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Abstract: The game-theoretic view of control system design for multi-loop systems is extended in this
work to ensure a closed-loop system with robust stability. The control system design is modeled as
a differential cooperative game to incorporate interactions between the multiple loops of the control
system. A robust stability indicator is formulated as an additional cost function. The developed approach
is applied to a reverse osmosis desalination plant with different constraint settings on the control signals.
The solution of the game provides Pareto-optimal sets, depending on the control signal constraints.
Single points are chosen from the Pareto-optimal sets resulting in controller parameters leading to a
reverse osmosis system with optimal performance concerning the error convergence, control effort and
robust stability.

1. INTRODUCTION

Standard techniques for controller tuning of multi-loop sys-
tems assume that the control loops can be adjusted individually
by loop decoupling, thereby neglecting the interactions of the
different control loops. A detailed literature research leads to
the conclusion that there is no good method for simultaneous
tuning of several controllers that significally improved perfor-
mance compared to a single loop controller, see for example
in Brosilow and Joseph [1999]. According to Johnson and
Mohradi [2005], the disadvantages of using multi-loop PID or
PI controllers are the lack of interaction consideration and the
existence of few powerful tools for its design.
This was the motivation to develop a new approach of controller
parameter tuning in multi-loop control structures. In Wellen-
reuther et al. [2006a], Wellenreuther et al. [2006b], Gambier
et al. [2006] and Gambier et al. [2007] the method, based
on game theory was proposed for continuous time systems as
well as for discrete time systems. Thereby, the control system
is viewed as a differential cooperative game where the con-
trollers represent the players. A cost function is assigned to
each controller, such that the control system design consists in
minimizing jointly all indices. This leads to a multi-objective
optimization (MOO) problem that has to be solved (see Rusnak
[2005]). The approach was modified in Wellenreuther et al.
[2007], in order to add constraints to the cost functions.
Since every model of a physical system is involved with un-
certainties as a result of several reasons (see Skogestad and
Postlethwaite [1996]), it is useful to include a robust stability
analysis in the presented control system design. Thus, the solu-
tion of the differential cooperative game should ensure robust
stability for a given uncertainty.
Game theory deals with objectives, which are in conflict, as for
example robust stability and performance, and tries to find a
good trade-off between the conflicting participants.
The idea to use game theory to solve control theoretic problems
is not new. According to Basar and Olsder [1999], differential
game theory can be viewed as a child of the parents game the-

ory and optimal control theory. For example, a game theoretic
approach to design controllers for safety specifications is given
in Tomlin et al. [2000]. Lygeros et al. [1997] uses ideas of
game theory, to treat the control system design process as a two
player zero-sum game between the controller of a player and
the disturbance generated by the actions of the other player.
The description of the game-theoretic framework for a multi-
loop control system design is given in Section 2 including the
consideration of robust stability. The application to a reverse
osmosis desalination plant is considered in Section 3. The paper
is completed with simulations, presented in Section 4 and a
conclusion in Section 5.

2. GAME-THEORETIC FRAMEWORK

To include control loop interactions in multi-loop systems, the
control system design is considered here as a differential game
between i players with i = 1, ..., N on the time period [t0, T ].
The strategies of the players are defined as

ui(t) =

∫ T

t0

ci(t)ei(t − τ)dτ (1)

with

L{ci(t)} = Ci(s) = Qi(s)/Pi(s). (2)

Qi and Pi are polynomials of the controller Ci. The strate-
gies ui of the players belong to the strategy sets Ui =
{ui|ui is given by (1)}.
The differential game can now be described as the evolution of
the errors ei with

e
(n)
i = fi(e

(n−1)
i , ..., ėi, u1, ..., uN ) (3)

and initial condition

ei(t0) = ei0 (4)

as well as a cost Ji with

Ji = gi0(eiT ). (5)

The errors ei belong to the set Ei = {ei|ei as solution of (3)}.
Function fi is defined on fi : Ei × U1 × . . . × UN → R and
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function gi0 on gi0 : Ei → R
+.

A typical performance index applied to control problems is the
integral square error (ISE) over the complete time interval with
t0 = 0 and T = ∞, which is now used for the costs Ji as

Ji =

∫

∞

0

e2
i (t)dt. (6)

The terminal state eiT as well as the cost functions Ji depend
on the strategies ui of the players i. In contrast, the players
strategies ui depend on the controller parameters Qi and Pi as
well as the control system structure and the reference signals
ri.
In a cooperative differential game involving N players, each
player wants to minimize his cost Ji = gi0(eT ) through the
selection of his control strategies ui.
A minimization of multiple costs Ji with given reference sig-
nals ri and a given control structure leads to an optimization of
the controller parameters Qi and Pi.

2.1 Constrained strategy sets

Since every control signal cannot be followed by the physical
system, the controls ui of the multi-loop control structure are
limited around an operating point in a predefined range of
ulimiti

:

|ui| ≤ ulimiti
. (7)

These constraints are considered in the game theoretic control
system design, yielding to an optimization of (6) subject to (7).
In terms of the differential game, constraints on the control
signals imply limitations on the players’ strategy sets Ui.

2.2 Solution of the game

According to Neumann and Morgenstern [2004], the solution
of a cooperative game is a set of solutions. All nondominated
solutions, also called Pareto-optimal solutions, are part of this
set, called Pareto-optimal set.
To obtain a Pareto-optimal set for the described game, all cost
functions Ji have to be optimized by tuning the controller pa-
rameters Qi and Pi. Optimizing more than one cost function
is known to be a multi-objective optimization (MOO) prob-
lem that has to be solved. The genetic algorithm of Pohlheim
[2000], which is already used in previous works (see Wellen-
reuther et al. [2006a], Wellenreuther et al. [2006b], and Gam-
bier et al. [2007]) is applied to solve the MOO problem. If the
reader is interested to know more about GA’s, he is referred for
example to Holland [1992] or Beasly et al. [1993].
In the present paper, only two constraints are considered during
the optimization. First, the chosen parameter sets have to en-
sure, that the final closed-loop system is stable, which is done
during the evaluation of the cost functions Ji. And second,
the resulting control strategies have to satisfy their predefined
limits.
A range for each controller parameter of Qi and Pi must be
specified at the beginning. The values for the starting popula-
tion are selected from this range. The final solution of the GA
is a Pareto-optimal set for the costs Ji providing the controller
parameters.
The costs Ji could be part of a solution concept for cooperative
games, named the core, known to be the most attractive solution
concept in cooperative game theory. In Aumann [1961], the
core is defined to be the subset of outcomes from which there
is no tendency to move away - the equilibrium states.

Hence, the core collects cost sets J1, ..., and JN (also called
imputations) that are not dominated. All possible cost sets are
imputations where none of the players gets less than he would
get if he plays alone.
For two player games the set of imputations coincides with the
core and thus with the obtained Pareto-optimal set.
So far, the new method in the game-theoretic framework pro-
vides controller parameters for multi-loop systems ensuring a
stable closed loop system with optimal performance concerning
the error convergence and additionally having regard to con-
straints on the control strategies. Robust stability with respect
to model uncertainties is not yet considered in the design.

2.3 Robust Stability Consideration

Modeling physical systems can lead to substantial differences
between the model and the physical system, since no capable
mathematical model exists, that describes a physical process
exactly, (Skogestad and Postlethwaite [1996], and Manoso et al.
[1997]). This problem is called the robustness problem. The
robustness problem is solved first by characterizing the uncer-
tainty and incorporating it into the mathematical model. If the
system remains stable for all perturbed plants about the nominal
model, up to the worst-case model uncertainty. In the litera-
ture, uncertainty is distinguished between two main classes:
parametric uncertainty and uncertainty caused by unmodeled
dynamics (Balas et al. [1996], Skogestad and Postlethwaite
[1996]). In the case of parametric uncertainty, the structure of
the model, including the order, is known, but some parame-
ters are uncertain. This type of uncertainty can be modeled
as inverse additive uncertainty (Becerra [1999]). In contrast,
unmodeled dynamics occur due to the high frequency plant be-
haviour, which is often uncertain since only the low order nom-
inal model describing the low-mid frequency range behaviour
of the plant is available. One common approach to model this
type of uncertainty is to use a multiplicative uncertainty model
(Skogestad and Postlethwaite [1996]).
The singular value analysis, identified as σ and a generalization
of the Nyquist criterion, is a popular general way to analyse the
robust stability of multi-input/multi-output systems.
The structured singular value µ of a transfer function matrix
M , where M represents a known linear system, is defined as
µ(M) = 1/σ(M) subject to the singular value. It was de-
veloped to analyse the effects of parametric uncertainties and
unmodelled dynamics to the stability and the performance of
multi-loop systems. The structured singular value µ is defined
on finding the smallest structured perturbation ∆ (measured
in terms of σ(∆)) which makes det(I − M∆) = 0, then
µ(M) = 1/σ(∆).
The peak of the frequency response of the general structured
singular value µ delivers, dependent on the structure of the
perturbation, the size for the perturbation where the closed
loop system remains stable. A value of µ = 1 represents a
perturbation with σ(∆) = 1. If smaller perturbations makes
the system unstable, the value of µ is larger than 1 and if the
value of µ is smaller than 1, larger perturbations are permitted.
A robust stability theorem for block-diagonal perturbations is
given in Skogestad and Postlethwaite [1996]:

Theorem 1. Assume that the nominal system M and the per-
turbations ∆ are stable. Then the M∆-system is stable for
all allowed perturbations with σ̄(∆) ≤ 1, ∀ω, if and only if
µ(M(jω)) < 1, ∀ω.
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To calculate the structured singular value µ, the µ-Analysis and
Synthesis Toolbox, available for Matlab, is used. Considering
the robust stability analysis during the differential cooperative
game, modeling the control system design, a cost function Jµ

for the system is defined as

Jµ = µ(M). (8)

The value of the robust stability cost Jµ depends on the players’
control strategies ui, given through the controller parameters
Qi and Pi. Considering the cost Jµ of (8) with regard to
the solution of the game, an additional tradeoff between the
robust stability and the performance of the system subject to
constraints on the control strategies has to be met.

3. APPLICATION

The presented differential cooperative game description is ap-
plied to a reverse osmosis (RO) desalination plant. The RO
system accomplishes the requirements of being a multi-loop
system with control loop interactions.

3.1 Example Description

The ultimate purpose of a RO desalination process is producing
a constant quantity of water with an acceptable purity. Several
papers were published, for example Assef et al. [1995], Riverol
and Pilipovik [2005] or Robertson et al. [1996], where RO
system identification is considered as a two-input/two-output
(TITO) system. The controlled output variables are the per-
meate flux (F) and the permeate conductivity (C). The system
interaction can be written as

[

F
C

]

=

[

Gp11 Gp12

Gp21 Gp22

] [

P
pH

]

(9)

belonging to the control structure, displayed in Fig. 1.
The process transfer functions, used in this work, are chosen
from Robertson et al. [1996]:

F

P
= Gp11 =

B11

A11
=

0.002(0.056s + 1)

(0.003s2 + 0.1s + 1)
(10)

F

pH
= Gp12 =

B12

A12
= 0 (11)

C

P
= Gp21 =

B21

A21
=

−0.51(0.35s + 1)

(0.213s2 + 0.7s + 1)
(12)

C

pH
= Gp22 =

B22

A22
=

−57(0.32s + 1)

(0.6s2 + 1.8s + 1)
(13)

In words, a change in the transmembrane pressure (P) effects
the permeate flux as well as it has a negative effect on the
permeate conductivity (C). Changing the pH has no effect on
the permeate flux (F), as a result of (11), but a negative effect
in the permeate conductivity (C). The control structure reflects
the triangular (asymmetric) dependency in such a way that the
upper control loop acts as a disturbance on the lower control
loop. Thus, the control loops of the multi-loop system interact
only in one-way.
The control system design with optimal performance concern-
ing the error convergence and the robustness is now imple-
mented using the proposed approach in the game theoretic
framework.

3.2 Game-theoretic control system design for the RO process

The control system design of the two-input/two-output system
in Fig. 1 is considered as a differential game between two

players i with i = 1, 2 on the time period [t0, T ].
The strategies of the players are defined as

ui(t) =

∫ T

t0

ci(t)ei(t − τ)dτ (14)

with

L{ci(t)} = Ci(s) =
Qi

Pi

=
KPi

s + KPi
/KTIi

s
. (15)

Qi and Pi are polynomials and contain the proportional and
integral controller parameters of Ci in Fig.1. The strate-
gies ui of the players belong to the strategy sets Ui =
{ui|ui is given by (14)}.
The differential game can now be described as the evolution of
the errors ei with

e
(3)
1 = f(ë1, ė1, u1, u2), (16)

e
(8)
2 = f(e

(7)
2 , . . . , ė2, u1, u2), (17)

and initial condition
ei(t0) = ei0 (18)

as well as the costs Ji with

Ji =

∫

∞

0

e2
i (t)dt

=
1

2πj

∫ j∞

−j∞

ei(s)ei(−s)ds

(19)

and
Jµ = µ(M). (20)

The errors ei belong to the set

Ei = {ei|ei as solution of (16) and (17)} .

Function fi is defined on fi : Ei × U1 × U2 → R
+. Equations

(19) are solved according to Aström [1970].
For shortage of space, the polynomials Aij(s), Bij(s), Pij(s),
Qij(s), ei(s) and ri(s) are abbreviated in the following as Aij ,
Bij , Pij , Qij , ei, and ri with j = 1, 2.
According to the presented game description, the error signal
e1(s) of the first player is

e1(s) =
A11r01

A11P1 + B11Q1
. (21)

For the second player, the error signal e2 is

e2(s) =
A21A22(A11P1 + B11Q1)r02 − B21Q1A11A22r01

A21(A11P1 + B11Q1)(A22P2 + B22Q2)
(22)

The cost function Jµ, concerning the robust stability needs a
computation of Gro, see Fig. 1. The structure of Gro depends
on the class of uncertainty and how the uncertainties are intro-
duced to the control structure. In this work, only parametric un-
certainties are considered. For multi-loop systems, particularly
multi-input/multi-output (MIMO) systems, the consideration
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Figure 1. Control structure of the RO process
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Figure 2. Control structure of the RO process, where the uncer-
tain blocks ∆11,∆21, and ∆22 are pulled out and placed
inside a matrix block

of parametric uncertainty is very important, since it emerges
the coupling between the uncertain transfer function elements
(Skogestad and Postlethwaite [1996]). Thus, the parametric un-
certainties are modeled as inverse additive uncertainties, see
Fig. 2. To distinguish between what is known and what is
uncertain, the uncertainties ∆11,∆21, and ∆22 are pulled out
and placed inside a matrix block. The computation of Gro,
needed for the computation of the cost function Jµ, is done
with the Matlab program sysic, which is a simple linear sys-
tem interconnection program, writing the loop equations of the
interconnections.

3.3 Game solution

The solution of the game provides a Pareto-optimal set. The
selection of a parameter set from the Pareto-optimal set is
done with no predefined choice in this paper. For the solution
of the game, it is primary necessary to satisfy all constraints
and belonging to the Pareto-optimal set. The required decision
maker, choosing a single parameter set from control theoretic
view is still an open question.
Controllers were obtained, using the GA, where the parameter
vector χ for the controllers are of the form

χ = [KP1, KP1/KTI1, KP2, KP2/KTI2] , (23)

with proportional (KPi) and integral (KPi/KTIi) parameters.
The controller parameters are listed in Table 1. Games (A)
and (B) are results obtained in Wellenreuther et al. [2007],
where only J1, and J2 were optimized (those for the error
signals) subject to predefined constraints on the control signals.
In contrast, during the course of games (C) and (D), the cost
Jµ is considered.
To be able to determine a possible relationship between con-
straint settings on the control signals and how robustly stable
the final system is, the constraints for games (A) and (C) were
chosen to be larger (ulimiti

= 2 · uiset
) than those for games

(B) and (D) with ulimiti
= 0.1 · uiset

, subject to uiset
, the

corresponding control signals ui to the set points of yi.

Table 1. Controller and optimization parameters

KP1 KTI1 KP2 KTI2

Game(A) 425 0.03993 −0.48898 0.49514

Game(B) 501.78 0.04303 −0.071875 4.12175

Game(C) 450.74 0.14631 −9.156 0.025833

Game(D) 450.77 0.155144 −1.1444 0.003107
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Figure 3. Responses to changes in the permeate flux y1 and the
conductivity y2 for games (A)−(D) of the nominal model

4. SIMULATION RESULTS AND COMPARISON

The operating point of the plant is given by a permeate flux of
0.85[gpm] (0.2m3/h) and a conductivity of 400[µS/cm].
Fig.3 shows the responses for the outputs (flux and conductiv-
ity) and the control signals (pressure and pH) of the nominal
system for the different games (A)− (D) to a change in the set
point of the flux, from 0.85 [gpm] to 1.25 [gpm], as well as a
change in the set point of the conductivity from 400[µS/cm] to
430[µS/cm].
Concerning the responses of the flux (y1), games (A) and (B)
already reach the set point after 0.2 minutes, in contrast to
games (C) and (D), reaching the set point not until the first
minute. All responses for the conductivity (y2), except for game
(B), reach the set point within 0.4 minutes. Concerning the
control signal amplitudes, those for games (A) and (B) show
very similar behaviour. In the figure concerning the control
signal amplitudes u2 (pH), the difference between the larger
constraint settings of game (C), accepting a large negative
overshoot, and the narrower constraint setting of game (D) is
traceable.
To take into account the corresponding values for the cost func-
tions, especially for the robust stability indicator Jµ, they are
listed in Table 2.
An incorporation of the robust stability consideration leads to a
cost function Jµ, which is in conflict with the cost functions
J1 and J2. The values of the cost functions for the player
concerning the upper loop, J1, see Table 2, increase with the
additional robust stability cost function Jµ, while the one for
the lower loop J2 decreases. So, a trade-off between all three
conflicting cost functions has to be found with respect to the
solution of the game.
Games (A) and (B) are not robustly stable at all, compare to Jµ

in Table 2, since this property was not considered during their
optimization process. However, games (C) and (D), where
the parameters are obtained with the presented approach are

Table 2. Cost function values

J1 J2 Jµ

Game(A) 0.0180 0.5701 2.0407

Game(B) 0.0155 15.3980 11.3822

Game(C) 0.048526 0.00057632 0.51452

Game(D) 0.051118 0.00041084 0.82884
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robustly stable, but for different families of models, depend-
ing on the size of the structured singular value µ. For larger
constraint settings (game (C)), the resulting control system is
more robustly stable compared to smaller constraint settings
(game (D)). The worth of the cost concerning J2 for game
(C) degrades about 40 percent compared to game (D) while
it is more robustly stable. But the worth of the cost J1 for
game (C) improves only 5 percent compared to game (D).
According to Skogestad and Postlethwaite [1996], stability is
guaranteed for all perturbations with appropriate structure, and
max σ [∆(jω)] ≤ 1

µgame
. For the single games this yields to

1

µA

≈ 0.49,
1

µB
≈ 0.088

and

1

µC

≈ 1.2065,
1

µD

≈ 1.943559.

If the admissible size of perturbation is exceeded, the stability
of the system cannot be guaranteed anymore.
In the following, the RO model is changed in the domain of the
different perturbation (uncertainty) sizes in order to see which
parameter sets perform better for the whole family of models
under the assumption that the perturbations are with appropriate
structure. The four different perturbations are, in dependence on
1/µA, 1/µB , 1/µC and 1/µD, of the following size and form,
where ∆ is a block-diagonal matrix:

∆ = diag(∆i)

for i = 1, ..., 4 with

|∆1| = 0.1, |∆2| = 0.5, |∆3| = 1.5and |∆4| = 2.0.

The perturbed systems are simulated according to a change in
the set point of the permeate flux and a change in the set point
of the permeate conductivity with the same sizes as with the
nominal system. The effects of the perturbations are shown for
all games, but only for the second output y2, the conductivity.
Due to the triangular control structure, the system gets unstable
first in the lower control loop concerning the conductivity if the
perturbations are too large.
Fig.4 shows the step responses for all games (A)-(D). Game
(B), the one with the highest cost function value concerning the
robust stability, leads to an unstable closed loop system for the
family of models around the nominal system and a perturbation
of ∆1. The step response of game (A) shows a larger and
longer overshoot than the nominal system case, but it is still
stable. In Fig.5, the representation of game (B) was neglected,
since |∆1| > |∆2| and therefore unstable in any case. Game
(A) is unstable for a maximum perturbation of size ∆2. The
step responses of game (C) and (D) remain comparatively
unchanged due to the extension of the perturbation size from
∆1 to ∆2 (compare Fig.4 with Fig.5).
An enlargement of the perturbation from ∆2 to ∆3 results in
instability in the step responses of game (D), as shown in Fig.6.
Finally, Fig.7 shows, that for a perturbation with structure and
size of ∆4, larger than 1

µC
, the system is unstable, too.

Comparing all games with respect to robust performance, the
robust stability indicator Jµ is smaller for all games with larger
constraints than for games with smaller constraints. The system
with the parameters of game (C) and the larger constraint range
accepts a larger perturbation ∆ before it becomes unstable than
the system with the parameters of game (D).
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Figure 4. Responses to changes in the permeate flux y1 and the
conductivity y2 for games (A)− (D) and the perturbation
∆1
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Figure 5. Responses to changes in the permeate flux y1 and
the conductivity y2 for games (A),(C) and (D) and the
perturbation ∆2

5. CONCLUSIONS

A robust stability consideration, formulated as cost function,
was included in an optimal controller parameter tuning method
for multi-loop structures in a game-theoretic framework. The
presented control design was applied successfully to a reverse
osmosis desalination plant. Simulation studies show, that dif-
ferent constraint ranges for the control signals lead to an ac-
ceptance of different sizes of block diagonal perturbations (un-
certainties) ∆. The conflict between the constrained strategy
sets and the robust stability is becoming apparent. Narrower
constraints allow only smaller perturbations for robust stability
and the other way around.
Although in this work, only parameter uncertainties were con-
sidered, it is also possible to include uncertainties caused by
unmodelled dynamics.
The fact, that the computational cost of the method increases,
in adding the robust stability analysis, is negligible since the
controller parameters are tuned offline.
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Figure 6. Responses to changes in the permeate flux y1 and the
conductivity y2 for games (C) and (D) and the perturba-
tion ∆3
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Figure 7. Responses to changes in the permeate flux y1 and the
conductivity y2 for game (C) and the perturbation ∆4
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