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Abstract: An approach to estimate spacecraft system parameters is proposed in this paper. Oftentimes, 
spacecraft is under uncertainties of the system as well as internal and external disturbances which have 
different aspects each other. The moment of inertia of spacecraft is unknown especially when it is under 
considerable fuel consumption or equipped with deployable structures. This study aims to estimate the 
moment of inertia of the spacecraft body as well as its attitude and angular rate by using predictive 
filtering algorithm. Crassidis and Markley developed a predictive filtering algorithm for nonlinear 
estimation under a large system model error. This approach focuses not on the specific sources of model 
error described in the equations of motion but the resultant model error vector driving errors on the system 
dynamics. Therefore, we are not able to update the system model since the estimated model error has no 
additional information about the system. This paper establishes a method to apply the predictive filtering 
algorithm for nonlinear spacecraft parameter estimation by defining a new model error vector for 
parameters. This study shows different sources of the model error can be separated for estimation, and 
reveals excellent estimation results. Proposed algorithm is verified by numerical simulation studies. 

 

1. INTRODUCTION 

Conventional linear filtering algorithms such as a Kalman 
filter have shown their excellent usefulness in wide 
applications even under various noises and uncertainties 
(Crassidis et al. 2007, Pittelkau, 2001). The most common 
one, the Kalman filter, addresses uncertainties and noises of a 
system by the combination of the process and the 
measurement noises. This approach simplifies how to treat all 
the results by many sources of errors into adjusting the 
covariances of the process and measurement noises 
appropriately according to the accuracy of the system 
information. In order to utilize this simplicity, the process and 
measurement noises are assumed to be zero-mean Gaussian. 
In actual practices, however, the zero-mean Gaussian 
assumption of noises is far from its real features. There is 
variety of non-Gaussian uncertainties attributing to the filter 
performance degradation such as nonlinearity, the mass 
moment of inertia uncertainty, actuator and sensor 
misalignments, internal and external disturbance torques, 
control time delay, etc. In order to compensate the effects of 
uncertainties, parameter estimation as well as state estimation 
has been performed by the extended Kalman filter (EKF) 
(Iwasaki and Kataoka, 1989). The EKF propagates the 
estimates by the nonlinear system model while the 
measurements still updates the estimates based on the 
linearized model.  

On the other hand, linear and nonlinear model errors have also 
been addressed from a control standpoint, by which system 
state variables successfully track and converge to the given 
references. Yoon and Tsiotras (2005) took into consideration 
of actuator misalignment, and designed Lyapunov function 
based adaptive control with a parameter adaptation rule. 

Singla et al. (2006) established adaptive output feedback 
control for spacecraft rendezvous and docking under system 
and measurement uncertainties. Both studies have verified the 
algorithms to show good tracking results of states. The 
parameter estimations, however, are not guaranteed to 
converge to their true ones. In these papers, parameter 
estimation is a bypass for state regulation or tracking control.  

The predictive filtering algorithm was proposed by Crassidis 
and Markley (1997a, b), who were hinted at an idea of 
estimating model error vector from the study of Mook and 
Junkins (1988). Also, the predictive filter is based on the 
concept of duality with the predictive control initially 
suggested by Lu (1994). We can predict the contribution of 
the unknown model error to the states or the outputs by the 
Taylor series approximation to the differential relative degree 
between the model error and the states or outputs. Reversely, 
we can determine the model error minimizing predictive states 
or output estimation error for given measurements. The 
nonlinear approximation is known to show higher 
performance than the EKF does, even though it is not proved 
yet. The last outstanding character is the predictive filter can 
be implemented in real time as the EKF. Meanwhile, this 
notion does not make use of any zero-mean Gaussian 
assumption of model error present in the equations of motion. 
The model error may be in any form. This is one of the major 
advantages of the predictive filter.  

Estimating and including the model error is one way of 
compensating the unmodeled error effects. Therefore, the 
model error estimate acts like an additional control input 
vector in the system model dynamics. The system model, 
however, is not updated so that we cannot extract any useful 
information for other purposes. This can be a large drawback  
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since a separate estimator is needed in case we want to exploit 
an updated system model. 

This study applies the extension technique of the extended 
Kalman filter which can be modified easily for unknown 
parameter estimation, to the predictive filter algorithm. As a 
result, the model error vector is augmented by the length of 
the parameters to be estimated. In the extended Kalman filter, 
the key role is upon the initial covariance matrices of the 
augmented states while the predictive filter has it on the 
weight matrix of the quadratic cost function corresponding to 
the model error of the parameter. 

This article introduces the equations of motion of spacecraft 
in the following section. In section 3, follows the predictive 
filter algorithm and the application to parameter estimation. 
Numerical simulation results show the validity of the new 
method in section 4.  

2. EQUATIONS OF MOTION OF SPACECRAFT 

The total angular momentum of spacecraft, H , is defined by 
the product of the moment of inertia and the body angular 
velocity. 

 H Jω=  (1) 

where is the angular velocity of the spacecraft, and 3Rω ∈ J  
is the mass moment of inertia matrix of the spacecraft body 
expressed in the body frame, respectively.  

The equation of motion is  

  (2) H Hω+ × = L

where  is the total external torque exerted on the 
spacecraft. Assuming no external disturbance torque, and 
substituting (1), we can rewrite (2) as  

3L R∈

 [ ]1 ( ) 1J J Jω ω ω−= − × + u− , (3) 

where  is the control torque from a attitude control 
actuator. It can be driven by the angular acceleration of a 
momentum wheel. In this paper, however, we assume that the 
angular momentum of the wheel is negligible with respect to 
that of the spacecraft body.  

3u R∈

The attitude kinematics can be expressed by attitude 
quaternion such as  

 1 1( ) ( )
2 2

q q qω ω= Ω = Ξ  (4) 

where 

 [ ]1 2 3 4 13 4

TT Tq q q q q q q⎡= = ⎣ ⎤⎦ , (5) 

and, 

 
[ ]

( ) 0T

ω ω
ω ω

− ×⎡ ⎤
Ω ≡ ⎢ ⎥−⎢ ⎥⎣ ⎦

, 4 3 13

13

[ ]
( ) T

q I q
q q

+ ×⎡ ⎤
Ξ ≡ ⎢ −⎢ ⎥⎣ ⎦

⎥ . (6) 

We can express the equations of motion of (3) and (4) in a 
general form:   

 1 1

2 2 2

( )
( ) ( )

x f x
x f x g x u

=
= +

. (7) 

Definitely,  

 1

1
2

1 1( , ) ( ) ( )
2 2

( , ) [ ]

f q q q

f p J J

ω ω ω

ω ω ω−

= Ω = Ξ

= − ×
,   

and  

 1
2 ( )g x J −= .    

where [ ]α×  is a matrix indicating the cross product such as 

 
3 2

3 1

2 1

0
[ ] 0

0

α α
α α α

α α

−⎡ ⎤
⎢ ⎥× = −
⎢ ⎥
−⎣ ⎦

. 

3. PARAMETER ESTIMATION 

3.1 Predictive Filtering Algorithm 

In this section, we briefly introduce the predictive filter 
algorithm derived by Crassidis and Markley (1997b). Let’s 
consider a nonlinear system model given by  

 
ˆ ˆ ˆ( ) ( ( )) ( ( )) ( )
ˆ ˆ( ) ( ( ))
x t f x t G x t d t
y t c x t

= +
=

 (8) 

where ˆ( ) nx t R∈ , , and  are the state 
estimate vector, the model error vector, and the estimated 
output vector, respectively. The measurements are assumed to 
be 

( ) qd t R∈ ˆ( ) my t R∈

 ( ( ))k ky c x t vk= +  (9) 

where  is the measurement vector at time , and  
is assumed to be a zero-mean, Gaussian white-noise 
distributed process with 

m
ky R∈ kt kv

 
[ ] 0

[ ]
k

T
k l kl

E v

E v v Rδ

=

=
 (10) 

where m mR R ×∈  is a positive definite covariance matrix.  

The predictive output estimate at time t  is approximated 
by the Taylor series expansion to the relative degree 

t+ ∆

iρ in 
terms of differentiation of each component with respect to the 
model error.  

 
1

ˆ ˆ( ) ( ) (
i i

i
i

dy t t y t y t
dt

ρ

=

+ ∆ ≈ + ∑ ˆ )  

Or, 
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  (11) ˆ ˆ ˆ ˆ( ) ( ) ( ( ), ) ( ( ), ) ( )y t t y t z x t t D x t t d t+ ∆ ≈ + ∆ + ∆

where the ith element of  is ˆ( ( ), )z x t t∆

 
1

ˆ( ( , )) ( )
!

i k
k

i f
k

tz x t t L c
k

ρ

=

∆
∆ = ∑ i  

with the Lie derivative of 

 1

( )                  for 0

( )
( )    for 1

ˆ

k
f i i

k
f ik

f i

L c c k

L c
L c f k

x

−

= =

∂
= ≥

∂

. 

ˆ( ( ), )z x t t∆  is a nonlinear approximation term to the order of 
the relative degree, and  is understood to be the 1st 
order approximation of generalized sensitivity of the model 
error with respect to the predictive output estimate. 

 is to be obtained in the following section. 

ˆ( ( ), )D x t t∆

ˆ( ( ), )D x t t∆

A cost function is defined by weighted combination of the 
square of predictive output estimate error and the square of 
the model error vector, which is expressed as 

{ } {1

( ) ( )
1 ˆ( ) ( ) ( ) ( )
2

T

T

J d t Wd t

y t t y t t R y t t y t t−

=

+ + ∆ − + ∆ + ∆ − + ∆ }ˆ
 (12) 

where  is a positive semidefinite weight matrix. 
Since the cost 

q qW R ×∈
J  is quadratic with respect to , we can 

find the model error estimation minimizing the cost by 
substituting (11) into (12) and : 

( )d t

/ ( ) 0J d t∂ ∂ =

  (13) 
{ }

11

1

ˆ ˆ ˆ( ) ( , ) ( , )

ˆ ˆ( , ) ( , ) ( ) ( )

T

T

d t D x t R D x t W

D x t R z x t y t t y t

−−

−

⎡ ⎤= − ∆ ∆ +⎣ ⎦
× ∆ ∆ − + ∆ + ˆ

) t

t

The predictive filter works like this: if the 
measurement  is given at time t , the model 

error estimation  is produced by (13), which is used to 
propagate the system state at time t  to  during which 
the model error is assumed constant. The predictive filter is 
considered to be given the word ‘predictive’ because the 
algorithm takes into consideration of distribution of model 
error to the output after the time interval .  

(y t t+ ∆ + ∆
ˆ( )d t

t + ∆

t∆

The weighting matrix in (12) can be determined on the basis 
that the covariance of the measurement minus estimate error 
must match that of the measurement minus truth error. This 
condition is referred to as the covariance constraint as 

 { }{ }
1

1 ˆ ˆ( ) ( ) ( ) ( )
totm

T
k k k k

ktot

y t y t y t y t R
m =

− −∑ ≈

1

 (14) 

where  is the total number of measurement data.  totm

3.2 Spacecraft Parameter Estimation 

Aforementioned predictive estimation is for state estimation 
purpose. Therefore, let’s modify the equations of motion in 
(3) for parameter estimation. Define the estimation  
assuming an unknown parameter for the spacecraft. Then, 
dynamics of the parameter estimate is assumed to be a new 
model error : 

ˆ ( )pp R∈

2 ( )pd R∈

 
1 1

2 2 2

2

ˆ ˆ( )

ˆ ˆ ˆ ˆ ˆ( , ) ( , )

ˆ

x f x

x f x p g x p u d

p d

=

= +

=

+

p

 (15) 

where  is a parameter vector to be estimated. Since the first 
equation of (15) represents kinematics of the system, we may 
assume that the parameter appears only in dynamics equation. 

p̂

Now the problem is to obtain the cost minimizing model error 

vector 1 2,
TT T qd d d R +⎡ ⎤= ∈⎣ ⎦ . In the formulation of (15), the 

parameter estimation error and the measurement noise are 
expected to be separated properly. The measurement equation 
is same as (9): 

 ( ( ))k ky c x t vk= +  (16) 

Let’s denote the relative degrees of the output with respect to 
the model error  as d iρ ′ , then, 

 1i iρ ρ′ = + , 

which means the predictive output and the parameter model 
error have a relationship such as  

 
1

ˆ ˆ( ) ( ) ( )
i i

i
i

dy t t y t y t
dt

ρ ′

=

+ ∆ ≈ + ∑ ˆ . 

Or, 

 ˆ ˆ ˆ ˆ( ) ( ) ( ( ), ) ( ( ), ) ( )y t t y t z x t t D x t t d t+ ∆ ≈ + ∆ + ∆  (17) 

where the ith element of  is ˆ( ( ), )z x t t∆

 
1

ˆ( ( , )) ( )
!

i k
k

i f
k

tz x t t L c
k

ρ ′

=

∆
∆ = ∑ i  

with the Lie derivative of 

 1

( )                  for 0

( )
( )    for 1

ˆ

k
f i i

k
f ik

f i

L c c k

L c
L c f k

x

−

= =

∂
= ≥

∂

. 

The cost function is defined same as (12) except the weight 
matrix of the model error vector is of ( ) ( )q p q p+ × +  
dimension.  

Since the cost function is still quadratic with respect to the 
augmented model error, the cost minimizing model error 
estimation is finally obtained in the same form of (13): 
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  (18) 
{ }

11

1

ˆ ˆ ˆ( ) ( , ) ( , )

ˆ ˆ( , ) ( , ) ( ) ( )

T

T

d t D x t R D x t W

D x t R z x t y t t y t

−−

−

⎡= − ∆ ∆ +⎣ ⎦
× ∆ ∆ − + ∆ + ˆ

⎤

3.3 Spacecraft Moment of Inertia Estimation 

The moment of inertia (MOI) matrix is a representative 
parameter in spacecraft attitude dynamics. In this section, we 
solve the above formulation for the MOI estimation problem. 
We define a parameter vector such as 

 . [ ]11 22 33 12 13 23, , , , , Tp J J J J J J=

The equations of motion are rewritten as 

 1 1
1

2

1 1ˆ ˆˆ ˆ ˆ( ) ( )
2 2

ˆ ˆ ˆˆ ˆ ˆ[ ]

ˆ

q q q

J J J u d

p d

ω ω

ω ω ω− −

= Ω = Ξ

= − × + +

=

 (19) 

In this paper, we consider both the quaternion and the angular 
rate as measurements. The relative degrees iρ of both outputs 
are 3 and 2 with respect to the parameter model error. The 
predictive output estimates in (17) are expressed as 

( ) ( )

( )

( )

2
2

2

2 2

2

2 1

3

2 2

( )

1 1( ) ( ) ( ) ( )
2 4 3 8

1( ) ( ) ( )
4 3 2

1( ) ( ) ( )
4 3 2

( )
12

T

T

T

p p

q t t

t tq t t q

t tq q q q F f

t tq q q q F d

t q F G d

ω

ω

ω ω ω ω ω

ω ω

ω ω

+ ∆

⎧∆ ∆ ⎛ ⎞= + Ω + ∆ Ω + − Ω⎨ ⎬⎜ ⎟
⎝ ⎠⎩

∆ ⎡ ∆ ⎤⎧+ Ξ + Ξ Ξ − + Ξ +⎨⎢ ⎩⎣
∆ ⎡ ∆ ⎤⎧ ⎫+ Ξ + Ξ Ξ − + Ξ⎨⎢ ⎩⎣
∆

+ Ξ +

gu

⎫

⎭

⎫
⎬⎥⎭⎦

⎬⎥⎭⎦

(20) 

 
( )

( )

3 2 2

2

3 2 1 2

( ) ( )
2

2 2 p p

tt t t t I F f gu

t tt I F d F G d

ω

ω

ω ω ∆⎛ ⎞+ ∆ = + ∆ + +⎜ ⎟
⎝ ⎠
∆ ∆⎛ ⎞+∆ + + +⎜ ⎟

⎝ ⎠
2

 (21) 

The newly introduced terms are defined by 

 {12 2 2
2

1 2 3

, , ( )
f f f }F J J Jω ω ω
ω ω ω

−⎡ ⎤∂ ∂ ∂
= = ×⎢ ⎥∂ ∂ ∂⎣ ⎦

− × , 

 2 2 2
2

1 2 6

, , ,p
f f f

F
p p p

⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

 

where 

 1 12

i i i

f J JJ J J
p p p

ω ω ω ω− −⎛ ⎞∂ ∂ ∂
= × − ×⎜ ⎟∂ ∂ ∂⎝ ⎠

, 

 
1 2 6

, , ,p
g g gG u u
p p p

⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

u  

where 

 1 1

i i

g JJ J
p p

− −∂ ∂
= −

∂ ∂
. 

/ iJ p∂ ∂  is a 3 3×  matrix whose ( , )j k  and  
components corresponding to  are unity and others 
zero. 

( , )k j

i jp J= k

3I  means 3 3×  identity matrix. 

Equations (20) and (21) are rewritten in the form of (11) by  

 1 1 2 2

1 1 2 2

ˆ ˆ( ) ( ) ( , , , )
ˆ ˆ( ) ( ) ( , , )

q qq t t q t z q J u D d D d

t t t z J u D d D dω ω

q

ω

ω

ω ω ω

+ ∆ ≈ + + +

+ ∆ ≈ + + +
 

Or, 

 ˆ ˆ( ) ( )y t t y t z Dd+ ∆ ≈ + +  

where ,
TT T

qz z zω⎡ ⎤= ⎣ ⎦ , and 

 1 2

1 2

q qD D
D

D Dω ω

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

Now, we can find the model error estimation  by the 
solution in (18).  

ˆ( )d t

4. SIMULATION STUDIES 

Shown in this section are the simulation results for parameter 
estimation by predictive filtering algorithm. First, we need to 
select an attitude controller due to the control signal appearing 
in (19). In this paper, an estimation maneuver is assumed. 

For simulation purposes, applied is a predictive controller for 
spacecraft attitude control by Crassidis et al. (1997). Given 
reference trajectories to follow, the predictive control 
synthesizes control command based on nonlinear state 
prediction strategy using the Taylor series expansion.  

4.1 Reference maneuver 
 
In order to estimate the inertia matrix, so called ‘persistent 
excitation’ should be guaranteed. A constant body rate vector 
or one with constant direction will not satisfy this requirement. 
As one of the reference trajectories satisfying the ‘persistent 
excitation’ condition (Pittelkau, 2001), following rate 
trajectory is proposed: 

 (1 cos ) sinr l l l lω φ φ= − − × + φ , (22) 

where 

 
1 2

1 2

2

1 2

50 ( ),
sin sin
cos sin ,

cos
0.01 / , 0.04 / .

t rad
t t

l t t
t

rad s rad s

φ π
ω ω
ω ω

ω
ω ω

=

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦
= =

 (23) 
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The reference trajectory in (22) is shown in Fig. 1. The overall 
maneuver time is 10min. The quaternion reference trajectory 
is given as in Fig. 2 by integrating (4). Taking the attitude as 
the measurement of the system as well as the body angular 
velocity, we utilize both for generating control input signals. 
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6
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)

ω 1
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Fig. 1. Body angular rate reference trajectory 
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Fig. 2. Quaternion reference trajectory 

4.2 Simulation results 

Simulation is performed for 10min. Measurement sampling is 
given every 0.2s. The time interval of prediction t∆  is 0.2s. 
The true moment of inertia and the initial estimate are 
assumed as 

 2
160 50 30 170 25 15

50 200 20 , 25 175 35 ( / )
30 20 180 15 35 190

trueJ J kgm
− − − −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − − = − −
⎢ ⎥ ⎢ ⎥
− − − −⎣ ⎦ ⎣ ⎦

s . 

The measurement noise covariance and the weighting matrix 
are  

 
6 5

4 4 3 3 3 6
6 4

3 4 3 6 3 6

10 0 5 10 0,
0 10 0 5 10

I IR W
I I

−
× ×

− −
× ×

⎡ ⎤ ⎡ ×
= =

⎤
⎢ ⎥ ⎢ × ⎥
⎣ ⎦ ⎣ ⎦

. 

Initial attitude and rate errors are also adopted in this 
simulation: 

  
[ ]
[ ]

0

0

0.1925, - 0.1925,  0,  0.9623 ,

0.01, 0, 0.02 ( / )

T

T

q

rad sω

∆ =

∆ =

Fig. 3 to Fig. 5 shows the simulation result. The attitude 
quaternion and the body angular rate are filtered to have 
smoother histories. Large initial estimation error diminishes in 
5 min. We see the MOI estimation error converge in Fig. 5. 
All the parameter components of the moment of inertia have 
its error less than  at the end of simulation. But, the 
measurement noise is not fully filtered. Comparing the state 
convergence, the angular rate error converges faster that that 
of quaternion. The relative error with respect to the 
measurements is also better for the angular rate than for the 
quaternion. This is the same result as one by Singla (2006). 

21 /kgm s
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Fig. 3. Quaternion measurement and estimation errors 
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Fig. 4. Body angular rate measurement and estimation errors 
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Fig. 5. The moment of inertia estimation error trajectory 

5. CONCLUSIONS 

The predictive filtering method is applied to parameter 
estimation of spacecraft. Time derivative of parameters is 
assumed to be a model error vector, and the system model is 
augmented by the length of the parameter to be estimated as 
in the extended Kalman filter. As an example, estimation 
problem of the moment of inertia is solved and its simulation 
is performed. Parameter estimation error converges to zero 
within the bound of . But, the measurement noise is 
not fully filtered by only the PF algorithm, and quaternion 
estimate should be enhanced further. Newly proposed method 
can extend application of the predictive filtering. 

21 /kgm s
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