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Abstract:
Use of flexible link robots is motivated by applications featuring lightweight or long arms.
However, the control problem faces strong technical challenges resulting from the complex
dynamics. In this paper, the virtual decomposition control (VDC) approach is applied for the
first time to address the technical challenges of this thorny problem mainly resulting from the
dynamic coupling effects among flexible links. In view of the VDC approach, the control problem
of a multiple-flexible-link robot is no more complex than the control problem of individual
flexible links subject to kinematics constraints. A planar beam governed by Euler-Bernoulli
equation is studied as an example for simplicity. A possible extension to robots with multiple
flexible links is theoretically possible by creating appropriate virtual power flows at the two ends
of each beam. The validity of the theoretical results is verified by simulations with respect to
two typical space systems in planar motion.

Keywords: Virtual decomposition control; Flexible arms; Robot control; End point control;
Model-based control; Distributed-parameter systems; Partial differential equations.

1. INTRODUCTION

Control of flexible-link robots has been developed for
more than two decades, see Kanoh et al. (1986). The
research of this topic is crucial to robotic applications
featuring lightweight or long arms. However, the resulting
complex dynamics make development of efficient control
algorithms highly challenging. While lightweight robot
arms are always desirable due to cost advantages, long
arms are needed for certain applications ranging from
assembly tasks of the International Space Station (ISS) to
aircraft cleaning tasks. However, when either lightweight
or long arms are used, flexibility shows up inevitably
regardless of the arm materials being used. This fact can
be seen from the Euler-Bernoulli equation that the static
deformation of a uniform cantilever beam subject to a force
at the free end is proportional to the third power of the
beam length. As a common practice in industry nowadays,
robot controllers are generally based on lumped-parameter
models. However, by restricting robot control design to
rigid models, the operational efficiency is severally affected
due to the extra time needed to damp out vibrations for
safe task execution.

Unfortunately, the control of multiple-flexible-link robots
has never been easy due to the complexity in deriving their
dynamic equations that take into account the dynamic
couplings among the multiple links. The use of distributed
parameter models makes the dynamic equations of a multi-
body system rather difficult, see Macchelli et al. (2007),
and the development of control strategies quite complex,
see Luo et al. (1999). By far, the most successfully designed
controllers are either based on simplified models or limited

to a rather small class of systems, see Junkins and Kim
(1993), such as robots with one or two flexible beams in
planar motion or robots with a specially designed mech-
anism or structure. In the early stage, an approximation
based on finite-dimension models was applied by Wang
and Vidyasagar (1992), and the dynamic inversion tech-
niques were used by De Luca and Siciliano (1993). Luo
(1993) examined strain-based feedback control. This re-
search based the control on the Euler-Bernoulli equation
with distributed-parameter in nature. Then, Queiroz et al.
(1999) developed an adaptive controller to compensate for
an unknown payload mass based on an infinite dimen-
sional model of flexible-link robots. A careful literature
review reveals that tracking control of multiple-flexible-
link robots in three-dimension (3D) has not been well de-
veloped, besides a few specific cases on mechanical design
and control (see Somolinos et al. (2002) and Khadem and
Pirmohammadi (2003)).

In this paper, the virtual decomposition control (VDC)
developed by Zhu et al. (1997) is applied for the first time
to the tracking control problem of flexible link robots. In
view of the VDC approach, only the dynamics of individual
flexible links are required for constructing control laws,
while the stability and convergence of the entire robot
are guaranteed as long as the virtual power flows at the
“cutting points” are appropriately handled.

This paper is organized as follows: the dynamic model of
a planar flexible beam is given in Section 2. In Section 3,
the model-based control law is presented together with the
stability analysis, followed by appropriate handling of the
virtual power flows at the two ends of the beam. Control
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Fig. 1. A flexible link virtually decomposed from a planar
flexible-link robot.

implementation is discussed in Section 4, and simulations
using parameters from two typical space systems are
demonstrated in Section 5.

2. FLEXIBLE LINK DYNAMICS

2.1 Flexible Link

An Euler-Bernoulli link virtually decomposed from a
multiple-flexible-link robot is illustrated in Fig. 1.

This link is subject to following assumptions:

• The link is slender with uniform geometric and iner-
tial characteristics.

• The link is flexible in the lateral directions and stiff
with respect to axial forces and to axial torsion.

• The link has negligible shear deformation and negli-
gible distributed rotational inertia.

• The link is restricted in a plane excluding the motion
in x axis.

• No gravity is presented.

With respect to this link, two pairs of force and moment
applied at both ends 1 are defined as
fB Shear force applied to the link at point B.
mB Bending moment applied to the link at point B.
fT Shear force applied from the link at point T .
mT Bending moment applied from the link at point T .

2.2 Extended Hamilton’s Principle

Denote

K =
1

2

l
∫

0

ρẏ(x, t)2dx (1)

as the kinetic energy of the link and

V =
1

2

l
∫

0

EIy′′(x, t)2dx (2)

as the potential energy of the link, where
l Length of the link.
ρ Mass per unit length.
E Young’s modulus of elasticity.
I(x) Cross-sectional area moment of inertia of

the link about its neutral axis.
ẏ Partial derivative of y(x, t) with respect to

time t.

1 Each side corresponds to a “cutting point” in Zhu et al. (1997).

y′ Partial derivative of y(x, t) with respect to
spatial variable x.

Meanwhile, let

δW = fBδy(0, t) + mBδy′(0, t)

−fT δy(l, t) − mT δy′(l, t) (3)

be the external work variation.

The extended Hamilton’s principle yields

t2
∫

t1

(δK − δV + δW ) dt = 0 (4)

for any t1 < t2. With integration by parts, it follows from
(1) and (2) that

t2
∫

t1

δKdt =

t2
∫

t1

l
∫

0

ρẏ(x, t)δẏ(x, t)dxdt

=

l
∫

0

t2
∫

t1

ρẏ(x, t)δẏ(x, t)dtdx

=

l
∫

0

ρẏ(x, t)δy(x, t) |t2t1 dx

−

l
∫

0

t2
∫

t1

ρÿ(x, t)δy(x, t)dtdx (5)

t2
∫

t1

δV dt =

t2
∫

t1

l
∫

0

EIy′′(x, t)δy′′(x, t)dxdt

=

t2
∫

t1

EIy′′(x, t)δy′(x, t) |l
0

dt

−

t2
∫

t1

l
∫

0

EIy′′′(x, t)δy′(x, t)dxdt

=

t2
∫

t1

EIy′′(x, t)δy′(x, t) |l
0

dt

−

t2
∫

t1

EIy′′′(x, t)δy(x, t) |l
0

dt

+

t2
∫

t1

l
∫

0

EIy′′′′(x, t)δy(x, t)dxdt. (6)

Note that δy(x, t) = 0 at t = t1 and t = t2. Substituting
(3), (5), and (6) into (4) yields the link dynamic equation

ρÿ(x, t) + EIy′′′′(x, t) = 0 (7)

for x ∈ [0, l] subject to the boundary conditions

fB = EIy′′′(0, t) (8)
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mB =−EIy′′(0, t) (9)

fT = EIy′′′(l, t) (10)

mT =−EIy′′(l, t) (11)

3. CONTROL AND STABILITY

3.1 Control Law

In view of (7)-(11), the link model based control is designed
as

ρÿr(x, t) + EIy′′′′

r (x, t) + kv [ẏr(x, t) − ẏ(x, t)] = 0 (12)

for x ∈ [0, l] subject to the boundary conditions

fBr = EIy′′′

r (0, t) (13)

mBr =−EIy′′

r (0, t) (14)

fTr = EIy′′′

r (l, t) (15)

mTr =−EIy′′

r (l, t) (16)

where yr, fBr, mBr, fTr, and mTr represent the required
variables of y, fB , mB , fT , and mT , respectively. All
required variables will be defined in the next section.

3.2 Stability Analysis

Subtracting (7) from (12) yields

ρ [ÿr(x, t) − ÿ(x, t)] + EI [y′′′′

r (x, t) − y′′′′(x, t)]

+kv [ẏr(x, t) − ẏ(x, t)] = 0. (17)

As an important step in the VDC approach, the non-
negative accompanying function of the link is chosen as

ν = νK + νV (18)

νK =
1

2

l
∫

0

ρ [ẏr(x, t) − ẏ(x, t)]
2
dx (19)

νV =
1

2

l
∫

0

EI [y′′

r (x, t) − ẏ′′(x, t)]
2
dx. (20)

With integration by parts, it follows from (17) and (19)
that

ν̇K =

l
∫

0

ρ [ẏr(x, t) − ẏ(x, t)] [ÿr(x, t) − ÿ(x, t)] dx

=−

l
∫

0

[ẏr(x, t) − ẏ(x, t)]

×EI [y′′′′

r (x, t) − y′′′′(x, t)] dx

−

l
∫

0

kv [ẏr(x, t) − ẏ(x, t)]
2
dx

=− [ẏr(x, t) − ẏ(x, t)] EI [y′′′

r (x, t) − y′′′(x, t)] |l
0

+

l
∫

0

[ẏ′

r(x, t) − ẏ′(x, t)]

×EI [y′′′

r (x, t) − y′′′(x, t)] dx

−

l
∫

0

kv [ẏr(x, t) − ẏ(x, t)]
2
dx

=− [ẏr(x, t) − ẏ(x, t)] EI [y′′′

r (x, t) − y′′′(x, t)] |l
0

+ [ẏ′

r(x, t) − ẏ′(x, t)] EI [y′′

r (x, t) − y′′(x, t)] |l
0

−

l
∫

0

[ẏ′′

r (x, t) − ẏ′′(x, t)]

×EI [y′′

r (x, t) − y′′(x, t)] dx

−

l
∫

0

kv [ẏr(x, t) − ẏ(x, t)]
2
dx. (21)

Substituting (21) and the time derivative of (19) into the
time derivative of (18) yields

ν̇ =−

l
∫

0

kv [ẏr(x, t) − ẏ(x, t)]
2
dx

+pB − pT (22)

where

pB = [ẏr(0, t) − ẏ(0, t)] EI [y′′′

r (0, t) − y′′′(0, t)]

− [ẏ′

r(0, t) − ẏ′(0, t)] EI [y′′

r (0, t) − y′′(0, t)]

= [ẏr(0, t) − ẏ(0, t)] (fBr − fB)

+ [ẏ′

r(0, t) − ẏ′(0, t)] (mBr − mB) (23)

pT = [ẏr(l, t) − ẏ(l, t)] EI [y′′′

r (l, t) − y′′′(l, t)]

− [ẏ′

r(l, t) − ẏ′(l, t)] EI [y′′

r (l, t) − y′′(l, t)]

= [ẏr(l, t) − ẏ(l, t)] (fTr − fT )

+ [ẏ′

r(l, t) − ẏ′(l, t)] (mTr − mT ) (24)

in view of (8)-(11) and (13)-(16).

In view of the VDC approach, equation (22) gives the exact
form needed for guaranteeing the stability of the entire
robot. Both pB and pT defined by (23) and (24) represent
the virtual power flows at the two ends of the link. A
virtual power flow is an inner product of the linear and
angular velocity errors and the force and moment errors.
At the end, all virtual power flows of a system can be
canceled out (in the time derivative of the summation of
all non-negative accompanying functions) to guarantee the
L2 and L∞ stability of the entire robot, see Zhu et al.
(1997).

3.3 Alternative Use of Virtual Power Flows

In a particular case that the force and moment at point T
are measurable and the force and moment at point B are
controllable, the following design

fTr = fT + kfT [ẏr(l, t) − ẏ(l, t)] (25)

mTr = mT + kmT [ẏ′

r(l, t) − ẏ′(l, t)] (26)

fB = fBr + kfB [ẏr(0, t) − ẏ(0, t)] (27)

mB = mBr + kmB [ẏ′

r(0, t) − ẏ′(0, t)] (28)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1699



makes

ν̇ =−

l
∫

0

kv [ẏr(x, t) − ẏ(x, t)]
2
dx

−kfB [ẏr(0, t) − ẏ(0, t)]
2

−kmB [ẏ′

r(0, t) − ẏ′(0, t)]
2

−kfT [ẏr(l, t) − ẏ(l, t)]
2

−kmT [ẏ′

r(l, t) − ẏ′(l, t)]
2
. (29)

It follows from ν ≥ 0 that

ẏr(0, t) − ẏ(0, t) ∈L2 (30)

ẏ′

r(0, t) − ẏ′(0, t) ∈L2 (31)

ẏr(l, t) − ẏ(l, t) ∈L2 (32)

ẏ′

r(l, t) − ẏ′(l, t) ∈L2. (33)

With bounded reference signals and their time derivatives,
the flexibility of the link ensures the continuity of the
states. It further leads to the asymptotic stability

ẏr(0, t) − ẏ(0, t)→ 0 (34)

ẏ′

r(0, t) − ẏ′(0, t)→ 0 (35)

ẏr(l, t) − ẏ(l, t)→ 0 (36)

ẏ′

r(l, t) − ẏ′(l, t)→ 0. (37)

4. CONTROL IMPLEMENTATION

In this section, implementation of the control law formed
by (12)-(16) is addressed.

In the standard VDC approach, the control algorithm
is to find fBr and mBr from given fTr and mTr. This
process corresponds to finding yr(0, t), y′

r(0, t), y′′

r (0, t),
and y′′′

r (0, t) from given yr(l, t), y′

r(l, t), y′′

r (l, t), and
y′′′

r (l, t) subject to the constraint equation (12), since
y′′

r (0, t) and y′′′

r (0, t) give fBr and mBr from (13) and (14)
and fTr and mTr give y′′′

r (l, t) and y′′

r (l, t) from (15) and
(16). The variables yr(l, t), y′

r(l, t) are determined from
motion control specification.

In the control implementation, the link is divided into
N > 0 discrete sections with x(0) = 0 and x(N) = l.

Backward differentiation is applied to both time and
spatial variables. It follows that

ẏ(x, k) =
y(x, k) − y(x, k − 1)

∆T
(38)

y′(x(j), t) =
y(x(j), t) − y(x(j − 1), t)

∆x
(39)

where ∆T is the sampling time of the control system with
k being a positive integer and ∆x = l/N is the length of
a discrete section with j ∈ {1, N}.

The overall computational algorithm is as follows:

Step 1: For given ÿr(l, k), compute

y′′′′

r (l, k) = −
ρÿr(l, k) + kv [ẏr(l, k) − ẏ(l, k)]

EI
(40)

from (12).

Step 2: For given yr(l, k), y′

r(l, k), y′′

r (l, k), y′′′

r (l, k), and
y′′′′

r (l, k), compute

y′′′

r (x(N − 1), k) = y′′′

r (x(N), k) − ∆xy′′′′

r (x(N), k)(41)

y′′

r (x(N − 1), k) = y′′

r (x(N), k) − ∆xy′′′

r (x(N), k) (42)

y′

r(x(N − 1), k) = y′

r(x(N), k) − ∆xy′′

r (x(N), k) (43)

yr(x(N − 1), k) = yr(x(N), k) − ∆xy′

r(x(N), k). (44)

Step 3: The required velocity and acceleration at x(N−1)
are updated by

ẏr(x(N − 1), k) =
yr(x(N − 1), k) − yr(x(N − 1), k − 1)

∆T
(45)

ÿr(x(N − 1), k) =
ẏr(x(N − 1), k) − ẏr(x(N − 1), k − 1)

∆T
.

(46)

Step 4: Repeat Step 1 to Step 3 iteratively from x(N −1)
to x(0) to obtain yr(0, k), y′

r(0, k), y′′

r (0, k), y′′′

r (0, k), and
further fBr and mBr from (13) and (14).

In some applications, the linear or angular position at
point B may be subject to constraints, such as y(0, t) = 0
for a link mounted on a motor rotor or y′(0, t) = 0
when only linear motion is permitted. In such a case,
the corresponding required variable at point T has to be
released by adding a constant. For instance, if yr(0, t) =
y(0, t) = 0 is required, then yr(l, t) has to be released; or
if y′

r(0, t) = y′(0, t) = 0 is required, then y′

r(l, t) has to be
released.

5. SIMULATIONS

Simulations are carried out to verify the validity of the
control developed in the previous sections.

It is assumed that the link as illustrated in Fig. 1 has a free
end at point T (excluding motion in x axis), which makes
fT = 0 and mT = 0, and has both force (in y axis) and
moment controlled at point B, which makes fB and mB to
be control variables. Furthermore, it is assumed that only
the positions and angles at both ends, denoted as y(0, t),
y′(0, t), y(l, t), and y′(l, t), are measurable. Thus, kv = 0
is used in (12), since ẏ(x, t) for x ∈ (0, l) is not available.

The control objective is to make the tip position y(l, t)
track its desired variable yd(l, t), while maintaining the
orientation as y′(l, t) → 0. To serve the purpose, the
required linear and angular velocities at point T are
designed as

ẏr(l, t) = ẏd(l, t) + λf [yd(l, t) − y(l, t)] (47)

ẏ′

r(l, t) =−λmy′(l, t) (48)

where λf > 0 and λm > 0 are two control parameters.
Subsequently, the boundary control conditions (25)-(28)
are modified to

fTr = kfv [ẏr(l, t) − ẏ(l, t)]

+kfI

t
∫

0

[ẏr(l, t) − ẏ(l, t)] dt (49)
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Table 1. Simulation systems and control para-
meters

System I System II

ρ (kg/m) 0.95 11.8
EI (Nm2) 500 1.08× 107

l (m) 1.5 6.8

λf (1/s) 0.1 0.5
kfv (Ns/m) 0.001 10.8
kfI (N/m) 0.01 0.108
λm (1/s) 0.1 0.5

kmv (Nms) 5.7× 10−5 0.618
kmI (Nm) 0.057 6.19× 103

kfB (Ns/m) 5 216
kmB (Nms) 2.5 1.08× 103

mTr = kmv [ẏ′

r(l, t) − ẏ′(l, t)]

+kmI

t
∫

0

[ẏ′

r(l, t) − ẏ′(l, t)] dt (50)

fB = fBr + kfB [ẏr(0, t) − ẏ(0, t)] (51)

mB = mBr + kmB [ẏ′

r(0, t) − ẏ′(0, t)] (52)

where kfv > 0, kfI > 0, kmv > 0, kmI > 0, kfB > 0,
and kmB > 0 are six control parameters. Comparing (25)
and (26) with (49) and (50) reveals that an integration
term is added to the right hand sides of (49) and (50),
respectively, to eliminate steady state errors. The addition
of the integration terms does not affect the stability result.
Simply adding

1

2
kfI





t
∫

0

[ẏr(l, t) − ẏ(l, t)] dt





2

+
1

2
kmI





t
∫

0

[ẏ′

r(l, t) − ẏ′(l, t)] dt





2

to the right hand side of (18) ensures the same stability
results (30)-(37). Substituting (47) and (48) into (36) and
(37) yields

ẏd(l, t) − ẏ(l, t)→ 0 (53)

yd(l, t) − y(l, t)→ 0 (54)

ẏ′(l, t)→ 0 (55)

y′(l, t)→ 0. (56)

Two sets of parameters getting from two typical space sys-
tems are used in the simulations. The system parameters
together with corresponding control parameters are listed
in Table 1. Meanwhile, N = 100 and ∆T = 0.001 (s) are
used in control implementation.

The simulation results are illustrated in Figs. 2 to 7. Figs. 2
to 4 illustrate the tip position tracking result yd(l, t) −
y(l, t), the tip angle y′(l, t), and the base control force
and moment fB and mB , respectively, for a more flexible
system. The simulation results for a more rigid system are
illustrated in Figs. 5 to 7.

The link model used in the simulations is an ideal flexible
beam without imposing damping. However, the simulation
results demonstrate very smooth responses without show-
ing oscillation phenomenon. This is one of the advantages
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Fig. 2. Tip position tracking result for System I.
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Fig. 3. Tip angle for System I.
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Fig. 4. Control force and moment at point B for System I.

of using the VDC approach that brings in active damp-
ing to the system and guarantees asymptotic control for
designed positions and velocities.

For different applications, only the eight control parame-
ters outlined in Table 1 need to be changed.

It is worth noting that the proposed VDC approach is
quite robust against link stiffness. It has been successfully
applied to two simulated systems with a stiffness difference
of more than four orders of magnitude.

6. CONCLUSION

In this paper, the virtual decomposition control approach
has been applied to planar flexible link robots for the first
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Fig. 7. Control force and moment at point B for System
II.

time. Unlike other approaches, the VDC approach only
needs the dynamics of individual links for control compu-
tation, while guaranteeing the stability and convergence
of the entire robot. Technically, the dynamic interactions
between an individual link and the rest of the system
are rigorously represented by two virtual power flows (at
the two virtual “cutting points” of the link) appeared
in the time derivative of the corresponding non-negative
accompanying function. Since the two virtual power flows
have different signs, all virtual power flows of the entire
robot are to be canceled out to ensure the stability. This
approach has been tested on two simulated systems with
a substantial stiffness difference of more than four orders

of magnitude. The responses are smooth without show-
ing oscillation phenomenon as usually happened when no
damping is presented in the link model.

Finally, it is worth noting that the virtual decomposition
control is naturally applicable to the control problem
of multiple flexible-link robots in 3D, despite a planar
flexible link robot is treated in this paper for simplicity.
Regardless of the complexity of a flexible robot, the
dynamics needed for implementing VDC include only the
dynamics of individual links and of the joints. Therefore,
the VDC approach opens the door to dynamics-based
control of complex flexible-link robots, at least in theory.
Future research will focus on simulations and experiments
of more general and realistic flexible robots.
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