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Abstract:
Abstract: This paper describes a fault detection and isolation (FDI) scheme performed on the benchmark
problem of a ship propulsion system. The model used for the ship propulsion system is nonlinear, for which two

types of additive sensor faults, an additive incipient fault, and a multiplicative parametric fault are simulated.

The estimation of the fault severity is accomplished by using an adaptive two-stage extended Kalman filter. A

set of statistical detection variables is formed from the residuals of the bias and measurement estimates of the

filter. These variables are then used in a threshold based hypothesis test to declare the occurrence of a fault and

through a binary logic filter to identify the fault type. The simulation results showed that the developed fault

detection and isolation scheme fulfilled some of the benchmark requirements reasonably well in the face of some

prescribed perturbations in the model and disturbances of external signals.
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1. INTRODUCTION

The ship propulsion benchmark (Izadi-Zamanabadi and
Blanke, 1999) is a complicated and realistic test bed for
fault diagnosis and fault-tolerant control. It presents a
realistic simulation environment of a ship propulsion sys-
tem under faults, disturbances and random noises. In the
benchmark, not only additive abrupt faults are present, a
multiplicative fault and an incipient fault are considered
as well. Since the publication of the benchmark, several
approaches have been developed to solve the benchmark
problem from fault diagnosis and/or fault-tolerant control
aspects. Blanke et al. (1998) designed an adaptive, non-
linear observer for fault estimation of engine related faults
in shaft speed sensor and engine gain. Research results
from several groups were summarized in a book chapter
(Izadi-Zamanabadi et al., 2000). Edwards and Spurgeon
(2000) extended their results by using a dedicated sliding
mode observer for fault detection on the benchmark. A
sensor fault masking scheme of the benchmark is proposed
in (Wu et al., 2006). A fault-tolerant control scheme has
been developed in (Bonivento et al., 2003).

In this paper, all faults entering the system are manipu-
lated into additive random biases to the nonlinear ship
propulsion system model. This enables us to approach
fault diagnosis as a model based bias estimation problem.
In this regard the utility of an earlier solution to a linear
problem obtained by the authors (Wu et al., 2000) is
expanded to solve the nonlinear benchmark problem. This

estimator is further developed into a two-stage adaptive
extended Kalman filter (EKF). Beyond monitoring the
operation of a system, on-line diagnosis also provides basis
for decisions on fault accommodation. Therefore, it is
important that diagnostic outcomes are tested for their
statistical significance before a drastic action is taken, such
as the reconfiguration of a control law. These tests are part
of an FDI (fault detection and isolation) process. In this
work, a set of statistically significant detection variables
is constructed out of a set of selected residuals of the
two-stage adaptive EKF. Some of the residuals represent
the estimated fault magnitudes. Others are measurement
residuals from which the interested sensor faults are di-
rectly observed. A fault occurrence is reported whenever a
detection variable exceeds a set of threshold levels. The
selection of the thresholds for these detection variables
is dictated by the attempt to achieve not only a low
probability of missed detection and a low probability of
false alarm, but also a low probability of false isolation
as well. Immediately following the declaration of a fault
occurrence is a least squares linear regression analysis that
confirms whether the detected fault is of an incipient or of
an abrupt type, which is then followed by a fault isolation
logic. The isolation logic depends on a highly compressed
knowledge base obtained via extensive off-line analysis.

The paper is organized as follows. In Section 2, the ship
propulsion benchmark model and fault scenario are briefly
described. An adaptive nonlinear two-stage Kalman filter
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is presented in Section 3 which is based on the previous
works in (Wu et al., 2000). The developed filter can
effectively estimate both state and fault parameters that
undergo both abrupt and slow (incipient) changes. In
Section 4, our fault detection and isolation approaches
are presented. The simulation results for the benchmark
test scenarios are reported in Section 5. Section 6 gives
a brief overall evaluation on our approach to solving the
benchmark problem.

2. THE SHIP PROPULSION MODEL

2.1 Brief Description of the Benchmark Model

The main subsystems of the benchmark system are: (1)
propeller pitch angle control loop; (2) governor; (3) diesel
engine; (4) propeller characteristics; (5) ship speed dynam-
ics and (6) coordinated control level. For more detail of the
benchmark model, please refer to (Izadi-Zamanabadi and
Blanke, 1999).

Propeller pitch angle control system The pitch angle con-
trol system model is described by the following equations.

θm = θ + νθ +∆θ,
uθ̇ = kt(θref − θm),

θ̇ = max(θ̇min,min(uθ̇, θ̇max)) +∆θ̇inc,
θ = max(θmin,min(θ, θmax)),

(1)

where θm is the measured pitch angle, θ̇min and θ̇max
are the rate limits, and θmin and θmax are the limits for
propeller blade travel, ∆θ denotes the pitch sensor fault,

∆θ̇inc the incipient leakage fault due to the leak in the
hydraulic system, and νθ is the measurement noise of θ.

Governor The following equations describe the dynam-
ics of the governor.

nm = n+ νn +∆n,

ẎPI =
kr
τi
[(nref − nm) + τ i

d(nref−nm)

dt
],

YPIb = min(max(YPI , Ylb), Yub),

Ymax=

⎧⎨⎩
1 if nm ≥ 0.8nmax,a
1.5

nmax,a
n− 0.2 if 0.4nmax,a < nm < 0.8nmax,a

0.4 if nm ≤ 0.4nmax,a,
Y = max(0,min(YPIb, Ymax)),

Ym = min(max(Y + νY , Ylb), Yub),

(2)

where Ym is the measured fuel index, ∆n denotes the shaft
speed fault, Ylb and Yub are the lower and the upper limits
for fuel index, kr is the governor gain, and τ i is the time
constant in the controller of the governor. Ymax is the
limitation on the fuel index.

Diesel engine dynamics The diesel engine dynamics
includes two parts. The first part describes the relation
between generated torque and the fuel index, which is
given by

Q̇eng =
1

τc
[(1 +∆ky)kyYm −Qeng]. (3)

The second part describes the relation between the applied
torques and the shaft speed, which is given by

Imṅ = Qeng −Qprop −Qf . (4)

In Eqs. (3) and (4) Qeng is the torque developed by
the diesel engine, Qprop is the developed torque from the
propeller dynamics, Qf is the unknown friction torque, ky
is the gain constant of the diesel engine, ∆ky denotes the
percentage gain reduction of ky, τc is the time constant.

Propeller characteristics The propeller characteristics
are presented in the benchmark by two tables of real data.
The first table characterizes the developed propeller torque
Qprop, and the second table characterizes the produced
propeller thrust Tprop. In the benchmark simulation, Qprop
and Tprop are calculated by the interpolation of the two
tables of real data measured under sea operation. They are
highly nonlinear functions of pitch angle θ, shaft speed n,
and ship speed U. The nonlinearities can be approximated
by the following bilinear relations

Qprop =Q0 |n|n+Q|n|n |θ| |n|n+Q|n|Vaθ |n|Va, (5)
Tprop = T|n|nθ |n|n+ T|n|Va |n|Va, (6)

where T|n|n, T|n|Va , Q|n|n and Q|n|Va are complex functions
of the pitch angle θ. Va is the advance speed. The relation
between the advance speed and the ship speed U can
be described by wake fraction number w in the following
equation.

Va = (1−w)U. (7)

Ship speed dynamics The following nonlinear differential
equations describe the ship speed dynamics:

mU̇ = (1− tT )Tprop −RU − Text, (8)

Um=U + νU , (9)

where the hull resistance RU describes the resistance of
the ship in the water, which is also given by a table of
real data. The magnitude of hull resistance is dependent
on the velocity of the ship and its loading condition. νU is
the measurement noise of the ship speed; m is the mass of
the ship.

Equations (1)-(9) constitute the basic model that will be
used for the diagnosis purpose in this paper.

2.2 Discrete nonlinear state-space model

The benchmark ship propulsion system model can be
described in the following state-space form

ẋ(t) = f [x(t),u(t),b(t),d(t)] + Γ(t)wx(t),
z(t) = h[x(t),b(t)] + v(t),

(10)

where x = [θ n U Qeng]T is the state vector, u = [θref Ym]T

is the control input vector, z = [θm nm Um]
T is the mea-

surement vector, b = [∆θ ∆n ∆θ̇inc ∆ky]
T is the fault

parameter vector, and d = [Qf Text]
T is the unknown

disturbances vector. The system and measurement noise
vectors are: wx = [νθ 0 0 0]T , and v = [νθ νn νU ]

T .

The nonlinear functions in (10) are

f [.] =

⎡⎢⎢⎢⎢⎣
max(θ̇min,min{kt[θref − (θ + νθ +∆θ)], θ̇max}) +∆θ̇inc
1

Im
[Qeng −Qprop −Qf ]

1

m
[(1− tT )Tprop −RU − Text]

1

τc
[(1 +∆ky)kyYm −Qeng]

⎤⎥⎥⎥⎥⎦
and

h[x(t),b(t)] =

⎡⎣ θ + νθ +∆θ
n+ νn +∆n
U + νU

⎤⎦ . (11)

It can be seen that only pitch angle fault, ∆θ, and shaft
speed fault, ∆n, can be directly observed. The incipient
fault,∆θ̇inc, and multiplicative fault,∆ky, are not directly
observed.
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By using the Euler approximation with sample period T ,
where T = 1 sec, the discretized version of the above
nonlinear state-space model is⎡⎣ θ(k+)

n(k+)

U(k+)

Qeng(k
+
)

⎤⎦=
⎡⎢⎢⎢⎣
(1− kt)θ(k)
n(k)+

T

Im
Qeng[x(k), k]− T

Im
Qprop[x(k), k]

U(k)+
(1− tT )T

m
Tprop[x(k), k]− T

m
RU [x(k), k]

(1− T

τc
)Qeng[x(k), k]

⎤⎥⎥⎥⎦
(12)

+

⎡⎢⎣ kt 0

0 0

0 0

0
T

τc
ky

⎤⎥⎦h θref (k)Ym(k)

i
+

⎡⎢⎣ −kt 0 T 0

0 0 0 0

0 0 0 0

0 0 0
kyT

τc
Ym(k)

⎤⎥⎦
⎡⎣ ∆θ(k)

∆n(k)

∆θ̇inc(k)

∆ky(k)

⎤⎦

+

⎡⎢⎢⎣
0 0

− T

Im
0

0 − T
m

0 0

⎤⎥⎥⎦h Qf (k)

Text(k)

i
+

⎡⎣ −ktT 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎦⎡⎣ νθ(k)

0

0

0

⎤⎦ ,
∙

θm(k+)

nm(k+)

Um(k+)

¸
=

∙
1 0 0 0

0 1 0 0

0 0 1 0

⎡̧⎣ θ(k+)

n(k+)

U(k+)

Qeng(k
+)

⎤⎦+∙ 1 0 0 0

0 1 0 0

0 0 0 0

⎡̧⎣ ∆θ(k+)

∆n(k+)

∆θ̇inc(k
+)

∆ky(k
+)

⎤⎦+∙νθ(k+)νn(k
+)

νU (k
+)

¸
or a more compact vector form, where k+1 is denoted by
k+ for simplicity.

x(k+) = f(x, k) +G(k)u(k) +B1(k)b(k) +D(k)d(k) + Γ(k)wx(k)
z(k+) = h(x,k+) +B2(k+)b(k+) + v(k+).

(13)

3. AN ADAPTIVE TWO-STAGE EXTENDED
KALMAN FILTERING ALGORITHM

In this section, a nonlinear adaptive two-stage Kalman
filter is presented. This filter is the extended version of
a linear two-stage adaptive Kalman filter developed in
(Wu et al., 2000) for estimating the amount of actuator
effectiveness reduction.

Consider a bias augmented nonlinear discrete time model
of the form

x(k+) = f(x(k)) +G(k)u(k) +B1(k)b(k) +wx(k),

b(k+) = b(k) +wb(k),

y(k+) = h(x(k+)) +B2(k+)b(k+) + v(k+).

(14)

where x(k) ∈ Rn, b(k) ∈ Rq, u(k) ∈ Rl and y(k+) ∈ Rm
are the state, bias, control input and output variables,
respectively. wx(k), wb(k) and v(k+) denote the white
noise sequences of uncorrelated Gaussian random vectors
with zero means and covariance matrices Qx(k) > 0,
Qb(k) > 0 and R(k+) > 0, respectively. The initial
state x(0) and bias b(0) are specified as random Gaussian

vectors with mean x̄0 and covariance P̃
x
0 , and mean b̄0

and covariance P b0 , respectively. The initial state x(0) and
bias b(0) are assumed to be uncorrelated with the noise
processes wx(k), wb(k), and v(k+).

Following the derivation of a two-stage Kalman filter
algorithm (Keller and Darouach, 1997) and the extended
Kalman filter, the two-stage extended Kalman filter for
system (14) can be obtained and given as follows.

Bias-free state estimator.

x̃(k+|k) = f [x̃(k|k)] +G(k)u(k) + [M(k)− V (k+|k)]b̂(k|k), (15)

P̃
x(k+|k) = F [x̃(k|k), k]P̃x(k|k)FT [x̃(k|k), k] +Qx(k) (16)

+M(k)P
b
(k|k)MT

(k)− V (k+|k)P b
(k
+|k)V T

(k
+|k),

x̃(k+|k+) = x̃(k+|k) + K̃x(k+)[y(k+)− h(x̃(k+|k))], (17)

K̃
x(k+) = P̃

x(k+|k)HT (k+)[H(k+)P̃x(k+|k)HT (k+) +R(k+)]−1,

P̃
x(k+|k+) = [I − K̃x(k+)H(k+))P̃x(k+|k), (18)

where the filter residual vector and its covariance are given
as

r̃(k+) = y(k+)− h(x̃(k+|k)), (19)

S̃(k+) =H(k+)P̃x(k+|k)HT (k+) +R(k+). (20)

The Jacobians in the Taylor series expansion for nonlinear
functions f and h are

F [x̃(k|k),k] = ∂f

∂x

¯̄̄
x=x̃(k|k)

, H(k+) =
∂h

∂x

¯̄̄
x=x̃(k+|k)

.

Bias estimator.

b̂(k+|k) = b̂(k|k), (21)

P
b(k+|k) = P

b(k|k) +Qb(k), (22)

b̂(k+|k+) = b̂(k+|k) +Kb(k+)[̃r(k+)−N(k+|k)b̂(k|k)], (23)

K
b
(k
+
) = P

b
(k
+|k)NT

(k
+|k)[N(k+|k)P b

(k
+|k)NT

(k
+|k) (24)

+S̃(k
+
)]
−1

P
b(k+|k+) = [I −Kb(k+)N(k+|k)]P b(k+|k). (25)

Coupling equations.

M(k) = F [x̃(k|k),k]V (k|k) +B1(k), (26)

V (k+|k) =M(k)P b(k|k)[P b(k+|k)]−1, (27)

N(k+|k) =H(k+)V (k+|k) +B2(k+), (28)

V (k+|k+) = V (k+|k)− K̃x(k+)N(k+|k). (29)

Compensated state and error covariance estimates.

x̂(k+|k+) = x̃(k+|k+) + V (k+|k+)b̂(k+|k+), (30)

P (k+|k+) = P̃x(k+|k+)+V (k+|k+)P b(k+|k+)V T(k+|k+) (31)
To make the two-stage filter algorithm more responsive to
the changes of bias parameters which model the faults,
forgetting factors are introduced into the bias covariance
equation (22)

P b(k+|k) =
pX
i=1

αi(k|k)
λi(k)

ei(k)e
T
i (k) +Q

b(k), 0 < λi(k) ≤ 1. (32)

The forgetting factor λi(k) can be chosen as a decreasing
function of the amount of information received in the
direction ei(k). Since eigenvalue αi(k|k) of P b(k|k) is a
measure of the uncertainty in the direction of ei(k), a
choice of forgetting factor λi(k) can be

λi(k)=

(
1, αi(k|k) > αmax;

αi(k|k)
h
αmin +

αmax − αmin

αmax
αi(k|k)

i−1
,

αi(k|k) ≤ αmax.

4. FAULT DETECTION AND ISOLATION SCHEME

4.1 Fault Detection

Detection based on statistical hypothesis test The sta-
tistical test process is divided into two phases. The first
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phase determines the statistical quantities of the normal
operation, such as mean values and variances. The second
phase determines the statistical quantities of the abnormal
operation. By defining an appropriate statistical detection
variable to accentuate the deviation in the statistical quan-
tities from their normal values, the detection of a change
can be achieved.

Phase I. Under the assumption that selected residuals vec-
tor from the estimated fault parameters and the residuals
from the output estimates obey a Gaussian distribution at
normal (no—fault) condition, we can define

γ̂(k) ∼ N (μ̄γ0 ,σ2γ0), (33)

where γ̂(k) ∈ Rp denotes the chosen residuals vector
from the estimated fault parameters and the measurement
residuals of the filter. μ̄γ0 denotes the mean value of γ̂(k),

σ2γ̄0 denotes the associated variance. Then, these values
can be determined based on the knowledge of statistical
characteristics of system noises and parameters. When the
no—fault mean and variance are not known, they can be
estimated, for i = 1, ..., p, k = 1, ..., N1, using

μ̄γ̂0
i
(k) =

1

k

kX
j=1

γ̂i(j), (34)

σ2
γ̂0
i

(k) =
1

k − 1

kX
j=1

[γ̂i(j)− μ̄γ̂0
i
(k)]2, (35)

Sample size N1 is chosen to ensure a sufficient accuracy in
the statistics.

Phase II. Define the following moving data window based
statistical quantities

μ̄γ̂i(k) =
1

N2

kX
j=k−N2+1

γ̂i(j) (36)

σ2γ̂iI
(k) =

1

N2 − 1

kX
j=k−N2+1

[γ̂i(j)− μ̄γ̂0
i
]2 (37)

σ2γ̂iII
(k) =

1

N2 − 1

kX
j=k−N2+1

[γ̂i(j)− μ̄γ̂i
(k)]2. (38)

Then, a fault in the system corresponding to the ith
residual is declared at time k if the following detection
variable

di(k) =
σ2
γ̂iI
(k)

σ2
γ̂0
i

(k)
− ln

σ2
γ̂iII

(k)

σ2
γ̂0
i

(k)
− 1, i = 1, ..., p, (39)

exceeds a predetermined threshold εi. It is a common
practice that a declaration is cautiously made after a
threshold has been exceeded consistently for some MD

consecutive time steps. We have following hypothesis test.

di(k)

Hi

>

≤
H0

εi, (40)

where H0 = {ith residual no fault indication}, Hi = {ith
residual fault indication}.

4.2 Fault Isolation

Once a fault has been detected by using above detection
rule, the fault type (i.e. pitch angle fault, shaft speed

fault, leakage incipient fault or gain parameter fault),
fault location and the time for fault isolation have to be
determined by an appropriate isolation method. Further,
the fault size need also be determined. The demand for the
determination of the fault size is the task of fault diagnosis.
Even thought the estimation of fault size is not required
in the benchmark, however, the proposed approach in this
paper can actually provide the estimation of fault sizes
which are represented by bias parameters in the two-stage
filter algorithm. This is an additional advantage of the
proposed FDI approach.

As pointed in Isermann (1997), fault isolation (or diag-
nosis) is based on the observed analytical and heuristic
symptoms and the heuristic knowledge of the process sys-
tem. Generally speaking, currently developed fault diag-
nosis approach can be roughly classified into analytical-
and heuristic-based methods. Among these approaches,
classification method is a popular analytical based ap-
proach. On the other hand, automatic fault diagnosis can
be viewed as a sequential process involving two steps: the
symptom extraction and the actual diagnosis task. Due to
the analytical feature of the benchmark, a classification
based fault isolation approach is proposed in this section
for isolating four types of faults included in the benchmark.

To reliably detect and isolate the faults in the benchmark,
the statistical quantities in (40) can be used as the fault
symptom. By giving a set of predetermined thresholds
εj , j = 1, ..., p, a set of fault symptom vectors for different
faults can be described as

Fi = [Fi1 Fi2 ... Fip], i = 1, ..., q (41)

where q(= 4) denotes the number of fault type considered.
Fij is assumed to be binary (i.e., Fij ∈ [0, 1]) to express
the faults as either “happened” or “not happened”, i.e.

Fij =

½
1 dj > εj
0 dj ≤ εj

, i = 1, ..., q, j = 1, ..., p (42)

They may also represent gradual measures for the size of
faults Fij ∈ [0, ..., 1] to use fuzzy-based approach. Based on
these fault symptoms, by designing a set of fault isolation
logic, different faults can be isolated according to the
different fault indications. However, the fault isolation is
obtained under the situations of the predetermined de-
tection thresholds and the particular fault scenario. Any
changes due to variations in system parameters, noises
or disturbances, the time differences of each of statistical
quantity in the fault symptom vector surpassing its thresh-
old will lead to the changes of fault symptom vector. This
leads to the obtained on-line fault symptom vector may be
different with the designed (or called as reference) symp-
tom vector. Therefore, a systematic approach to handle
such an uncertainty need to be developed. By exploiting
the idea of classification (pattern recognition) approach,
following algorithm can be developed by defining

4i = kFtest ⊕ Fref,ik , i = 1, ..., q (43)

where 4i represents the Hamming distance between test
fault symptom vector, Ftest, and each of reference fault
symptom vector, Fref,i. The smaller the value of 4i,
the smaller the distance between the two fault symptom
patterns, the larger the possibility that the test fault
symptom vector belongs to the reference fault or normal
symptom. Thus, the diagnosis task becomes into finding
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imin = argi∈(1,q){min(4i)} i = 1, ..., q (44)

Once imin is determined, then the nearest neighboring
reference fault symptom vector has been identified and
the best guess for the test fault symptom vector Ftest
is Fimin . In the case if more than one 4i are identified
as minimum distance, the final fault decision have to be
made by combining the heuristic knowledge about the
faulty system by using some decision logic. Similarly as the
detection of a fault, to declare a fault type, the indicator,
imin, should hold the same value in MI consecutive time
constants to get reliable isolation.

5. FAULT DETECTION AND ISOLATION RESULTS
FOR THE BENCHMARK

The diagnostic method discussed in the previous section is
used in the ship benchmark problem, and the results are
presented here.

In the benchmark, the given scenario includes a total of
six faults which occur sequentially. To obtain a relatively
simple nonlinear state-space model for diagnosis, some
saturation limits on pitch angle are omitted. To assess the
effect of these simplifications, another set of simulation
data is generated, which relaxes the saturation limits on
pitch angle and fuel index by a factor of 10. At the same
time, the magnitude of shaft speed n is increased from the
given number 13 to 18 at the time ∆nhigh is present (i.e.,
the magnitude of ∆nhigh is changed from original 0.5 to
5.5). This fault scenario is named as S2 while the original
fault scenario is name as S1.

5.1 Fault Detection Results

To detect a fault as soon as possible, under the given
constraints on false alarm, the detection threshold should
be set as low as possible. Two sets of thresholds are
given to demonstrate the effect with different thresh-
old levels: εl = [6 120 7.2e5 2.15e6 1300]T and εs =
[6 120 5e4 2.5e5 1300]T . Note that the difference between
εl and εs are due to εbθ and εbn . The length of the moving
date window is chosen as 20 sample points.

Table 1 and Table 2 display the detection time for each
fault with two sets of thresholds and two fault test scenar-
ios.

Table 1. Fault detection time with the higher threshold set (sec.).

εl drθ drn dbθ dbn db
θ̇inc

∆TD

∆θhigh S1 183 186 189 207 182∗ 1

S2 182+ 185 188 207 182+ 1

∆nhigh S1 - 689∗ - - - 8

S2 - 682+ - - 685 1

∆θ̇inc S1 - - - - 1052∗ 251

S2 - - - - 1052+ 251

∆θlow S1 1892∗ 1899 1902 - 1892∗ 1

S2 1892+ 1899 1902 - 1892+ 1

∆nlow S1 - 2642∗ - 2663 2644 1

S2 - 2642+ - 2662 2644 1

∆ky S1 - 3014∗ - 3097 - 13

S2 - 3014+ - 3483 - 13

The detection criterion given in (40) has been used to
obtain these results. First, by comparing the results of
the two test scenarios (S1 and S2), it can be seen that

the effect of saturation limits on the pitch angle and fuel
index is very small. ∆nhigh is an exception because its
fault magnitudes are different in the two test scenarios.
Secondly, by comparing the results in Table 1 and in
Table 2, it is clear that different thresholds have resulted
in different detection outcomes and different detection
times. For example, for the higher threshold, ∆nhigh and

∆θ̇inc faults are not detected from residual dbn . They are
detected in Table 2 when a lower threshold is used. In
Table 1 and 3, ”*” and ”+” denote the smallest detection
time with respect to different detection variables for test
scenario S1 and S2, respectively. The possible minimum
detection delay for different scenarios and thresholds are
shown in the last column in the tables. It is found that
for the given fault test scenario, detection delay smaller
than 2 sample periods (∆TD < 2Ts) are achieved for
∆θhigh, ∆θlow and ∆nlow, but not for ∆nhigh. The reason
for no detection of ∆nhigh is the small fault magnitude.
In fact the percentage of magnitude change due to fault
occurrence for ∆θhigh, ∆θlow, ∆nhigh and ∆nlow faults
are 75.75%, 148.8%, 4.0% and 48.45%, respectively. It is
seen that the relative magnitude of∆nhigh is much smaller
than that of the others. With an increase in the magnitude
of ∆nhigh (S2), the requirement for detection delay is
met. From the tables, the detection delay of ∆TD <
5Ts for multiplicative fault is not met when the higher
threshold is used, and is met when the lower threshold
is used. From the Matlab/Simulink program provided for
the benchmark, it seems that all faults occur 1 second later
than the indicated times in Table 1.

Table 2. Fault detection time with the lower threshold set (sec.).

εl drθ drn dbθ dbn db
θ̇inc

∆TD

∆θhigh S1 183 186 184 199 182∗ 1

S2 182+ 185 183 198 182+ 1

∆nhigh S1 - 689∗ - 708 - 8

S2 - 682+ 700 696 685 1

∆θ̇inc S1 - - - 807∗ 1052 6

S2 - - - 849+ 1052 48

∆θlow S1 1892∗ 1899 1893 1914 1892∗ 1

S2 1892+ 1899 1893 1916 1892+ 1

∆nlow S1 - 2642∗ 2649 2653 2644 1

S2 - 2642+ 2649 2652 2644 1

∆ky S1 - 3014∗ 3042 3019 - 13

S2 - 3014+ 3042 3015 - 13

5.2 Fault Isolation Results

In the benchmark, four types of faults were considered
and simulated. The task of fault isolation is to design an
appropriate isolation logic to distinguish among these 4
types of faults and the normal operation.

Table 3. Fault knowledge base.

drθ drn dbθ dbn db
θ̇inc

∆θ 1 1 1 1 1

∆n 0 1 0 1 1

∆θ̇inc 0 0 0 1 1

∆ky 0 1 0 1 0

normal 0 0 0 0 0

A set of detection thresholds ε = [6 120 7.2e5 2.5e5 1300]T

is determined heuristically based on Table 1 and Table
2, and the analysis performed thus far. Table 3 shows a
set of pre-classified detection outcomes. In this case, the
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number of possible detection outcomes that have not been
pre-classified is equal to 2p − 5. Unless these outcomes
have all been determined as less likely or unlikely events
by the designers, further analysis must be carried out to
pre-classify the more likely outcomes among them. Based
on Table 3, following fault isolation logic can be easily
designed as:

Table. 4. fault isolation logic.

Isolation decision logic Fault type

(T11 ∧ T12 ∧ T13 ∧ T14 ∧ T15 = 1) ∨ (T11 ∧ T13 = 1) ∆θ fault

(T̄21 ∧ T22 ∧ T̄23 ∧ T24 ∧ T25 = 1) ∨ (T̄21 ∧ T22 = 1) ∆n fault

(T̄31 ∧ T̄32 ∧ T̄33 ∧ T34 ∧ T35 = 1) ∨ (T̄34 ∧ T35 = 1) ∆θ̇inc fault

(T̄41 ∧ T42 ∧ T̄43 ∧ T44 ∧ T̄45 = 1) ∨ (T̄42 ∧ T44 = 1) ∆ky fault

(T̄51 ∧ T̄52 ∧ T̄53 ∧ T̄54 ∧ T̄55 = 1) Normal

In the table, Tij , i, j ∈ [1, 5] denotes the event of Fij = 1
and T̄ij the event of Fij = 0. ”∧” and ”∨” denote logic
operation AND and OR, respectively. It is clear that the
fault symptom vector will be probably different with above
design of the reference fault symptom due to the changes
in the design of threshold, the differences between the
designed test fault scenario, noise and disturbance char-
acteristics and their actual values. By using the approach
presented by (43) and (44), a test fault symptom vector
can be first classified into the designed fault pattern given
in Table 4. Then, reliable fault isolation result can be
obtained by using the fault isolation logic given in Table 4.
However, as mentioned in the previous section, there exists
the possibility in which more than one 4i are identified
as minimum Hamming distance. In this case, the final
fault decision have to be made by combining the heuristic
knowledge about the faulty system or the special feature
in Table 3. For example, in the case if 41 =42, it denotes
the possibility that either pitch angle or shaft speed was
failed. To determine actual fault, we can find the fault
type by further computing following minimum Hamming
distance for test fault symptom vector

j = argmin
i
{kFref,ik− kFtestk} , i = 1, 2 (45)

For the two test scenarios of the benchmark, Table 5
presents the simulation results of the isolation times, and
the time delays of isolating each type of faults when MI is
set as 5, where MI is the number of consecutive cycles
in which the same isolation result remains before it is
declared. p = 5 denotes the number of residuals for FDI.

Table 5. Detection time and time delay of fault isolation (sec.).

∆θhigh ∆θlow ∆nhigh ∆nlow ∆θ̇inc ∆ky
S1 TI 193 1906 712 2648 811 3023

∆TI 12 15 31 7 10 22

S2 TI 192 1906 689 2648 853 3019

∆TI 11 15 8 11 52 18

6. CONCLUSION

In this paper, an adaptive two-stage extended Kalman
filter and statistical hypothesis test based fault diagnosis
approach to a ship propulsion benchmark problem has
been presented and evaluated by the benchmark data.
Simulation results on the benchmark data have shown that
the proposed approach can effectively detect and isolate
different types of faults specified in the benchmark in the
presence of modeling errors and unknown disturbances.
The detection time delay requirement has been met for

both the abrupt and the incipient faults, but not for the
multiplicative gain fault. It is observed that detection
speed for abrupt faults benefits from the use of filtered
measurement residuals, while both detection and isolation
of incipient and multiplicative faults heavily rely on the
direct estimates of these faults. The diagnosis results are
presented only for two test scenarios in this paper. More
test scenarios are desirable not only for more thorough
evaluation of the diagnosis approach, but also for more
complete information based on which the knowledge base
is established for FDI. Due to the nonlinearity and short
occurrence duration of abrupt faults, the estimation ac-
curacy of the fault magnitudes is not ideal. A focused
effort is needed to enhance the FDI performance for the
multiplicative fault.
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