Serial Bus, IEEE std

1394-1995, IEEE 1394 std 1394a-2000.
J. A. Fryer, G. T. McKee, and P. S. Schenker. (1997).

Configuration Robots from Modules: an Object Oriented
Approach” IEEE International Conference on
Advanced Robotics (ICAR `97). Monterey, Canada.

Gamma. E, Helm. R, Johnson. R. and Vlissides. J. (GoF,
Gang of Four), Design Patterns: Elements of Reusable
Object-Oriented Software, ISBN 0-201-63361-2

G. Dubek and R. Sim (2003). RoboDaemon – A Device
Independent, Network-oriented, Modular Mobile Robot
Controller, IEEE International Conference on
Robotics and Automation, Taipei, Taiwan, Sep.
2003. pp. 3434-3440.

M. T. Kaikkonen, and J. Hakala (1991), Interfacing
Functional Modules within Mobile Robots, IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS 1991)

Object Management Group. (2002) CORBA: Common
Object Request Broker Architecture: Core Specification
Revision 3.0. http://www.corba.org

P. A. Bernstein (1996). Middleware: A Model of Distributed
System Services, Communications of ACM, Vol. 29.
No. 2.

RFC 3146: Transmission of IPv6 Packets over IEEE 1394
Networks. 2001.

T. Taira, N. Kamata, N. Yamasaki (2005). Design and
Implementation of Reconfigurable Modular Humanoid
Robot Architecture. IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS 2005), Edmonton, Canada, pp. 3566-3571.

Y. J. Cho, B. J. B. You, S. R. Oh, and C. W. Lee (1999). A
Compact/Open Network-Based Controller Incorporating
Modular Software Architecture for a Humanoid Robot.
Journal of Intelligent and Robotics Systems, Vol.
25, 341-355.

Universal Serial Bus Specification revision 2.0 (2000).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12690

