

Robot System providing Fault-Tolerant Services: Research of Middleware

supporting Fault-Tolerance

Bum Hyeon Baek, Hyeong Seob Choi, Hong Seong Park*, Sung Hoon Kim and Jung Bae Kim**

* Electronics and Telecommunication Engineering Department ,Kangwon National University

Chuncheon, Korea (e-mail:{bhbaek,21thbomb, gazam}@control.kangwon.ac.kr, hspark@kangwon.ac.kr).

** Robot Software Architecture Research Department, Intelligent Robot Research Group, Electronics and Telecommunication

Research Institute, Daejeon, Korea (e-mail:{saint, jjkim}@etri.re.kr)

Abstract: Recently, robot technology is actively going on progress to the field of various services such as

medical care, entertainment. These service robots are in use for home management nearby person, and so

need to operate safely. Fault tolerance is a performable capacity without influence of fault although fault is

occurred hardware or software and guarantees safe operation of systems. This paper proposes a robot

system providing fault-tolerant services in distributed environment. The systems are developed to apply to

robot middleware for supporting fault-tolerance. The robot middleware is divided into three layers of a

Service Layer (SL), Network Adaptation Layer (NAL), Network Interface Layer (NIL) and includes

Operating System Abstraction Layer (OSAL), Fault-Tolerant Manager (FTM). Especially, Service-

Adaptive Engine (SAE) in SL and Fault-Tolerant Manager provides fault tolerance for this middleware

and are easy to dynamic expansion. Also, these systems are component-based structure, and so provide

reusability, lightweight to load various robot systems.

1. INTRODUCTION

Recently, robot technology is actively going on progress to

the field of various services such as medical care,

entertainment. The applicable service robot in the field of

service is robot to provide a person with convenient service

of every kind and is in use in various places, especially home

management. The service robot for home management is

important that it performs its operation safely because it

operates nearby person. Because service robot often stays

near person, abnormal operation of service robot is possible

to gives wound to person. For example, if guidance robot has

hardware or software fault when guidance robot show around

the way, a person may be wounded cause by collision

between the robot and the person. Therefore, research is

necessary that it prevent abnormal operations and it make

performs normal operation if fault is occurred in service robot.

Fault tolerance is a performable capacity without influence of

fault although fault is occurred hardware or software. In other

words, although it couldn’t cope with every fault or error, it

has a capacity which copes with prior defined fault or error at

design time. When service robot includes fault tolerance

functionality, there are some points to be considered in

relation to characteristic of service robot. First of all, service

robot need structure supporting network and communication

functionality in heterogeneous environment so that it forms

network and operates in network and is applied to various

network environments. Also, it should enable various data to

process according to accommodate various network

interfaces. It is necessary to provide flexibility using

available network interface when network session is closed

by fault occurrence suddenly. Secondly, service robot

internally needs an apt structure for providing various

services in robot and should guarantee safe operation of

service robot by means of granting fault tolerance in service

robot.

Many researches have been studied for supporting fault

tolerance in distributed systems. Till now there are systems

supporting fault tolerance which is used in like as FT-

CORBA (Fault-Tolerant CORBA: Common Object Request

Broker Architecture), ROAFTS (Real-time Object-oriented

Adaptive Fault Tolerance Support), Rainbow framework

(Architecture-Based Self-Adaptation with Reusable

Infrastructure). Most of these systems use redundancy or

replication mechanism of their own for supporting fault

tolerance and are based on TCP/IP in order to recover faults

caused in network. But these systems are used in general-

purpose distributed systems, these are difficult to apply to

service robot since robot system is used and is operated in

limited environment. There are various CPU from 8bit series

to 32bit series for using in robot system and most of memory

to load robot software is restricted within size of maximum

32Mbyte or 64Mbyte. Therefore, execution code is large and

memory consumption is so much at run time like as these

systems are difficult to use in robot.

Therefore, fault tolerant system should be lightweight to

apply to robot. This paper defines lightweight in robot system.

The lightweight is said that execution code size is less than

500Kbyte and execution memory the mount used is less than

4Mbyte. Because, robot software is composed of various

application and software, fault tolerant system with these

sizes in part of robot software is suitable. Also, fault tolerant

system make reduce overhead of message which is

transmitted to network and should manage network session to

cope with abnormal close of network. In this paper, we

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12679 10.3182/20080706-5-KR-1001.4024

propose and implement fault tolerant systems which may be

capable to use robot middleware in distributed robot

environment. These systems provide fault tolerance with

robot middleware and are easy to dynamic expansion. These

systems are component-based structure, and so provide

reusability, lightweight to load various robot systems.

This paper structured as follows: Section 2 introduces

middleware for robot and describes middleware’s

functionality, Section 3 describes architecture providing

various services, Section 4 describes fault-tolerant system for

robot, Section 5 describes implementation of these systems.

Conclusions are drawn in outlined in Section 6.

2. MIDDLEWARE STRUCTURE FOR MODULE-BASED

ROBOT

This paper mentioned middleware is to load module-based

robot architecture. Each module present a part of robot

structure that takes charge main function of robot addition,

delete, exchange though do purpose put. Physical, electrical,

logical interface between module independent use

surrounding and each module is important. Each module

include network interfaces like as Ethernet, IEEE1394, CAN,

RS232, and so is capable to connect other interfaces at any

time. Figure 1 shows example of construction among

modules.

Fig. 1. Example of internal structure of Module-Based Robot

This paper mentioned middleware structure for robot is

depicted in Figure 2. Robot middleware is consisted of

Service Layer (SL) which provide service with robot

application, Network Adaptation Layer (NAL) which

accommodate various network, Network Interface Layer

(NIL) which takes charge of dependent functionality of

network, Operating System Abstraction Layer (OSAL) which

abstracts functionality and wraps APIs of OS, Fault-Tolerant

Manager (FTM) which provide fault tolerance with robot

middleware and application.

The Service Layer is consisted of essential elements about

application which uses middleware service. Major

functionality of the Service Layer provides mechanism to

access application of remote module irrespective of network

type. In other words, the Service Layer provides services like

as variable reading, method invocation in remote module and

performs application management, transaction management.

The Service-Adaptive Engine from among proposed systems

in this paper exist Service Layer, and so performs these

functions.

The Network Adaptation Layer integrates various network

components which is added to Network Interface Layer and

provides various services like as message routing, module

addressing among heterogeneous networks, naming, etc. And

this layer provides interfaces between Service Layer and

Network Interface Layer which are consisted of data entity

for data transmission/receipt, management entity for

command transmission/receipt.

The Network Interface Layer includes various network

components which are dependent on hardware and software.

The Network Interface Layer enables middleware to add or

delete new network without modification of middleware.

The Operating System Abstraction Layer provides OS-

independent and abstracts system-dependent function like as

thread, timer, event provided by OS, and so enable user or

programmer to use OS APIs without distinction.

The Fault-Tolerant Manager manages components in robot

middleware and application and observes network and

communication between modules. Also, the Fault-Tolerant

Manager manages component’s status like as

initialization/loading/configuration/finalization and enable

component to communicate between components using

internally defined event, and so enable it to observe

component’s status in real-time. Also, the Fault-Tolerant

Manager provides exception handling, and so is capable to

cope with exception. And it observes network session, and so

prevents transmission error which is possible during data

transmission/receipt. In other words, it enables middleware to

connect between modules continuously.

Fig. 2. A Structure of Robot Middleware

As depicted in Figure 2, structure of robot middleware is easy

to add network interface if user wants. When application

developers access variable or object in remote or local

network, they are able to design and implement application

using middleware irrelevant to network type.

Figure 3 shows detailed middleware structure, middleware

structure for robot is suitable supporting open interface.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12680

Fig. 3. A detailed Structure of Robot Middleware

3. A STRUCTURE OF SERVICE-ADAPTIVE ENGINE

(SAE)

Figure 4 shows a detailed structure of Service Layer (SL).

The Service Layer is consisted of essential elements about

application which uses middleware service and Service-

Adaptive Engine (SAE) is a core of SL. Major functionality

of the SAE provides mechanism to access application of

remote module irrespective of network type. The SAE

manages APIs which enables robot application to use

middleware, and so robot application is easy to register in SL.

Fig. 4. A Structure of Service Layer and Service-Adaptive

Engine

Robot applications are capable to be offered the middleware

service after robot applications is registered in SL. For

example, object invocation service requests the SL in remote

or local module when request side SL want to access receipt

side SL, and waits response. If requests of the object

invocation are transferred at once, responses corresponds to

the requests should be provided the request much. But,

response corresponds to the request is hard to identify when

response is received, if transactions for response are many.

To prevent these faults or errors, the SL manages transaction

per each request and handles request with high priority, and

so guarantees QoS.

The request of application should be capable to transfer to

network so that local application access to remote application.

But, to transfer the message using application level to

network lead to ambiguous situation when receipt side

handles data. For example, when brain module invokes

method which is service ‘b’ in remote module like as actuator

module, message like as “actuator.b” is transferred to

actuator module. But, actuator module does not know that

this message handles either general string or service

invocation. Also, when application transfers the message of

application level, special character like as blank character,

delimiter may incur overhead. Therefore, to transfer message

to network, it is necessary that data requested by application

need to represent by the moderate form.

A process of message representation could be solved by

using proxy. Proxy is a agent for object invocation and is

generated from IDL (Interface Definition Language)

definitions and, therefore specific to the types of objects and

data you have defined in IDL. The proxy code has tow major

functions:

� It provides a down-call interface for the client.

Calling a function in the generated proxy API

ultimately end up sending an RPC message to the

server that invokes a corresponding function on the

target object.

� It provides marshaling and unmarshaling (encoding

and decoding data for transmission) code.

Marshaling is the process of serializing a complex data

structure, such as a sequence or a dictionary, for transmission

on the wire. The marshalling code converts data into a form

that is standardized for transmission and independent of the

endian-ness and padding rules of the local machine.

Unmarshaling is the reverse of marshalling, that is,

deserializing data that arrives over the network and

reconstructing a local representation of the data in types that

are appropriate for the programming language in use.

The proxy enables developer to support for interfacing with

application in system core and to support through IDL.

Mostly, the latter is many used, and so this paper provides

IDL for convenience of application development and

provides IDL pre-compiler for code generation from IDL.

Interfaces, operations, and the types of data that are

exchanged between modules are defined using the MIDL

(Module IDL) language. MIDL allows you to define the

client-server contract in a way and the MIDL definitions are

compiled by a MIDL compiler into an API for a specific

programming language, that is, the part of the API that is

specific to the interfaces and types you have defined consists

of generated code. Finally, user obtains proxy codes such as

skeleton which is used by server application, stub which is

used by client application. Figure 5 shows the situation when

both client and server are developed in C++. The MIDL

compiler generates two files from a MIDL definition in a

source file “hello.midl”: header files (hello_proxy.h,

hello_skeletion.h).

� The hello_proxy.h header file contains definitions

that correspond to the types used in the MIDL

definitaion. It is included in the source code of client

to ensure that client agrees about the types and

interfaces used by the application.

� The hello_skeleton.h header file also contains

definitions that correspond to the types used in the

MIDL definition. It is included in the source code of

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12681

server to ensure that server agrees about the types

and interfaces used by the application.

Finally, client and server application request and offer service

with these file.

Fig. 5. Development process if client and server share the

same development environment

The Service-Adaptive Engine is a logical bus that substantial

performs service request and offer. Figure 6 illustrates how

the server application and client application are operated for

object invocation.

Fig. 6. An operation flow of server and client application

Server application initializes each layer of middleware by

calling initialization function. And it creates an object adapter

and create object called by servant. Finally, it activates object

adapter and waits request from client application.

When the request message incomes through the client

application, the SL receives message and analyzes. After

message analysis, the SL sends message to skeleton. When

skeleton receive message from the SL, skeleton send message

to server application. Finally, server application invokes

service and responds to request. And the application send

response message to the SL and the SL send message to

network.

Client application also initializes each layer of middleware by

calling initialization function. Next, to actually talk to servant,

client application creates a proxy object for remote object

invocation and it discovers servant. If so, the call returns a

proxy to an object; otherwise, if the proxy denote an interface

of some other type, the call returns exception message such

as “object not exist”, “operation not exist”. And the SL may

re-discover the service in robot network.

If object discovery is succeeded, client application send

request message to server application and waits response.

After request is normally performed from server application,

client application receives response such as “success”,

exceptions.

4. A STRUCTURE OF FAULT-TOLERANT MANAGER

(FTM)

The Fault-Tolerant Manager (FTM) is a component which

provides fault tolerance with middleware and robot

application. In other words, the FTM manages objects in

middleware and application from fault which could be

occurred in middleware or application. At this point, fault

tolerance is said that is mainly used when is designed

computer system or its elements. Fault tolerance enables

system to avoid service suspension using by altering

preliminary element or procedure. Fault tolerant service is

provided by software, but it may be provided embedded form

in hardware or a coupled form. This paper only considers the

side of software.

The software implementation for fault tolerance enables

programmer to check important data at a point of determined

time in advance. Like this, fault-tolerant manager observes

entity which performs transaction and independently recovers

fault or error from system when fault or error is occurred.

The entity performing transaction in middleware and

application is mainly task or object. These provide service in

substance and performs operation related it. Therefore, it is

basic matter that task and object are checked their status and

life cycle. Also, network connection management is

important because these interoperate though network and

transfer or receive data. And system should be capable to re-

connect though network management when network

connection is suddenly closed. Finally, dependency between

modules should be considered module-based robot, and

modules should discover and use without a hitch. The FTM

associating with these requirements guarantees safety from

fault of system.

The FTM is designed component-based feature which is

reusable, because any software requiring fault tolerance may

use it. The FTM is a composite component, and is composed

of Monitor, Fault Detector, Fault Notifier, Fault Recover.

Monitor observes every object in middleware and application,

and Fault Detector detects occurred fault and analyze fault

type. And Fault Notifier send fault information from Fault

Detector to Fault Recover and performs scheduling according

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12682

to fault type. Finally, Fault Recover independently recovers

fault from system. Figure 8 illustrates a structure of FTM.

Fig. 7. A Structure of Fault-Tolerant Manager

From among these components, Monitor take charge of a

preliminary operation related fault detection. Monitor

periodically observes service object in middleware and

application, taking charge of network session, and so grasps

life cycle and status of objects. Life cycle and status of object

is grasped using two models: push model and pull model.

In the push model, the direction of control flow matches the

direction of information flow. With this model, monitorable

objects are active. They periodically send heartbeat messages

to inform other objects that they are still alive. If Monitor

does not receive the heartbeat from a monitorable object

within specific time bounds, it starts suspecting the object.

In pull model, information flows in the opposite direction of

control flow, i.e., only when requested by consumers. With

this model, monitored objects are passive. The monitors

periodically send liveness requests to monitored objects. If a

monitored object replies, it means that it is alive. Figure 8

illustrates how the push model and pull model are used for

object.

Fig. 8. A push/pull model

To transfer status between objects, the FTM provides event

type and event transmission is achieved using

publish/subscribe mechanism. Normal event transmission

between objects is achieved in 0.85us and filtered event

transmission is achieved in 1.02us. Event type is defined by

each publisher and is transferred to subscriber. Subscriber

registers published event using Event Listener which is

included in subscriber and intercepts events. Every object in

middleware and application is publisher, and so send event to

Monitor. Monitor is a subscriber and is a publisher because

of transmission of event to Fault Detector the same time. And

Monitor uses watchdog timer, and so commits fault handling

to Fault Detector when status event such as heartbeat is not

received within specific time bounds.

The Fault Detector detect potential fault and report using

indicated fault list at design time. Figure 9 illustrates a

detailed structure of Fault Detector.

Fig. 9. A Structure of Fault Detector

The Fault Detector is divided into Finite State Machine

(FSM) and Detector. FSM includes status macro and methods

of each object. Detector decides existence and non-existence

of fault occurrence comparing between indicated fault list

and occurred fault and analyzes occurred fault. This progress

is called by fault isolation, which analyzes fault reports and

decide what or where has failed. After fault analysis, Detector

transfer information about fault to Fault Notifier, and so

make Fault Recover recovers the fault.

Fig. 10. A Structure of Fault Notifier

5. CONCLUSIONS

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12683

A conclusion section is not required. Although a conclusion

may review the main points of the paper, do not replicate the

abstract as the conclusion. A conclusion might elaborate on

the importance of the work or suggest applications and

extensions.

REFERENCES

A. Avizienis, J. C. Laprie, B. Randell, C. Landwehr, “Basic

Concepts and Taxonomy of Dependable and Secure

Computing,” Journal of Dependable and Secure

Computing IEEE Transaction, Vol. 1, Issue 1, pp. 11-33,

Jan, 2004.

FT-CORBA specification. http://www.omg.org

K.H (Kane) Kim, “ROAFTS: A Middleware Architecture for

Real-time Object-oriented Adaptive Fault Tolerance

Support,” Proc. IEEE CS 1998 High-Assurance Systems

Engineering (HASE) Symp., WashinTon, D.C., pp. 50-57,

Nov, 1998.

David Garlan, Shang-Wen Cheng, An-Cheng Hyang, Badley

Schmerl, Peter Steenkiste, “Rainbow: Architecture-

Based Self Adaptation with Reusable Infrastructure,”

Computer, Vol. 37, no. 10, pp. 46-54, October, 2004.

Geon Yun, Hyeong-Yuk Kim, Hong Seong Park,

“Middleweare Structure for Module-based Personal

Robot,” Journal of Control, Automation and Systems,

Vol. 10, No. 5, pp. 464-474, May, 2004.

IEEE standard for a High Performance Serial Bus “IEEE std

1394-1995, IEEE 1394 std 1394a-2000”.

Universal Serial Bus Specification revision 1.1: September

23, 1998.

CAN specification Part A and Part B.

Felber, P. Defago, X. Guerraoui, R, Oser, P, “Failure

Detector as First Class Objects,” Distributed Objects and

Applications, 1999. Proceedings of the International

Symposium, pp. 132-141, 5-6 Sept, 1999.

Lightweight Fault Tolerance for Distributed Real-Time

Systems Request for Proposals. http://www.omg.org

Michi Henning, Mark Spruiell. 2006. Ice Specification:

Distributed Programming with Ice,

http://www.zeroc.com

E.Gamma, R. Helm, R. Johnson, and K. Vlissides, Design

Patterns: elements of Reusable Object-Oriented

Software, Reading, MA: Addison-Wesley, 1995.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal, Patten-Oriented Software Architecture – A

System of Patterns, J. Wiley and Sons Ltd., 1996.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.

Pattern-Oriented Software Architecture – patterns for

Concurrent and Distributed Objects. J. Wiley and Sons

Ltd., 2000.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12684

