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Abstract: A new finite impulse response (FIR) prediction is presented for a state space signal
model. The linear predictor proposed in this paper uses the finite number of inputs and outputs
on the recent time interval while the infinite impulse response (IIR) predictor with feedback and
recursion uses all inputs and outputs from the initial time to the current time. The Yule-Walker
equations for the linear forward and backward predictions are obtained from the correlation
among states at each time and the orthogonality principle. How to solve these equations without
an inverse of a big matrix is discussed. It is shown through simulation that the proposed FIR
predictor can be as robust to modelling uncertainties as conventional robust IIR predictors. It is
also shown that the good performance is achieved even in the steady state without uncertainties.

1. INTRODUCTION

Prediction problems are mostly associated with how to
estimate some unknown variables as accurately as possible
from inputs and measured outputs of systems. Among
prediction problems, the estimation of the state in the
system has been widely investigated since most dynamic
systems can be easily represented with state space signal
models. “Predictor” is a common terminology for an
input/output model while “filter” is often used for a state
space signal model. In this paper, “predictor” is used for
consistency with input/output models.

In state space signal models, predictors for the state
estimation can have the finite impulse response (FIR) or
the infinite impulse response (IIR). The conventional IIR
predictor is represented as

x̂k =
k−1
∑

i=0

hk−iyi +
k−1
∑

i=0

lk−iui + mkx̂0, (1)

where 0, x̂k, ui, and yi are the initial time, the estimated
state, the input, and the output, respectively, and predic-
tor coefficients hk−i, lk−i, and mk are determined to opti-
mize a given performance criterion. Usually, the predictor
(1) is implemented recursively for practical purposes as in
the Kalman IIR predictor. On the other hand, the FIR
predictor can be represented in the following form:

x̂k =
k−1
∑

i=k−N

hk−iyi +
k−1
∑

i=k−N

lk−iui. (2)

It is noted that FIR predictors utilize the finite number
of inputs and outputs on the most recent time interval
[k −N, k − 1], called a moving horizon. It is also observed
that the FIR predictor (2) does not include an initial state
term on the horizon. It is known that the FIR structure

⋆ This work was supported by the second stage of the Brain Korea
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has inherent properties such as a bounded input/bounded
output (BIBO) stability (Kalouptsidis [1997]) and robust-
ness. In particular, the FIR predictor has been known to
be one of the remedies that avoid the divergence of IIR
predictors due to modelling uncertainties and numerical
errors (Bruckstein and Kailath [1985], Rao et al. [2001]).
Actually, advantages of FIR filters were mentioned in
Bruckstein and Kailath [1985] as follows:

Limiting the memory span of an estimation
algorithm turns out to be a useful practice
for solving problems of filter divergence due to
mismodeling, for predicting signals with quasi-
periodic components, and for detecting sudden
and unexpected changes in systems.

In general, there have been two approaches for the FIR
predictor. One approach is to obtain FIR predictors by
using only inputs and measured outputs without using
a priori stochastic information on estimated parameters
such as the state in this paper. For the state estimation, the
FIR predictors are designed to minimize the conditional
expectation of the two norm of the estimation error,
i.e., E{‖xk − x̂k‖2 | yk−N , · · · , yk−1}. On the basis of
this approach, linear predictors without a priori initial
state information on the moving horizon were developed
by a modification from the Kalman filter (Liu and Liu
[1994]) and by a solution of a Riccati-type difference
equation (Kwon et al. [1989]). The state in this approach
is considered to be deterministic, but unknown so that
the orthogonality principle can not be used and instead
some conditions such as unbiasedness are required. For
lack of a priori information on the state, these kinds of
FIR predictors do not guarantee the good performance in
the steady state.

The other approach is to use a priori stochastic infor-
mation on the unknown parameter. In this approach, the
parameter can be considered as a random variable and the
linear optimal FIR predictor in the steady state is obtained

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3701 10.3182/20080706-5-KR-1001.3996



through the Yule-Walker equation, which is efficiently
solved by the Levinson-Durbin algorithm in the case of
input/output models (Lee and Wang [1996], Choi [1997]).
In Friedlander et al. [1978], the relationship between the
Kalman IIR predictor and the Levinson-Durbin algorithm
was discussed over a state space model. To the authors’
knowledge, there is no result on an FIR predictor for the
state estimation that uses a priori stochastic information
on the state to achieve the good performance under the
steady state. In this paper, we propose the linear FIR
predictor for a state space signal model that guarantees
the minimum estimation errors in the steady state. Since
the state in this paper is regarded as a random variable,
its mean and variance are utilized as a priori information.
The Yule-Walker equations for the linear forward and
backward predictions are obtained from the correlation
among states at each time and the orthogonality principle.
How to solve the corresponding Yule-Walker equations
without an inverse of a big matrix will be discussed.

For a long time, robustness for state estimations has
been addressed for the analysis and the design of the
IIR predictors. In order to build up robustness, robust
Kalman and H∞ IIR predictors were proposed in Xie
et al. [1994], de Souza and Xie [1994], Petersen and
Savkin [1999], Ishihara et al. [2006] and Wang et al.
[2004] at the sacrifice of the performance in the steady
state without uncertainties. These robust predictors might
lead to the poor performance in the steady state when
uncertainties disappear. In this paper, the FIR predictor is
required to have the finite memory structure for robustness
while the estimation error is minimized in the steady
state through the orthogonal principle. The proposed FIR
predictor can have the good performance in the steady
state while keeping the property of robustness due to the
FIR structure. In other words, the good performance can
be expected whether uncertainties exist or not.

This paper is organized as follows. In Section II, the
Yule-Walker equations for the FIR predictors and their
solutions are proposed and their efficient calculations are
introduced. In Section III, the proposed FIR predictor
is compared with the IIR predictors and the existing
FIR predictor through simulation. Finally, conclusions are
presented in Section IV.

2. FIR PREDICTORS

Consider a linear discrete-time state space model:

xi+1 = Axi + Bui + Gwi, (3)

yi = Cxi + vi, (4)

where xi ∈ ℜn, ui ∈ ℜr, and yi ∈ ℜq are the state, the
external known input, and the measured output, respec-
tively. The matrix C in (4) is assumed to be of full rank.
The system matrix A is Hurwitz, i.e., has only eigenvalues
inside the complex unit circle. The system noise wi ∈ ℜp

and the output noise vi ∈ ℜq are zero-mean white Gaus-
sian and mutually uncorrelated. The covariances of wi and
vi are denoted by Q and R, respectively, which are assumed
to be positive definite matrices. In addition, (A,GQ

1

2 ) is
assumed to be observable.

By separating the state xi into two parts, the system (3)-
(4) can be rewritten as

x1,i+1 = Ax1,i + Bui, x1,j = 0, (5)

x2,i+1 = Ax2,i + Gwi, x2,j = xj , (6)

yi = C(x1,i + x2,i) + vi, (7)

for a certain j < i, where x1,i is completely determined
from past inputs and a zero initial value x1,j = 0, and
x2,i is a random vector. yi = C(x1,i + x2,i) + vi in (7)

can be written as ȳi
△
= yi − Cx1,i = Cx2,i + vi so that ȳi

can be considered as an output and hence we have only to
estimate x2,i from ȳi and obtain xi from xi = x1,i + x2,i.
From the result based on a following model without an
external input:

xi+1 = Axi + Gwi, (8)

yi = Cxi + vi, (9)

we have a general one with an external input according to
the following identifications: xi ← x2,i and yi ← ȳi(= yi −
Cx1,i).

Given the finite measurements yk−N , yk−N+1, · · · , yk−1

from the system (8)-(9), we want to estimate xk in a form
of

x̂k = −
N−1
∑

i=0

hN,N−iyk−N+i, (10)

where N is the size of the predictor horizon and hN−i in
(2) is replaced with −hN,N−i for denoting the horizon size
and making the derivation more compact. It is noted that
x1,i in (5) on i ∈ [k−N, k−1] can be exactly and uniquely
determined from inputs on [k−N, k− 1] and a zero initial
value x1,k−N = 0 on the horizon. Once the FIR predictor
of the form (10) is obtained, it is easy to extend to the
general one (2) with an external input.

In order to make the FIR predictor (10) optimal for a
mean square error criterion, i.e., E[(x̂k − xk)T (x̂k − xk)],
the orthogonality principle E

{

[xk − x̂k]yT
k−N+j

}

= 0 for
j = 0, 1, · · · , N − 1 should be satisfied as follows:

E[xkyT
k−N+j ] =−

N−1
∑

i=0

hN,N−iE[yk−N+iy
T
k−N+j ],

Σk,k−N+jC
T =−

N−1
∑

i=0

hN,N−i

(

CΣk−N+i,k−N+jC
T

+ δi−jR
)

, (11)

where Σk−N+i,k−N+j = E[xk−N+ix
T
k−N+j ] and δi−j is a

unit impulse.

Under the steady state, Σk−N+i,k−N+j can be represented
as Σi−j and the state covariance Σ0 is obtained from

Σ0 = AΣ0A
T + GQGT . (12)

Since A is Hurwitz and (A,GQ
1

2 ) is observable, the equa-
tion (12) is just the Lyapunov equation where there exist
the closed-form positive definite solution Σ0 and many
efficient numerical algorithms to solve it. Once Σ0 is com-
puted, the state covariance Σi−j is easily obtained as
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Σi−j = E[xk−N+i xT
k−N+j ] =

{

Ai−jΣ0 , i ≥ j,

Σ0(A
T )j−i , i < j.

(13)

The covariance matrix Pf,N = E{[xk − x̂k][xk − x̂k]T } of
the estimation error is

Pf,N = E{[xk − x̂k]xT
k }

= E[xkxT
k ] +

N−1
∑

i=0

hN,N−iE[yk−N+ix
T
k ]

= Σ0 +
N−1
∑

i=0

hN,N−iCΣi−N

= Σ0 + HN

[

ΣT
−1C

T · · · ΣT
−NCT

]T
, (14)

where HN is given by

HN
△
= [ hN,1 hN,2 · · · hN,N ] , (15)

the first equality comes from the orthogonality principle
and f in Pf,N stands for “forward”.

By combining relations (11), we have the so-called Yule-
Walker equation:

HNΞN = ΓN , (16)

where ΓN and ΞN are given by

ΓN
△
=

[

−Σ1C
T −Σ2C

T · · · −ΣNCT
]

, (17)

ΞN
△
=











Σ̂0 + R Σ̂1 · · · Σ̂N−1

Σ̂−1 Σ̂0 + R · · · Σ̂N−2

...
...

...
...

Σ̂−N+1 Σ̂−N+2 · · · Σ̂0 + R











=

[

Σ̂0 + R · · ·
... ΞN−1

]

=

[

ΞN−1

...

· · · Σ̂0 + R

]

, (18)

Σ̂i
△
= CΣiC

T .

From (16), HN is simply obtained, i.e., HN = ΓNΞ−1
N .

However, the inverse operation of the big matrix such as
ΞN requires a heavy computation load and may bring out
numerical errors so that we need a recursive scheme to
compute HN .

Before obtaining a recursion for HN , we consider the
estimation of xk−N

x̂k−N = −
N

∑

i=1

bN,iyk−N+i,

where, in parallel with the estimation of xk, we have

Σ−jC
T =−

N
∑

i=1

bN,i

(

CΣi−jC
T + δi−jR

)

, (19)

Pb,N
△
= E{[xk−N − x̂k−N ][xk−N − x̂k−N ]T }

= Σ0 +
N

∑

i=1

bN,iCΣi, (20)

for 1 ≤ j ≤ N . As in (14), Pb,N can be represented as

Pb,N = Σ0 + BN

[

ΣT
NCT · · · · · · ΣT

1 CT
]T

, (21)

where BN is given by

BN
△
= [ bN,N · · · · · · bN,1 ] . (22)

Note that relations (19) and (21) will give help to obtain
HN . Augmenting relations (19) yields the Yule-Walker
equation for the backward predictor

BNΞN = ΩN , (23)

where ΩN are given by

ΩN
△
=

[

−Σ−NCT · · · · · · −Σ−1C
T

]

, (24)

and ΞN is defined in (18).

Now, we are in a position to get recursions for HN

and BN . Increasing N to N + 1 and letting D
(f)
N =

[D
(f)
N,1 D

(f)
N,2 · · · D

(f)
N,N ] and D

(b)
N = [D

(b)
N,1 D

(b)
N,2 · · · D

(b)
N,N ],

we have
(

[ HN 0 ] +
[

D
(f)
N K

(f)
N+1

]

)

ΞN+1 = ΓN+1, (25)

(

[ 0 BN ] +
[

K
(b)
N+1 D

(b)
N

]

)

ΞN+1 = ΩN+1, (26)

where D
(f)
N , D

(b)
N , K

(f)
N+1, and K

(b)
N+1 will be determined

later so that ΓN+1 and ΩN+1 preserve the form (17)
and (24), respectively. If ΞN+1 is represented with ΞN

according to (18), (25) and (26) can be written as

(

[ HN 0 ] +
[

D
(f)
N K

(f)
N+1

]

)

[

ΞN

...

· · · Σ̂0 + R

]

=
[

ΓN −ΣN+1C
T

]

, (27)
(

[ 0 BN ] +
[

K
(b)
N+1 D

(b)
N

]

)

[

Σ̂0 + R · · ·
... ΞN

]

=
[

−Σ−N−1C
T ΩN

]

. (28)

By computing the partial blocks of (27) and (28), we have
the following relations:

HNΞN + D
(f)
N ΞN + K

(f)
N+1

[

Σ̂−N · · · Σ̂−1

]

= ΓN ,

BNΞN + D
(b)
N ΞN + K

(b)
N+1

[

Σ̂1 · · · Σ̂N

]

= ΩN ,

where, using (16) and (23), we obtain

D
(f)
N =−K

(f)
N+1

[

Σ̂−N · · · Σ̂−1

]

Ξ−1
N

= K
(f)
N+1CBN , (29)

D
(b)
N =−K

(b)
N+1

[

Σ̂1 · · · Σ̂N

]

Ξ−1
N

= K
(b)
N+1CHN . (30)

By computing the remaining blocks of (27) and (28) and
taking similar steps, we have another following relations:

HN







Σ̂N

...

Σ̂1






+ D

(f)
N







Σ̂N

...

Σ̂1






+ K

(f)
N+1(Σ̂0 + R)
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= HN







Σ̂N

...

Σ̂1






+ K

(f)
N+1C(Pb,N − Σ0)C

T

+ K
(f)
N+1(Σ̂0 + R) = −ΣN+1C

T , (31)

BN







Σ̂−1

...

Σ̂−N






+ D

(b)
N







Σ̂−1

...

Σ̂−N






+ K

(b)
N+1(Σ̂0 + R)

= BN







Σ̂−1

...

Σ̂−N






+ K

(b)
N+1C(Pf,N − Σ0)C

T

+ K
(b)
N+1(Σ̂0 + R) = −Σ−N−1C

T , (32)

where the relations (21) and (29) are used in the first
equation, and the relation (14) and (30) are used in the

second equation. Solving for K
(f)
N+1 and K

(b)
N+1 by using

(29) and (30) gives us

K
(f)
N+1 =

(

−ΣN+1C
T − HN







Σ̂N

...

Σ̂1







)

P̂−1
b,N , (33)

K
(b)
N+1 =

(

−Σ−N−1C
T − BN







Σ̂−1

...

Σ̂−N







)

P̂−1
f,N , (34)

where P̂f,N = CPf,NCT + R, P̂b,N = CPb,NCT + R, and
Pf,N and Pb,N are given by (14) and (20). Note that we
have

CK
(f)
N+1 = − [ I CHN ]

[

Σ̂T
N+1 · · · Σ̂T

1

]T
P̂−1

b,N , (35)

CK
(b)
N+1 = − [ I CBN ]

[

Σ̂T
−1 · · · Σ̂T

−N−1

]T
P̂−1

f,N , (36)

by multiplying both sides of (33) and (34) by C.

Now, what remains to do is to compute CPb,NCT

and CPf,NCT in (33) and (34). Recalling two relations

HN+1 = [HN 0] + [D
(f)
N K

(f)
N+1] and BN+1 = [0 BN ] +

[K
(b)
N+1 D

(b)
N ] in (25) and (26), we can represent CPb,NCT

and CPf,NCT , recursively, i.e.,

CPf,N+1C
T

= CΣ0C
T + CHN+1







CΣ−1

...
CΣ−N−1






CT

= CPf,NCT + C
[

D
(f)
N K

(f)
N+1

]







CΣ−1

...
CΣ−N−1






CT

= CPf,NCT − CK
(f)
N+1CK

(b)
N+1P̂f,N ,

and

CPb,N+1C
T

= CΣ0C
T + CBN+1







CΣN+1

...
CΣ1






CT

= CPb,NCT + C
[

K
(b)
N+1 D

(b)
N

]







CΣN+1

...
CΣ1






CT

= CPb,NCT − CK
(b)
N+1CK

(f)
N+1P̂b,N ,

where first equalities come from (14) and (21), and third
ones come from (35) and (36).

What has been done so far is summarized in the following
table and theorem.

Recursive algorithm

FIR predictor :

x̂k = −

N−1
∑

i=0

hN,N−iyk−N+i,

Iterative computation :
Initialization :

H1 = −AΣ0CT (Σ̂0 + R)−1

B1 = −Σ0AT CT (Σ̂0 + R)−1

P̂f,1 = P̂b,1 = Σ̂0 + R

Loop N = 1, 2 · · ·

Compute K
(f)
N+1 from (33).

Compute K
(b)
N+1 from (34).

HN+1 =
[

HN 0
]

+ K
(f)
N+1

[

CBN I
]

BN+1 =
[

0 BN

]

+ K
(b)
N+1

[

I CHN

]

P̂f,N+1 = P̂f,N − CK
(f)
N+1CK

(b)
N+1P̂f,N

P̂b,N+1 = P̂b,N − CK
(b)
N+1CK

(f)
N+1P̂b,N

Theorem 1. The coefficients HN (15) of the optimal FIR
predictor (10) is given by HN = ΓNΞ−1

N , where ΓN and
ΞN are defined in (17) and (18), respectively. HN can
be computed from recursion shown in the above table
to avoid an inverse operation of a big matrix. By using
a deterministic smoother (Han et al. [2002]), the FIR
predictor (10) can be easily extended to the general one
(2) with an external input.

3. SIMULATION

In this section, it is shown via simulation that the proposed
FIR predictor can have the good performance compared
with other predictors. The F -404 engine model with tem-
porary uncertainties is represented as

xi+1 =

[

0.931 + δi 0 0.111
0.008 0.98 + δi −0.017
0.014 0 0.895 + 0.1δi

]

xi

+

[

0.051
0.049
0.048

]

wi,
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Fig. 1. Real state and estimated states of four predictors

yi =

[

1 + 0.1δi 0 0
0 1 + 0.1δi 0

]

xi + vi,

where the parameter δi is given by

δi =

{

0.1, 50 ≤ i ≤ 100,
0, otherwise.

(37)

The Kalman IIR predictor, the robust Kalman IIR pre-
dictor (Xie et al. [1994]), and the existing FIR predictor
(Kwon et al. [1999]) are employed for comparison. As men-
tioned in Introduction, the existing FIR predictor (Kwon
et al. [1999]) does not use a priori information on the
state to be estimated. The size of the moving horizon N
for the proposed and existing FIR predictors is set to 3.
Figures 1 and 2 compare how four kinds of predictors be-
have for temporarily modeling uncertainties. These figures
show that, due to finite memory, the estimation errors of
the proposed and the existing FIR predictors are much
smaller than that of the Kalman IIR predictor on the
interval where modeling uncertainties are applied. The ro-
bust Kalman IIR predictor also has small estimation errors
when uncertainties exist. When uncertainties disappear
and estimations are carried out in the steady state, the
two norms of estimation errors taken from 200 samples
are as follows:

Predictor RKP EFP PFP KP
Estimation error 9.15 4.17 2.03 1.68

where RKP, EFP, PFP, and KP stand for the robust
Kalman IIR predictor, the existing FIR predictor, the
proposed FIR predictor, and the Kalman IIR predictor,
respectively. As seen in the table, the Kalman IIR predic-
tor is the best in the steady state while the robust Kalman
IIR predictor has the poorest performance. The estimation
error of the proposed FIR predictor is smaller than that
of the existing FIR predictor. It makes sense since the
proposed FIR predictor utilizes a priori stochastic infor-
mation on the steady state.

To be summarized, it can be seen that the suggested FIR
predictor is as robust as the robust IIR predictors when
applied to systems with model parameter uncertainties,
but has the better performance than the robust IIR filter
and the existing FIR filter when uncertainties do not show
up.
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Fig. 2. Estimation errors of four predictors

4. CONCLUSION

In this paper, the FIR predictor was presented for stochas-
tic state space signal models. The FIR predictor proposed
in this paper uses the finite number of inputs and outputs
on the recent time interval so that it is believed to be
more robust than the IIR predictors when applied to
systems with temporary model parameter uncertainties. In
addition, the good performance is achieved in the steady
state since a priori stochastic information on the state is
utilized. The Yule-Walker equations for the FIR predictor
were obtained from forward and backward predictions by
the orthogonality principle. We discussed how to solve
these equations efficiently. It was shown through simula-
tion that the proposed FIR predictor is as robust as the
robust IIR predictor and the existing FIR predictor for
state space models. The variance of the estimation error
of the proposed FIR predictor was shown to be smaller
than that of the existing FIR predictor when uncertainties
disappear and estimations are carried out in the steady
state.

The proposed FIR predictor would be a good substitute
for robust IIR predictors and the existing FIR predictor
in order to achieve both robustness against modelling
uncertainties and the good performance in the steady
state.
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