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Abstract: In the context of parameter estimation through state observers, we revisit the
transformation of the induction motor model into a state-affine structure with respect to the
unknown variables, then we compare in simulation the performances obtained through available
adaptive and exponential forgetting factor observer designs.

1. INTRODUCTION

Referring to our previous work (Ţiclea and Besançon,
2006a,b), we reconsider in this note the problem of state
and parameter simultaneous estimation in induction mo-
tors. This problem can be very challenging, especially
when the mechanical speed is not measured, which moti-
vated a lot of work in the electrical engineering community
to the extent that there is a vast literature available on the
subject.

Here we continue to resort to the solution proposed in
(Ţiclea and Besançon, 2006a,b), because unlike other
solutions in the literature it can handle some worst-case
scenarios in which the mechanical speed is not measured
and the electrical parameters (may be all) have to be
estimated. This solution consists in using a state observer
designed for some extended representation of the model
obtained through immersion of the original one.

The first objective of the present paper concerns the
construction of the immersion, for which we try to present
some theoretical foundation and a somewhat systematic
approach to its construction, as opposed to our previous
work, where the construction was performed with an
entirely heuristic approach. The second objective concerns
the employed observer. In our previous work a Kalman-
like observer was employed, which estimated the state
variables and the parameters at the same speed. Here, we
want to find out to which extent an adaptive observer can
be used and with what performance.

The paper is organized as follows. In section 2 the con-
sidered problem is precisely stated. Section 3 discusses the
immersion of nonlinear systems into state affine structures
by resorting to output injection and proposes a solution to
this problem, which is then applied to the induction motor
model. In section 4 it is shown that the transformation of
the induction motor model permits not only the use of
a Kalman-like observer, but also the use of an adaptive
one. Results of the comparison of the two observer through
simulation tests are presented in section 5 and some con-
clusions are drawn in section 6.

2. INDUCTION MOTOR ESTIMATION PROBLEM

We consider an induction motor model expressed in the
(α, β) reference frame (Leonhard, 1990; Vas, 1998) with
state variables

isα, isβ – the components of the stator current phasor
φsα, φsβ – the components of the stator flux phasor

ωr – the mechanical speed

and inputs the components of the stator voltage phasor
usα, usβ , resulting into the following representation:

d
dt is =[−( Rr

σLr
+ Rs

σLs
)I + pωrJ ]is+

+ ( Rr

σLsLr
I − p 1

σLs
ωrJ)φs + 1

σLs
us (1a)

d
dtφs =−Rsis + us (1b)
d
dtωr =− fv

Jm
ωr + p 1

Jm
(isβφsα − isαφsβ)− 1

Jm
τl (1c)

y =is. (1d)
In the electrical part, L stands for inductance, R stands
for resistance, σ = 1− M2

LsLr
with M the maximum mutual

inductance between one stator and one rotor winding, the
indexes s and r refer respectively to the stator and the
rotor, and

I =
[
1 0
0 1

]
, J =

[
0 −1
1 0

]
.

As far as the mechanical part is concerned, τl denotes the
load torque, Jm the total inertia momentum (rotor plus
load) and fv the viscous friction coefficient. Finally, in both
electrical and mechanical parts, p represents the number
of pairs of poles.

For this system, uncertainties in the electrical parameters
(for instance, resistances may vary with the temperature)
as well as the absence of flux, torque and sometimes speed
transducers lead to the problem of estimating the flux φs,
mechanical speed ωr, load torque τl and electrical param-
eters Rr

σLr
, Rs

σLs
, Rr

σLsLr
, 1

σLs
, Rs from available measure-

ments of us and is when considering that the parameters
in the mechanical equation fv and Jm are perfectly known.

A possible approach to this problem is to turn the un-
known parameters and load torque into state variables
and then design a state observer for the extended sys-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11184 10.3182/20080706-5-KR-1001.3991



tem. Such a solution was presented in (Ţiclea and Be-
sançon, 2006a,b), where the extended system was im-
mersed into a state affine structure with output injec-
tion and a Kalman-like observer was used to perform the
estimation. The presented construction of the immersion
was entirely heuristic, but it appears that in case of the
induction motors that type of approach can yield results
for any choice of variables that need to be estimated from
the set above, regardless the mechanical speed is measured
or not.

In the following section we present another way to perform
the same type of immersion, which is somewhat more
systematic in nature. Although this approach may not be
better than the pure heuristic approach in terms of results,
it appears to work very well in the case of the induction
motor.

3. IMMERSION TRANSFORMATION FOR
OBSERVER DESIGN

3.1 Immersion into state-affine structures

The immersion of a general C∞ system
ẋ = f(x, u) = fu(x)
y = h(x)

(2)

into a state affine structure
ż = A(u)z + ϕ(u)
y = Cz

(3)

was studied by Fliess and Kupka (1983), who gave nec-
essary and sufficient conditions for such a transformation.
The interest towards the state-affine structure (3) is obvi-
ous: if the input u is fixed (as a function of time), the
system becomes a linear time variant system and then
a Kalman (Kalman and Bucy, 1961) or a Kalman-like
observer such as the exponential forgetting factor observer
(Hammouri and de Leon Morales, 1990) can be used to
perform the estimation.

The result of (Fliess and Kupka, 1983) relies exclusively
on the notion of observation space, which is reminded here
for convenience.
Definition 1. (Observation space). For a general system
(2), the observation space is the smallest R-vector space
that contains the components of the output map h and is
invariant under the action of the vector fields of the family
fu.

We then have the following result:
Theorem 2. (cf. Fliess and Kupka (1983)).

(i) If the observation space of a system (2) has finite
dimension, then the system can be immersed into a
state-affine system.

(ii) If in addition the system is originally control-affine,
then the immersion leads to a bilinear system.

(iii) If the class of admissible inputs contains the piecewise-
constant inputs, then the immersion condition is also
necessary.

Remark 3. If the immersion condition holds, the immer-
sion map is constructed by taking any basis of the obser-
vation space.

The immersion condition of this theorem is, however, very
strong, to the extent that there are many examples—
quite simple ones—when it fails. A solution to weaken the
immersion condition is to resort to output injection, which
would give a state-affine structure

ż = A(u, y) + ϕ(u, y)
y = Cz.

(4)

Note that in this case one can still use a Kalman-like ob-
server for estimation, by simply considering the extended
input v =

[ u
y

]
(Hammouri and Celle, 1991).

Unfortunately, the transformation conditions of a system
(2) into a general state-affine structure (4) are very difficult
to characterize in the sense that there are no transfor-
mation conditions of practical usefulness, and this is true
for both diffeomorphism and immersion transformations.
Conditions for transformation into particular forms of the
structure (4) do indeed exist, for both diffeomorphism (Be-
sançon and Bornard, 1997) and immersion (Hammouri and
Celle, 1991) transformations, but as far as the immersion
is concerned, they do not cover very much of the systems
that can be immersed into a state affine structure.

We present here an idea from (Ţiclea and Besançon, 2007)
for the immersion of a nonlinear system (2) into a state
affine structure with output injection (4) that need not
possess a particular form. This idea comes from the one
that considers the extended output v =

[ u
y

]
for observer

design. More precisely, we parametrize the family of vector
fields fu by the output y, consider v as input and use
Theorem 2 for immersion. We then have the following
sufficient condition for immersion:
Proposition 4. Given a system (2), if the family of vector
fields f(x, u) can be parameterized by the output y such
that the observation space is finite dimensional when
considering the extended input

[ u
y

]
, then the system can

be immersed into a state-affine structure (4).
Remark 5. The observation space in the above proposition
is obviously not the real observation space of the system,
but the result was formulated in this way in order to
emphasize the connection with the result of Theorem 2.
In a less ambiguous formulation, the immersion condition
would have been “there exists a parametrization f(x, u, y)
of f(x, u) such that the smallest R-vector space which
contains the components of h and is invariant under the
vector fields of the family fu,y is finite-dimensional”.

3.2 Immersion of the induction motor extended model

The idea in the preceding subsection was already applied
to the induction motor state and parameter estimation
problem of Section 2 in the case when the mechanical speed
is also measured (Ţiclea and Besançon, 2007). Here, the
objective is to show that the same idea can still be applied
with success even when the speed is not available through
measurement.

Just like in (Ţiclea and Besançon, 2007), we first perform
a preliminary dynamical extension of the system, by build-
ing the state vector

x =
[
iTs φT

s ωr τl
Rr

σLr

Rr

σLsLr

1
σLs

Rs

]T

.

As far as the dynamics of the new variables are concerned,
we know that the resistances are susceptible to vary with
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the temperature, but the precise dynamic is in general
unknown and this is true for the load torque as well. For
this reason, we assume that these dynamics will be slow
compared with the dynamics of the employed observer and
assimilate all new state variables with constants.

Under this assumption we define the following vector
fields:

f0 =



Rr

σLsLr
φsα + p

σLs
ωrφsβ

Rr

σLsLr
φsβ − p

σLs
ωrφsα

0
0

−( fv

Jm
ωr + 1

Jm
τl)

0
...
0


, f1 =



−( Rr

σLr
+ Rs

σLs
)

pωr

−Rs

0
−p 1

Jm
φsβ

0
...
0


,

f2 =



−pωr

−( Rr

σLr
+ Rs

σLs
)

0
−Rs

p 1
Jm

φsα

0
...
0


, f3 =



1
σLs

0
1
0
0
0
...
0


, f4 =



0
1

σLs

0
1
0
0
...
0


and output map

h =
[
isα

isβ

]
.

Then the original system (1) can be represented as
ẋ = f0 + y(1)f1 + y(2)f2 + u(1)f3 + u(2)f4

y = h.

where y(i) and u(i) stand for component i of y and u
respectively. It can be easily shown by computing iter-
ated Lie derivatives of h along f0, . . . , f4 that the space
described in Remark 5 has finite dimension and a basis of
this space can be chosen as: is, φs, Rs

σLs
φs, 1

σLs
φs, Rr

σLsLr
φs,

1
σLs

φsα
2, 1

σLs
φsβ

2, 1
σLs

φsαφsβ , τl
1

σLs
φs, ωr, ωr

1
σLs

φs,
Rs

σLs
ωr, 1

σLs
ωr, τl, Rs

σLs
τl, 1

σLs
τl, Rr

σLr
, Rs

σLs
, RsRr

σLsLr
, 1

σLs
,

Rr

σLsLr
, Rs,

R2
s

σLs
and 1, which is exactly the immersion

obtained in (Ţiclea and Besançon, 2006a) up to a constant
state with known value which can be obviously eliminated
from the model.

4. EXPONENTIAL FORGETTING FACTOR VS.
ADAPTIVE OBSERVER

The transformation in the preceding section puts the
induction motor model into a form (4) with ϕ(u, y) = ϕ(u),
for which one can design a Kalman-like observer, namely
the exponential forgetting factor observer

˙̂z = A(u, y)ẑ + ϕ(u)− S−1CT (Cẑ − y)

Ṡ = −λS −A(u, y)T S − SA(u, y) + CT C,

which can ensure arbitrarily fast exponential convergence
through the tuning parameter λ > 0 for any ẑ(0) and any
S(0) = S(0)T , provided the input is regularly persistent
(Hammouri and de Leon Morales, 1990).

It is worth noticing at this point that in the case of the
induction motor model transformation, the preliminary
extension was of the type

x̃ =
[
x
θ

]
where x is the vector of the variables that need to be
estimated fast (and this includes the load torque), while θ
is a vector containing exclusively combinations of electrical
parameters, which are supposed constant or very slow
varying (θ̇ ≈ 0). This also induces a partition of the vector
z into two subvectors z =

[
zx
zθ

]
such that zθ only depends

on elements in θ, while zx depends on all x̃, i.e.

zx =
[
is φs

Rs

σLs
φs

1
σLs

φs
Rr

σLsLr
φs

1
σLs

φsα
2

1
σLs

φsβ
2 1

σLs
φsαφsβ τl

1
σLs

φs ωr ωr
1

σLs
φs

Rs

σLs
ωr

1
σLs

ωr τl
Rs

σLs
τl

1
σLs

τl

]
zθ =

[
Rr

σLr

Rs

σLs

RsRr

σLsLr

1
σLs

Rr

σLsLr
Rs

R2
s

σLs

]
.

It is not needed to estimate zθ at the same speed as
zx, and clearly not desirable when the influence of the
measurement noise is an issue. To address this problem,
we note that the matrices A(u, y), ϕ(u, y) and C obtained
after immersion admit partitions

A(u, y) =
[
A1(u, y) A2(u, y)

0 0

]
ϕ(u) =

[
ϕ1(u)

0

]
C = [C1 0]

(here 0 stands for null matrices of appropriate dimensions)
such that the system can be represented as

żx = A1(u, y)zx + A2(u, y)zθ + ϕ1(u)
y = C1zx.

with żθ = 0.

When the input u is fixed, this system can be assimilated
with a linear time-varying system for which we can build,
under specific hypothesis as to the persistence of the input,
an adaptive observer (towards the parameters zθ) with
exponential convergence (Zhang, 2002). We present here
a particular formulation of this observer, due to Besançon
et al. (2006), which can be used to establish the tight link
between this observer and the exponential forgetting factor
observer above:

˙̂zx =A1(u, y)ẑx + ϕ1(u) + A2(u, y)ẑθ+
+

[
ΛS−1

θ ΛT CT
1 + S−1

x CT
1

]
Q(y − C1ẑx)

˙̂zθ =S−1
θ ΛT CT

1 Q(y − C1ẑx)

Λ̇ =
[
A1(u, y)− S−1

x CT
1 QC1

]
Λ + A2(u, y)

Ṡx =− λxSx −A1(u, y)T Sx − SxA1(u, y) + CT
1 QC1

Ṡθ =− λθSθ + ΛT CT
1 QC1Λ

where Sx(0), Sθ(0) and Q are positive definite matrices
and λx and λθ are sufficiently high positive constants.
The two tuning parameters allow us to obtain different
convergence speeds for the estimation of zx and zθ. When
λx = λθ, it is shown in (Besançon et al., 2006) that
this observer coincides with the exponential forgetting
factor observer above, whose objective is the estimation
of z =

[
zx
zθ

]
.
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5. SIMULATION RESULTS

The performances of the exponential forgetting factor
observer and adaptive observer were compared through
simulation tests performed upon a speed control loop. The
parameters of the induction motor model (1) were taken
from a 7.5 kW motor with two pairs of poles, 1450 rpm
rated speed and 16 A rated current, available at the control
systems department of GIPSA-lab:

Ls = 0, 097 H Lr = 0, 091 H M = 0, 091 H
Rs = 0, 63 Ω Rr = 0, 4 Ω

for of the electrical parameters and
Jm = 0, 22 kg ·m2 fv = 0, 001 N · s/rad

for the mechanical ones. In addition, changes of the resis-
tances due to increases in the temperature were simulated
through ramp evolutions of 10 % per minute in the case
of Rs and 15 % per minute in the case of Rr.

The induction motor model was driven by a PWM voltage
waveform generated by an ideal switches model of a
voltage source inverter with 1 kHz sampled vector control.
At its turn, the inverter model received the reference
vector from a torque and flux controller obtained through
available feedback linearization techniques (Isidori, 1995)
applied to motors (e.g. as in (von Raumer et al., 1994)).
Finally, speed regulation was performed through a PI
controller.

The variables involved in the control laws were replaced
by estimates provided by the observer whenever possible.
Noise with enough bandwidth so to be assimilated with
white noise was added to the measured signals, with peak
values of about 10 mV in the case of the stator voltages
and about 40 mA in the case of the stator currents.

The simulated scenario was as follows. Starting with the
motor at rest and no load applied, the speed set point is
set to 50 rad/s. At t = 6 s a load of 10 Nm (about 20%
of the rated torque of the motor) is smoothly applied in
steady-state conditions. At t = 9 s, after the stabilization
of the observer and controller, the speed set point is set to
100 rad/s, followed at t = 12 s by another smooth change
of 10 Nm in the load. At t = 16 s the speed set point is
set to 0 rad/s and finally, at t = 23 s to 20 rad/s where
it is kept until the end of the simulation, which occurs at
t = 30 s.

We shall first present the results obtained with the expo-
nential forgetting factor observer. Here, the value of the
tuning parameter λ has to be such that a compromise
be achieved between the speed of the observer and the
influence of the measurement noise on the estimates. By
setting λ = 15, we obtain the results presented in Figs. 1–4.

Overall, we observe very good speed tracking even at
low speeds and acceptable regulation thanks to good
response from the observer to disturbances. This comes
however at the expense of fairly high influence of the
measurement noise on the estimates, which, except for the
stator resistance, is more important at low speeds. For
instance, at zero mechanical speed we can read variations
up to 10% in the estimation errors of Ls, Lr

Rr
and σ.

These results suggest that the observer should be faster for
better rejection of perturbations in the estimates, hence

0 10 20 30
0

50

100
ωr

ωr∗

ra
d/

s

s

Fig. 1. Speed tracking with the exponential forgetting
factor observer.

0 10 20 30

−6

−3

0
ωr

ra
d/

s

0 10 20 30
0

4

8
τl

N
m

s

Fig. 2. Estimation errors in the mechanical equation with
the exponential forgetting factor observer.

0 10 20 30
−0.8

−0.4

0

0.4

0.8
φsα

φsβ

W
b

s

Fig. 3. Flux estimation errors with the exponential forget-
ting factor observer.

for better speed regulation, but also that it should be
slower as far as the parameters are concerned, for lower
measurement noise influence. We try to achieve such an
effect with the adaptive observer, by setting λx = 25 and
λθ = 3. The obtained results are presented in Figs. 5–8.

We obtain better speed regulation than in the preceding
case, thanks to better rejection by the observer of the
disturbances induced by the changes in the load torque.
The influence of the measurement noise is much lower as
far as the parameters are concerned while the observer is
still able to cope with ramp evolutions of the resistances
that simulate changes due to temperature increase.

6. CONCLUSIONS

A comparison in simulation between the exponential for-
getting factor and adaptive observers has shown that as
far as the state and parameters simultaneous estimation
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Fig. 4. Parameter estimation errors with the exponential
forgetting factor observer.
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ωr

ωr∗

ra
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s
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Fig. 5. Speed tracking with the adaptive observer.

in induction motors is concerned, the adaptive observer is
more adequate for control purposes as it can combine fast
state estimation with satisfactory parameter adaptation,
which provides more robustness towards the measurement
noise.

It would be interesting to confront these results with ex-
perimental ones, which requires a discrete-time approach
of the problem. An available discrete-time formulation
of the exponential forgetting factor observer (Besançon,
1996) has already been used for the estimation of the
induction motor, with both simulated and real data (Ţiclea
and Besançon, 2006b). The adaptive observer also pos-
sesses a discrete-time counterpart (Guyader and Zhang,
2003). However, it is not yet clear whether there exists

0 10 20 30
−3

−1.5

0

1.5

3

ωr

ra
d/

s

0 10 20 30
0

3

6
τl

N
m

s

Fig. 6. Estimation errors in the mechanical equation with
the adaptive observer.

0 10 20 30
−0.6

−0.3

0

0.3
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φsα

φsβ

W
b

s

Fig. 7. Flux estimation errors with the adaptive observer.

an equivalence relation between the exponential forgetting
factor observer and the adaptive observer in discrete-time
as well, this aspect being currently under study.
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