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Abstract: This paper deals with the class of singular LPV systems. Sufficient conditions on
controllers design are developed in the LMI (Linear Matrix Inequality) terms. In order to
reduce the conservatism of the developed result using quadratic method, an approach based
on polyquadratic Lyapunov functions is proposed. Numerical example is given to illustrate the
effectiveness of the obtained results.
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1. INTRODUCTION

Singular systems have attracted particular interest in the
literature for their various applications such as robotics
(Mills and Goldenberg (1989)), circuits (Newcomb and
Dziurla (1989)), aircraft modelling (Stevens and Lewis
(1991)) and singular perturbation systems (Dai (1989)).

Many works dealing with the control of switched sys-
tems, impulsive and switching singular systems and sin-
gular LPV systems have been studied recently for the
theoretical and practical point of view (see for example
Gelig and Churilov (1998), Yaoa et al. (2006), Masubuchi
et al. (2004) and references therein). For the switching
systems the control techniques based on switching between
different controllers have been applied extensively in re-
cent years, due to their advantages in achieving stability
(Daafouz et al. (2002), Ge et al. (2001), Mancilla-Aguilar
(2003), Yaoa et al. (2006)) whereas gain-scheduling con-
trollers techniques are used for singular LPV systems
(Masubuchi et al. (2003)). In this paper, for the con-
sidered class of singular LPV systems, we consider con-
troller obtained by interpolation of linear controller. A
such controller is used since a single (continuous/discrete)
control law cannot be found for many control problems.
However, if there exist a lot of works on singular linear
systems (see for exampe Darouach and Boutayeb (1995),
Darouach (2006) and references therein), to our knowledge
there are few studies on singular LPV systems and their
corresponding control problems.
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In this paper, we study the design of controllers for singular
LPV systems in polytopic form. Using LMI technique
and polyquadratic Lyapunov approach, we propose a state
controller whose gain is obtained by interpolation of lin-
ear state controller. Further, extra degree of freedom is
introduced and exploited to reduce conservatism.

The paper is organized as follows. In section 2, the con-
sidered class of a discrete-time singular LPV systems is
described. In section 3, the stabilisation of singular LPV
systems is studied. Relaxations are introduced to design
controllers in LMI formulation. Example is given in section
4. Finally, section 5 concludes the paper.

Notation. Throughout this paper, Rn and Rn×m denote,
respectively, the n dimensional Euclidean space and the
set of all n×m real matrices. The superscript “T” denotes
matrix transposition, the notation X ≥ Y (respectively,
X > Y ) where X and Y are symmetric matrices, means
that X − Y is positive semi-definite (respectively, positive
definite) and the symbol (∗) denotes the transpose ele-
ments in the symmetric positions. I is the identity matrices
with compatible dimensions and IN = {1, 2, · · · , N}.

2. PROBLEM STATEMENT

The considered singular LPV system is as follows

Ex(t + 1) = A(ρ(t))x(t) + B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) (1)

Two important classes of LPV systems can be distin-
guished; the affine LPV where the state space matrices
depend affinely on ρ(t) and the polytopic LPV where the
parameter ρ(t) varies in polytope of vertices ρi such that
ρ(t) ∈ Co{ρ1, ρ2, ..., ρr}. In the sequel only the second class
is used in the following form
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Ex(t + 1) =
N∑

i=1

ξi(ρ(t))(Aix(t) + Biu(t))

y(t) =
N∑

i=1

ξi(ρ(t))Cix(t)

(2)

where

ξi(ρ(t)) ≥ 0,

N∑

i=1

ξi(ρ(t)) = 1 (3)

with x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the
output vector, u(t) ∈ Rm is the input vector, Ai ∈ Rn×n,
Bi ∈ Rn×m and Ci ∈ Rp×n. The matrix E may be singular
with 0 ≤ rank(E) = nE < n.

In this paper we are interested in developing sufficient
conditions for controller design. Our methodology will be
mainly based on the Lyapunov theory and LMI formula-
tion.

3. STABILISATION OF DISCRETE-TIME MODELS

3.1 Stability analysis

Consider the Lyapunov dependant parameter function of
the form:

V (x(t), ρ(t)) = x(t)>P(ρ(t))x(t) (4)

with

P(ρ(t)) =
N∑

i=1

ξi(ρ(t))E>PiE,E>PiE ≥ 0, i ∈ IN (5)

The difference of (4) along the solution of the unforced
system of (2) is given by
∆V = V (x(t + 1), ρ(t + 1))− V (x(t), ρ(t))
= x(t + 1)>P(ρ(t + 1))x(t + 1)− x(t)>P(ρ(t))x(t) (6)

Thus, the unforced singular system of (2) is stable if there
exist nonsingular symmetric matrices Pi such that the
following hold for all (i, j) ∈ I2

N :

E>PiE ≥ 0 (7)

A>i PjAi − E>PiE < 0 (8)

In the following, our objective is to introduce extra degree
of freedom. This will be very helpful for the development
of an LMI-based conditions for state feedback design. Thus
the unforced singular system of (2) is stable if there exist
nonsingular symmetric matrices Pi, matrices Fi and Gi

such that the following LMI hold for all (i, j) ∈ I2
N :

EPiE
> ≥ 0 (9)(−EPiE

> + AiFi + (AiFi)> −F>i + AiGi

(∗) Pj − (Gi + G>i )

)
< 0(10)

It is easy to prove that conditions (10) and (8) are
equivalents. Thus by multiplying left (10) by the matrix
(I, Ai) and right by its transpose we obtain (8).

Notice that when E = I (regular LPV systems), the
conditions (9) can be replaced by Pi > 0. This result
coincides with the result of (Peaucelle et al. (2000)) and
also the result of (Daafouz et al. (2002)) when setting
Fi = 0.

3.2 Controller design

Consider the following control law obtained by interpola-
tion of linear controller:

u(t) =
N∑

i=1

ξi(ρ(t))Kix(t) (11)

where Ki ∈ Rm×n. The closed loop system is

Ex(t + 1) =
N∑

i=1

N∑

j=1

ξi(ρ(t))ξj(ρ(t))Aijx(t) (12)

with
Aij = Ai + BiKj (13)

To derive stability conditions of (12) it is possible to
substitute Ai by Ai + BiKj in conditions (10). However
the obtained conditions are Bilinear Matrix Inequalities
(BMI) in Ki, Fi and Gi. A way to get LMI conditions is
to chose Fi = Gi = G.

Theorem 1. The singular system (12) is stable if there
exist nonsingular matrices G, Pi and Nj such that the
following LMI hold for all (i, j, k) ∈ I3

N :

EPiE
> ≥ 0 (14)(−EPiE

> + Φij + Φ>ij −G> + Φij

(∗) Pk − (G + G>)

)
< 0 (15)

with
Φij = AiG + BiNj (16)

The controller gains are defined by:
Ki = NiG

−1 (17)

Proof: Multiplying (15) by
∑N

i=1

∑N
j=1 ξi(ρ(t))ξj(ρ(t)) and

according to (17), we obtain
N∑

i=1

N∑

j=1

ξi(ρ(t))ξj(ρ(t)).
(−EPiE

> + AijG + (AijG)> −G> + AijG
(∗) Pk − (G + G>)

)
< 0

(18)

Which is only stability conditions (10) by substituting Ai

by Ai + BiKj and Fi = Gi by G. 2

However choosing single matrix G instead of multiple
matrices Gi introduces some conservatism. In the sequel
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another formulation is proposed to overcome these limita-
tions.

3.3 Main result

In order to introduce more relaxation,we propose to reduce
the number of synthesis LMI conditions (N3 + N in
theorem 1) and to use different matrices Gi. For this, we
propose to write the model (2) and the controller (11) as
follows

Ex(t + 1) =
N∑

i=1

ξi(ρ(t))Aix(t) (19)

Where

x(t) =
(
x(t)>, u(t)>

)
, Ai =

(
Ai Bi

Ki −I

)
, E =

(
E 0
0 0

)
(20)

Consequently, to design controller it suffices to substitute
Ai by Ai in conditions (10). However the obtained condi-
tions are BMI in Ki, Fi and Gi. To derive LMI conditions
we propose the following result.

Theorem 2. The singular system (19) is stable if there
exist nonsingular matrices G1i, and G2i, G3i, P1i, P3i, P2i

such that the following LMI hold for all (i, j) ∈ I2
N .

EP1iE
> ≥ 0 (21)



( −EP1iE
>+

AiG1i + BiG2i+

(AiG1i + BiG2i)
>

) (
BiG3i+

N>
i −

G>2i

) (
−G>1i

+AiG1i

+BiG2i

) (
−G>2i

+BiG3i

)

(∗)
(
−G3i

−G>3i

) (
Ni−
G2i

) (
−G>3i

−G3i

)

(∗) (∗)
(

P1j−
G1i

−G>1i

) (
P2j−
G>2i

)

(∗) (∗) (∗)
(

P3j−
G3i

−G>3i

)




< 0 (22)

The controller gains are defined by:
Ki = NiG

−1
1i (23)

Proof: Substituting Ai by Ai in conditions (10) with
Fi = Gi we get

EPiE
> ≥ 0 (24)(

−EPiE
>

+ AiGi + (AiGi)> −G>i + AiGi

(∗) Pj − (Gi + G>i )

)
< 0(25)

The obtained conditions (25) are BMI in Ki and Gi. To
derive LMI conditions we propose to chose matrix Gi with
the following structure

Gi =
(

G1i 0
G2i G3i

)
(26)

Thus

AiGi =
(

AiG1i + BiG2i BiG3i

Ni −G2i −G3i

)
(27)

with Ni = KiG1i. Writing the symmetric matrices Pi as
follows

Pi =
(

P1i P2i

P>2i P3i

)
(28)

and according to (27) we obtain (22) from (25). Conditions
(21) are obtained directely from (24). 2

It is important to note the relaxation introduced by
theorem 2 compared with the result of the theorem 1.
First, the number of constraint is reduced to (N2 + N)
LMI instead of (N3 +N). Second, extra degree of freedom
is introduced by using different matrices Gi.

4. NUMERICAL EXAMPLE

Consider a numerical example with the following data:

A1 =

[ 0.2 0.5 0
−0.1 0.2 0
0.2 0 0

]
, B1 =

[ 0 −2
0 0
2 2

]
(29)

A2 =

[ 0.7 0.1 0
0 0.1 −0.1

0.2 0 0

]
, B2 =

[ 1 −1
−1 −1
0 1

]
(30)

The singular matrix, E, are given by:

E =

[ 5 0 0
0 0 1
0 0 10

]
(31)

Solving LMI (21)-(22), we get feasible problem:

G11 = 103

[ 5.9046 1.7629 2.6364
4.9195 0.2476 3.9188
2.8554 1.4127 5.2596

]
,

G12 = 103

[ 5.2602 2.4886 2.5751
3.6801 1.5581 3.9265
2.2568 2.3790 4.4724

] (32)

N1 =
[−292.0268 −51.7925 −252.3748

553.1883 310.9225 20.9454

]
,

N2 = 103

[
0.1714 2.2936 0.2577
0.6544 2.3273 0.3582

] (33)

which give the controller gains

K1 =
[−0.0122 −0.0359 −0.0151

0.1969 −0.1213 −0.0043

]
,

K2 =
[

0.9209 −2.1228 1.3911
0.9698 −1.9823 1.2621

] (34)

We note that the conditions (14)-(15) fail to prove the
stabilisation of the given example.
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5. CONCLUSION

In this paper the stabilisation of class of singular LPV
systems is studied. Sufficient conditions to design con-
trollers for discrete-time case are developed in the LMI
terms. To reduce the conservatism of the existing re-
sult using quadratic method, the proposed approach uses
polyquadratic Lyapunov functions and introduces extra
degree of freedom. Numerical example is given to illus-
trate the benefit of derived results. These results will be
extended to continuous-time case.

REFERENCES

S. Boyd, El Ghaoui, L., Feron, E., and V. Balakrishnan.
’Linear matrix inequalities in systems and control the-
ory’. SIAM, Philadelphia, PA, 1994.

J. Daafouz and J. Bernussou. Parameter dependent
lyapunov functions for discrete time systems with time
varying parametric uncertainties. Systems and Control
Letters, vol. 43, pp. 355 - 359, 2001.

J. Daafouz, Riedinger, P.; C. Iung. Stability analysis
and control synthesis for switched systems: a switched
Lyapunov function approach. IEEE Trans. Automat.
Control 47(11), pp. 2093 - 2094, 2002.

S.S. Ge, Z. Sun, T.H. Lee. On reachability and stabi-
lization of switched linear discrete-time systems, IEEE
Trans. Automat. Control 46 (9), pp. 1437 - 1441, 2001.

J.L. Mancilla-Aguilar. A condition for the stability of
switched nonlinear systems. IEEE Trans. Automat.
Control 45 (11), pp. 2077 - 2079, 2003.

J. Yao, Z-H. Guan, G. Chenb, D. Hoc. Stability, robust
stabilization and Hinf control of singular-impulsive sys-
tems via switching control. Systems and Control Letters
55(11). 2006.

M. Darouach, M. Boutayeb. Design of observers for
descriptor systems. IEEE Transactions on Automatic
Control 40(7), pp. 1323 - 1327, 1995.

M. Darouach. Solution to Sylvester equation associated to
linear descriptor systems. Systems and Control Letters,
55 (10), pp. 835 - 838, 2006.

L. Dai. Singular Control Systems, Springer, New York,
1989.

J.K. Mills, A.A. Goldenberg. Force and position control
of manipulators during constrained motion tasks. IEEE
Trans. Robot. Automat. 38, pp 30 - 46, 1989.

R.W. Newcomb, B. Dziurla. Some circuits and systems
applications of semistate theory Circuits Systems Signal
Process 8, pp. 235 - 260, 1989.

B.L. Stevens, F.L. Lewis. Aircraft Modeling, Dynamics
and Control, Wiley, New York, 1991.

D. Peaucelle, D. Arzelier, O. Bachelier and J. Bernussou. A
new robust -stability condition for real convex polytopic
uncertainty. Systems and Control Letters 40(1), 2000.

I. Masubuchi, T. Akiyama, M. Saeki. Synthesis of Output
Feedback Gain-Scheduling Controllers Based on De-
scriptor LPV System Representation. Conference On
Decision and Control Maui, Hawaii USA, Dec. 2003.

I. Masubuchi, J. Kato., M. Saeki. and A. Ohara. Gain-
Scheduled Controller Design Based on Descriptor Rep-
resentation of LPV Systems: Application to Flight Ve-
hicle Control. 43rd IEEE Conference on Decision and
Control, Atlantis, Bahamas, Dec. 2004.

A.K. Gelig, A.N. Churilov. Stability and Oscillations
of Nonlinear Pulse-Modulated Systems, Birkhuser,
Boston, 1998.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10002


