
An innovative marking machine integrated
with a GNU/Linux-based embedded

real-time platform ⋆

Gianfranco Ravera
∗

Alessio Bertone
∗

Gabriele Bruzzone
∗∗

Massimo Caccia
∗∗

∗ Green Project S.r.l., Corso Perrone 47r, Genova, Italy(Tel:
+39-0106001802; e-mail: info@greenproject.it).

∗∗ CNR-ISSIA, Genova, Italy (Tel: +39-01064756{57,12}; e-mail:
{gabry,max}@ge.issia.cnr.it).

Abstract: This paper discusses the integration of a stamping marking machine with a
GNU/Linux-based platform for embedded real-time systems. The work, carried out in coop-
eration between a Small Medium Enterprise and a public research organisation, points out the
possibility of adopting standard hardware and software technologies, and, in particular, free
software, in the field of advanced industrial automation. Laboratory, and, in the final version of
the paper, field trials, demonstrate the performance of the proposed system.

1. INTRODUCTION

The applied research presented in this paper aims at
developing marking machines for continuous casting lines
satisfying classical operating requirements and being ready
for integration with advanced systems for automatic trace-
ability.
Basically, marking machines for continuous casting lines
have to satisfy the following operating requirements:

• fastness: the marking cycle has to be as fast as
possible; for instance, in six strands application at
5-6 mpm casting speed the time available to mark
each billet can be less than 10 seconds;

• flexibility: the machine has to be able to mark non
only numbers and Latin characters, but also customer
logos and different set of characters, e.g. Cyrillic;

• reliability: the machine must operate in very harsh
environment (see, for instance Figure 1, since the
billet surface is about 750C, and the environmental
operating temperature can be in the range -30C -
+50C).

Three classes of machines, based on different marking
systems, are currently available on the market:

• stamping machines: based on the percussion of a pin
(a whole character or a segment); permanent marking
(the depth of the indent on the billet surface can be
2 -3 mm) with a fast marking cycle;

• powder/paint spray machines: characters are printed
on the billet surface synchronizing a nozzle with the
movement of an X-Y table (or attached to a robot
wrist); only few characters can be printed on the

⋆ This work has been partially funded by Regione Liguria - Obiettivo
2 (2000-2006) Sottomisura 1.4B- L. 598/94 art. 11 ”Interventi
per la ricerca industriale e lo sviluppo precompetitivo” in the
project ”Embedded real-time platform for industrial automation and
robotics”.

Fig. 1. The Hammer marking machine at work in the
Mechel steel plant, Russia.

frontal surface of the billet and the cycle time is
higher;

• tag indent machines: a metal tag (previously gener-
ated with a laser marking system) is applied to the
billet surface by a robot; the marking cycle is quite
slow and the maintenance procedure are usually a
little more complex than in the previous case but the
result is particularly reliable for automatic reading.

Indeed, the capability of reading the billet code is currently
at the centre of the competition in the marking machine
market, all the competitors focusing on the billet/bloom
traceability problem.
This will involve the development and integration of dif-
ferent machines, likely based on different, complementary
technologies from automatic control to computer vision. In
this context, the availability of a, possibly standard, soft-
ware and hardware architecture able to support different
technologies and I/O devices will dramatically ease system
development, integration and maintenance, thus reducing
the corresponding costs. As a consequence of the dra-
matic growth of computer computational power, capacity
of flash memory cards, and enhancement and diffusion of
the open source GNU/Linux operating system (GNU)(Lin

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10377 10.3182/20080706-5-KR-1001.4022

(a)), an opportunity in this sense has been given by sys-
tems consisting of standard GNU/Linux and commercially
available off-the-shelf (COTS) hardware. Indeed, in spite
of its historical development as an operating system for
the desktop/server environment, GNU/Linux has become
quite an attractive choice in the field of embedded OSs.
It provides rapid application development with a reduced
time to market, thanks to its basic features of reliabil-
ity, scalability, portability, open source, specifications and
standards, support and large programmer base, and free
of charge availability (Lennon (2001)). Its main limitation
is that, having a Unix-like kernel designed to guarantee a
fair sharing of resources among many users and applica-
tions, in its original version it does not satisfy real-time
performance requirements, which are fundamental in the
embedded operating system market.
In order to obtain real-time capabilities, many solutions
have been proposed and are currently available both com-
mercial and free, basically following two different ap-
proaches:

(1) introducing a new software layer (essentially a real-
time kernel called micro/nano kernel) between Linux,
which runs as a low priority process of the new
real-time kernel, and the hardware, as proposed by
RTLinux (RTL), RTAI (RTA) and more recently by
ADEOS (ADE);

(2) applying a set of patches to a standard Linux to
make it a real-time kernel, as initially proposed by
the KURT project (KUR) and TymeSys Linux (Tim),
and become a standard configuration option for Linux
kernel starting from release 2.5.4-pre6.

The result is that GNU/Linux has become a practical op-
tion in robotics research and industry, substituting special
purpose, and often expensive, hardware and proprietary
real-time operating systems in a large number of applica-
tions. Examples are given by the projects MCA (Modular
Controller Architecture), where a modular, network trans-
parent and real-time capable C/C++ framework for con-
trolling robots and other kind of hardware was developed
(MCA), COMEDI (COntrol and MEasurement Device
Interface), where open-source drivers, tools, and libraries
for data acquisition are provided (COM), and OROCOS
(Open RObot COntrol Software), whose aim is to develop
a general-purpose and open robot control software package
(ORO). Moreover, as discussed for example in (Wang
(2002)), the trend of next generation manufacturing and
factory automation systems is based on building flexible
open systems using open source OSs and tools as those
provided by GNU/Linux, that can easily, quickly and cost-
effectively be upgraded or expanded to meet the ever-
changing production requirements. OSACA (Open System
Architecture for Controls within Automation systems),
OMAC (Open Modular Architecture Control) and OSEC
(Japan’s Open System Environment Consortium) are a
few examples of efforts in this direction. For up to date
lists of control and robotics projects carried out using
GNU/Linux the reader can refer to the RealTime Linux
Foundation web site (Rea).
On the other hand, the dramatic increase in hardware per-
formance motivated the development of systems with very
strict timing requirements using standard GNU/Linux
running on COTS hardware. This is, for instance, the

case of the data acquisition system for nuclear physics
developed at the National Super-conducting Cyclotron
Laboratory of the Michigan State University (Fox et al.
(2004)), where a precision of the order of a few µs was
obtained by using the readout computer as an instrument
rather than a general-purpose computer and utilizing a
few amortization techniques of software and systems over-
heads.
Following this trend research carried out in cooperation
between Green Project Srl, a small enterprise developing
automation systems for the iron and steel industry, and the
Autonomous robotic systems and control group of CNR-
ISSIA, a public research organisation, demonstrates the
possibility of developing embedded real-time robotics and
manufacturing applications using a standard GNU/Linux
running on commercial off-the-shelf hardware.

2. HAMMER MARKING MACHINE

The Hammer machine has been developed by Green
Project Srl for marking of continuous casting products
(e.g. billets, blooms). Its principle of operation is based
on a punching pin moved orthogonally to the billet by a
pneumatic cylinder (see Figure 2. Denoting with X-Y the

Fig. 2. View of the Hammer marking machine in the lab.

marked planar surface and with Z its orthogonal direction,
the marking is obtained by synchronizing the motion of the
puncher in a working area X-Y with the rotation around
the Z axis and the puncher command. Two electrical step
motors, mounted on a frame with ball screw thread and
slides, move the group punch-cylinder in the X-Y plane,
while a third one is used for punch rotation. In order
to obtain the impact strength needed to mark the billet,
the motion of the puncher along the Z axis is controlled
by a pneumatic actuator piloted by electric valves. Once
determined the character to be written, synchronization
is performed by commanding the suitable positions of
the electrical step motors and the opening/closing of the
electric valves with a required time interval resolution of
a couple of milliseconds. An example of marking results
in typical operating conditions is shown in Figure 3. The
control system is based on an industrial PC Advantech
with bus ISA equipped with an Advantech PCA 6773
@ 650 MHz Intel CPU with 128 MB of RAM and one
128 MB CF. The interface with the field is handled with
different technologies: time critical I/O, e.g. electro-valves,
are piloted by OPTO22 modules managed by a PCL-731
Advantech industrial PC board; non time critical I/O,
e.g. buttons and lamps, are piloted by Schneider Advantis

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10378

Fig. 3. Example of Hammer marked characters.

distributed I/O modules, while the intelligent step motors
(Berger-Lahr IFS) are piloted by a CIF Hilscher board
with protocol CAN Open Master through a CAN Open
fieldbus. It is worth noting that the use of intelligent step
motors, together with small message sizes, has allowed
high timing performances (the devices can be polled with
read/write frequencies of 2-3 milliseconds) even keeping
the control system in a controlled environment (electrical
room) at a range of about 100-200 m from the field devices.
On the other hand, the integration with the plant automa-
tion network is handled by CIF Hilscher boards which can
provide a standard interface for a large variety of fieldbus
(Profibus, Devicenet, Control Net, etc.).
The current version of the machine has been implemented
using the RTKernel real-time operating system.

3. GNU/LINUX-BASED EMBEDDED REAL-TIME
PLATFORM

3.1 State-of-the-art in making GNU/Linux real-time

A real-time operating system must be able to quickly
preempt any task that is currently executing when an
interrupt occurs. Since it had been originally designed as
a Unix-like operating system, GNU/Linux kernel does not
guarantee real-time performances, i.e. a worst case inter-
rupt response time and a deterministic execution time.
The main reason of this lack of performance relies in
the so-called scheduler latency problem, i.e. the fact that
the delay between the occurrence of an interrupt and the
running of the thread that is in charge of serve it can be,
in particular critical situations, very long (of the order of
tens of milliseconds). This problem is essentially caused by
the no preemptibility of threads when running kernel code
and by the presence of long critical sections of code in the
kernel that cannot be interrupted.
Following the approach proposed by the Kansas Univer-
sity’s Real-Time (KURT) Linux project in 1997 KUR and
by TimeSys with the TymeSys Linux in 1998 Tim, a set
of kernel patches have been introduced directly within
the structure of a standard Linux in order to implement
the Posix 1003.1d POS real-time extensions (high resolu-
tion timers, preemptible kernel, improved task scheduler,
etc.). In particular, the so-called preemption Rob and low-
latency AndIng patches, put together in a single patch
and available as a standard kernel configuration option
(CONFIG PREEMPT) from Linux release 2.5.4-pre6, are
based on the idea of creating opportunities for the ker-
nel scheduler to be run more often minimizing the time

between the occurrence of an event and the running of
the scheduler. Basic ideas are, on one hand, modifying
the spinlock macros and the interrupt return code so
that, if it is safe to preempt the current process and a
rescheduling request is pending, the scheduler is called,
and, on the other hand, introducing explicit preemption
points in blocks of code of the kernel that may execute
for long stretches of time. The result is that a standard
linux kernel compiled enabling the CONFIG PREEMPT
patch presents a maximum latency and jitter of the order
of a few tens of msecs also when particularly demanding
activities, such as accessing large amounts of memory
causing page faults, stressing the system through keyboard
caps-lock, console switch, non memory-mapped I/O, /proc
file system access, and process fork are executed Abeni
et al. (2002).

3.2 Proposed approach and implementation

Considering that in the last years the dramatic improve-
ments in size and performance of solid-state memories,
such as compact flash (CF) memory cards and RAM,
have made less critical the construction of customized em-
bedded GNU/Linux systems, an approach relying on em-
bedding standard GNU/Linux, as discussed in Bruzzone
et al. (2006), programming avoiding operations causing
system latency, and using a suitable timer to generate
time interrupt signals, has been implemented. In the fol-
lowing a detailed discussion of the reasons of the choice
of particular hardware and software tools, together with
the presentation of a set of C++ classes designed in order
to simplify and standardize the development of control
system applications, will be given.

COTS hardware The selected hardware components are
standard industrial PC-derived computers and relevant
I/O boards. In particular, CPU boards supplied with both
a PC/104+ and a PCI bus (i.e. supporting I/O cards
for both bus types) are used. These standard hardware
components give the developer the opportunity of finding,
at a low cost, a high number of I/O boards and CPUs
with very high computing power. Moreover, within the
chipset of PC-derived computers is always present a real-
time clock (RTC) that, suitably programmed, can be used
as a good time basis for the control application.

Real Time Clock (RTC) as a time basis for real-time
Since the kernel native timing resolution is rather poor
(usually 10 milliseconds on the current versions), high
frequency time signals can be generated by using the RTC,
a particular clock usually built into the chipset of all
PCs and PC-derived computers. The main function of the
RTC is to keep the date and time while the computer is
turned off. However it can also be programmed to generate
interrupt signals from a slow 2 Hz frequency to a relatively
fast 8192 Hz one, in increments of powers of two. From
Linux point of view, the RTC is seen as a particular read
only character device /dev/rtc, on which a user thread can
execute a blocking read. The interrupt frequency, starting
and stopping of the RTC can be easily programmed into
the RTC via various ioctl calls.

POSIX threads Real-time data acquisition and control
modules are implemented as POSIX threads (in the fol-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10379

lowing called pthreads for short). GNU/Linux provides
two different libraries to manage threads which give the
user a set of primitives for creating, running, stopping
and resuming pthreads, synchronizing their operations, and
specifying their scheduling policies and priorities: Linux-
Threads (Lin (b)) and NPTL (NPT). LinuxThreads was
the first library implementing POSIX threads available for
Linux but it had a number of issues with true POSIX
compliance, particularly in the areas of signal handling,
scheduling, and inter-process synchronization primitives.
On the other side, the original implementation of NPTL
mostly missed the real-time support: although available,
system calls to select real-time scheduling had no effect.
Actually, NPTL developers didn’t implement real-time
due to the lack of efficient synchronization mechanisms
in the kernel (NPT). However, after recent enhancements
of Linux, in particular the introduction of futexes (Fast
Userspace Locking system calls) (Franke et al. (2002)),
nowadays NPTL supports real-time and provides a com-
plete and efficient implementation of POSIX threads for
Linux.
Anyway, using either LinuxThreads or NPTL, there are
three possible types of scheduling policies for pthreads :
SCHED FIFO, SCHED RR and SCHED OTHER and the
priorities range from 0 (lowest) to 99 (highest). Linux
manages pthreads having SCHED FIFO scheduling policy
in a fully preemptive and priority-based way, guarantee-
ing that at any given instant the highest priority ready
SCHED FIFO pthread is the one that is executed by the
CPU. SCHED RR pthreads are treated by the scheduler
in a similar way but with a round-robin algorithm, and
are rarely used. Normal Linux threads are pthreads having
priority 0 (the lowest) and SCHED OTHER scheduling
policy, i.e. a Unix-like time-sharing one. Being the priority
of SCHED FIFO pthreads always greater than 0 they
never can be preempted by a Linux thread. Thus it is
possible to implement real-time applications delegating
time-critical tasks that cannot be interrupted to pthreads
having SCHED FIFO scheduling policy (referred in the
following as real-time pthreads), while SCHED OTHER
Linux threads can be active only when there are no real-
time pthreads running or ready to run.

Custom real-time scheduler and thread, data and commu-
nication management In order to simplify and stan-
dardize the development of control system applications,
a set of C++ classes encapsulating real-time and Linux
threads, a custom scheduler devoted to manage their tim-
ing requests and message queues for inter-thread commu-
nications have been implemented, in a first phase using
LinuxThreads library primitives, and in a second phase
using NPTL. This was allowed by recent enhancements
of Linux, in particular the introduction of futexes (fast
userspace mutexes) Franke et al. (2002), which enabled
NPTL to support realtime and provides a complete and
efficient implementation of pthreads for Linux. The taxon-
omy of the thread classes in shown in Figure 4, where the
abstract base class (ABC) Thread embodies the main char-
acteristics of a generic thread and acts as a base class on
which other classes can be built. The Thread class derives
SchedFIFOThread and LinuxThread classes, representing
thread with scheduling policy and priority (SCHED FIFO,
1. . .99) and (SCHED OTHER, 0) respectively, i.e. real-

Fig. 4. Thread classes taxonomy.

time pthreads and normal Linux threads. It is worth noting
that the class SchedFIFOThread implements a generic
real-time pthread that is usually waiting for a specific
event.
The main characteristics of a generic real-time pthread
subject to the custom scheduler management are em-
bodied by the abstract base class RTCThread class, de-
rived from SchedFIFOThread. RTCThread derives the
SynchronousThread and AsynchronousThread classes rep-
resenting respectively real-time pthreads that need to be
periodically scheduled at a requested frequency and real-
time pthreads that need to be awaken after a desired time
interval.
The custom scheduler is simply a real-time pthread having
the highest available priority that is cyclically activated
by an interrupt generated by the RTC at a prefixed fre-
quency and whose aim is to manage requests from Asyn-
chronousThreads and SynchronousThreads.
A few other classes, e.g. message queues that are not
supported by the LinuxThreads library, were designed and
implemented to provide in an easy way inter-thread and
network communications.

4. CONTROL SYSTEM ARCHITECTURE

The Hammer control system architecture, shown in Figure
5, basically consists of the Machine thread, a finite state
machine (a kind of virtual PLC) handling digital sensor
I/O including the electro-valves controlling the pneumatic
puncher, and the Head thread, a finite state machine
controlling the writing of the characters through the man-
agement of the intelligent step motors connected to the
CAN Open fieldbus. For hardware optimization, the four
digital outputs needed for piloting the puncher electro-
valves are included in an eight channel digital output port
together with signal piloting conventional devices. Thus,
they are written by the Machine thread, on the basis of
commands received by the Head thread through a suitable
communication queue. Data exchange between the host
field board (Profibus DP) and the application machine
is managed by the Host thread, while the HMI (Human
Machine Interface) thread handles communications with
the operator interface. The Profibus and the CANOpen
threads manage respectively the communications with the
Profibus and the CANOpen buses while the cmdStream-
ToQueue and the tlmQueueToDatagram threads handle
the network interface. The Machine thread is implemented

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10380

as a real-time synchronous pthread running at 1024 Hz
for a fast update of electro-valve commands, while the
Head thread is a real-time asynchronous one. Indeed, once
received from the Machine thread the command of writing
a character, it plans the marking head motion and then
executes it as a sequence of: i) send command to the step
motors, ii) sleep for a few milliseconds, iii) check if the
command has been completed. The Host thread is a real-
time synchronous pthread running at 16 Hz, while the HMI
thread is a real-time synchronous one running at 8 Hz.
Profibus, CANOpen, cmdStreamToQueue and tlmQueue-
ToDatagram threads are SchedFIFOThreads. The custom
scheduler runs at 2048 Hz.

Fig. 5. Hammer machine control system architecture.

5. EXPERIMENTAL RESULTS

Experiments were carried out in the lab in order to
evaluate the performance of the proposed platform. The
Profibus and CANOpen threads communicates with RS-
232 serial links at 115.2 Kbps simulating the behavior of
the Profibus and CANOpen buses. The Hammer control
system was run on a target machine, an Advantech PCM-
9577 Single Board Computer, equipped with an Intel Pen-
tium III CPU at 1.2 GHz, 512 MB of RAM, 4 RS-232
serial ports, one 128 MB CF card and an Ethernet link at
100 Mbps. Three PC-104 modules (Advantech PCM-3724,
Advantech PCM-3718HG and Diamond Ruby-MM-1612)
were used to perform digital I/O, analog input and output
respectively. The overall system was put in a CF card from
where the SBC was programmed to boot. A Java program
running on a host computer simulated the behavior of an
Ethernet-connected Human Machine Interface by sending
random commands to the system at a frequency of 10

Hz and receiving the telemetry at 8 Hz from the target.
Besides the Hammer control system threads, on the target
machine there was also running Calc, a Linux thread that
uninterruptedly calculated random numbers, whose only
purpose was to computationally load the system.
The 64-bit time-stamp counter (TSC) was used as timer,
independent from the RTC, to measure the application
performance. It keeps an accurate count of every cycle that
occurs on the processor since the machine was booted. To
access this counter the RDTSC (read time-stamp counter)
instruction is available. The scheduler thread and each
thread deriving from RTCThread class were designed in
such a way to give the user the option to record in
a suitable array (kept in RAM for efficiency reasons)
their timing values calculated by reading the TSC. In
particular, the scheduler thread and the threads of type
SynchronousThread record in their respective arrays the
histograms of the difference between the requested ideal
period and the difference between two following synchro-
nization events (error on the period) whereas the threads
of type AsynchronousThread save the difference between
the requested delay and the actual obtained one (error on
the delay). Since the Hammer application requires the sys-
tem to be very reactive in applying puncher electro-valve
commands, the time spent to transfer the corresponding
message from the Head thread to the Machine thread is
monitored too. At the end of the application the arrays are
copied from RAM to files, thus allowing an off-line analysis
of the data.
Experiments to evaluate system performances with and
without CONFIG PREEMPT option activated were car-
ried out running the system for about two weeks using
both the LinuxThreads library with Linux 2.6.9 and the
NPTL 2.3.5 with Linux 2.6.21.1. In particular three timing
parameters were considered:

(1) Tmax: the maximum error on the requested period of
the scheduler and of synchronous threads

(2) T99.99: the 99.99th percentile of the scheduler error,
i.e. one scheduler sample over ten thousand has an
error higher than T99.99

(3) T99.9999: the 99.9999th percentile of the scheduler
error, i.e. one scheduler sample over one million has
an error higher than T99.9999

Results, summarized in Table 1, point out how the per-
formance of recent kernels and POSIX library NPTL is
noticeably better than that obtainable using old kernels
and the outdated LinuxThreads library. In particular,
activating the CONFIG PREEMPT option reduces the
maximum error, while NPTL is more efficient than Lin-
uxThreads.

Library Preempt. Tmax T99.99 T99.9999

LinuxThreads no 752 µs 44 µs 114 µs

LinuxThreads yes 281 µs 39 µs 112 µs

NPTL no 495 µs 39 µs 114 µs

NPTL yes 243 µs 18 µs 106 µs

Table 1. System performance evaluation.

As far as the scheduling sequences of pthreads are con-
cerned, the observed behavior using NPTL is identical to
that found using LinuxThreads. The results obtained using
LinuxThreads, shown in the following, are hence still fully
applicable using NPTL. Considering that, denoting with

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10381

T the period of the custom scheduler, i.e. the interval
between two RTC interrupts, the Machine thread has a
period of 2T and a priority higher than that of the Head
thread, the possible scheduling sequences of the kernel
scheduler and of the Machine, Head and custom scheduler
threads are shown in Figure 6, where k, s and m denote the
kernel scheduler, custom scheduler and Machine thread
execution times respectively (assumed constant in first
approximation) and Wr and Wm are the requested and the
actual measured waiting time of the Head thread. Since the

Fig. 6. Scheduling sequences showing the three possible
waiting times for the Head thread.

system was designed to guarantee an actual waiting time
W in the execution of the suspended thread not lower than
Wr, the error on the waiting time, ∆W = Wm − Wr can
assume the values:

a) T , when the requested waiting time is an odd multiple
of T , i.e. Wr = (2n + 1)T

b) T − (k + m), when the requested waiting time is an
even multiple of T , i.e. Wr = 2nT and the Head
thread sends its request to be resumed in a RTC slot
where the Machine thread is scheduled to run.

c) T + (k + m), when the requested waiting time is an
even multiple of T , i.e. Wr = 2nT and the Head
thread sends its request to be resumed in a RTC slot
where the Machine is not scheduled to run.

As expected, three peaks spaced by the time required for
kernel scheduling and Machine thread execution are visible
in Figure 7 representing the histogram of the error on the
requested waiting time of the Head thread. In particular,
the measured error peak is located at 486 µs (i.e. the
scheduler period), while the two secondary peaks are
situated at 379 µs and 594 µs respectively, corresponding
to an execution time of 108 µs for kernel scheduler and
Machine thread. During the tests, the requested Head
thread waiting time was randomly extracted between 2T
and 10T , i.e. between about 1 and 5 ms.

6. CONCLUSION

The integration of a stamping marking machine with a
GNU/Linux-based platform for embedded real-time sys-
tems has been discussed in this paper, showing how stan-

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

x 10
7

Hammer−like lab trial, duration: 316h31’12"

 Head thread: error on the delay

#
 s

a
m

p
le

s

time [µs]

Fig. 7. Histogram of the Head thread error on the re-
quested waiting time.

dard Linux-based platforms can support industrial real-
time applications up to a couple of KHz. The proposed
platform can easily support expected developments in the
field of automatic reading of the billet codes, requiring, for
instance, the integration of vision and laser scan systems.

REFERENCES

http://home.gna.org/adeos.
http://www.zipworld.com.au/˜akpm/linux/schedlat.html.
http://www.comedi.org.
http://www.gnu.org.
http://people.redhat.com/˜mingo.
http://www.ittc.ku.edu/kurt.
http://www.kernel.org, a.
http://pauillac.inria.fr/˜xleroy/linuxthreads, b.
http://mca2.sourceforge.net.
http://people.redhat.com/drepper/nptl-design.pdf.
http://www.orocos.org.
http://www.opengroup.org.
http://www.aero.polimi.it/˜rtai.
http://www.fsmlabs.com.
http://www.realtimelinuxfoundation.org.
http://www.kernel.org/pub/linux/kernel/people/rml.
http://www.timesys.com.
L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole.

A measurement-based analysis of the real-time perfor-
mance of Linux. In Proc. of Eight IEEE Real-Time
and Embedded Technology and Applications Symposium,
2002.

G. Bruzzone, M. Caccia, A. Bertone, and G. Ravera.
Standard Linux for embedded real-time manufacturing
control systems. In Proc. of IEEE 14th Mediterranean
Conference on Control and Automation, 2006.

R. Fox, E. Kasten, K. Orji, C. Bolen, C. Maurice, and
J. Venema. Real-time results without real-time systems.
IEEE Trans. on Nuclear Science, 51(3):571–575, 2004.

H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes
and furwocks: fast userlevel locking in Linux. In Ottawa
Linux Symposium, pages 479–489, 2002.

A. Lennon. Embedding Linux. IEE Review, 47(3):33–37,
2001.

L. Wang. Factory automation systems: evolution and
trends. In Proc. of AUTOTEST, pages 880– 886, 2002.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10382

