
Development of SILS and RCP for OSEK-OS based ECU

Myoungho Sunwoo*
�

* Department of Automotive Engineering, Hanyang University, Seoul
Korea (Tel: +82-2-2220-0453; e-mail: msunwoo@hanyang.ac.kr).

Abstract: This paper presents the Matlab/Simulink-based Software-in-the-Loop Simulation (SILS) tool

for OSEK-OS based ECU. The SILS tool has the capability for temporal and functional simulations of
control systems. The temporal behavior of a control system is mainly dependent on the implemented

software and hardware such as the real-time operating system (OSEK-OS), the target CPU, and the

communication protocol. The SILS components with temporal attributes are specified as tasks, task

executions, real-time schedulers (OSEK-OS scheduler), and real-time networks. Methods to realize these

components in graphical block representations are investigated with Matlab/Simulink. Furthermore, in

order to achieve a seamless development process from SILS to Rapid Control Prototyping (RCP), the SILS

block set is designed to support automatic code generation in C codes without tool changes and block

modifications.

�
�

1. INTRODUCTION

One of the goals in automotive design is the creation of a

seamless development framework from Software-in-the-Loop

Simulation (SILS) to Rapid Control Prototyping (RCP).
Current computer-aided control system design (CACSD)

tools are inadequate for the realization of a seamless process

due to their inability for representing certain software

architecture and considering temporal behavior.

The use of CACSD software in control systems for
supporting design frameworks has increased over the years

[1][2][3][4]. Among these tools Matlab/Simulink has

become a standard tool for modeling and off-line simulation

in control system design. Matlab/Simulink is not only a tool

used for system modeling, simulation, and analysis, but it is
also a powerful tool for the real-time system development in

combination with automatic code generation technology [5].

Matlab/Simulink is used by control engineers to design
control algorithms by focusing on the functional

requirements [6]. In general, control engineers do not

consider how events are timed and how tasks are scheduled.

They usually assume equidistant sampling intervals and

negligible or constant control delays which are the latency

between the sampling of inputs to the controller and the

generation of outputs [7]. For example, Simulink determines

a fixed and variable time step that a simulation needs to task
in order to meet target accuracy requirements. The

simulation accuracy is related only to functional performance.

However, the performance of a control system is normally

affected by implementation software architecture such as the

task, operating system, and target execution platforms. These

factors are mostly related to how tasks are scheduled, which

include task execution delays, scheduling delays, and

network transmission delays. Therefore, it is necessary to

incorporate such temporal behavior into currently used
CACSD tools.

There have been several attempts to incorporate task

scheduling into Matlab/Simulink environments such as
TRUETIME and AIRES. TRUETIME is a toolbox for the

simulation of distributed real-time control systems and makes

it possible to simulate the temporal behavior of real-time

kernels executing controller tasks using S-functions provided

by MathWorks [7]. However, the TRUETIME toolset only

supports simulation and is not connected directly to

automatic code generation. In addition, TRUETIME does

not support all Simulink blocks, which restricts graphical
representations for the design of control algorithms. AIRES

is used as a co-simulation tool that is designed to model the

embedded software and the target execution platform, and to

perform real-time analysis to give the system designer early

feedback on system timing behavior [6]. However, real-time

specifications must be described using a meta-modeling tool

called Generic Modeling Environment (GME).

Figure 1(a) shows two types of simulations in a single
electronic control unit (ECU). Basically, Simulink considers

the execution time of a control algorithm as zero or simple
delay, as shown on the left. On the other hand, the control

software running on the target ECU has complex time delays

determined by the implementation platform such as the

scheduling policy, task characteristics and ECU performance.

The figure on the right shows an environment for the SILS-

based simulation of control algorithms. The control

algorithm consists of tasks, and each task is treated as a unit

of function, and simulated by a real-time scheduler.

In the case of a distributed control system, the control

performance deteriorates due to network-induced delays

which can vary widely according to the transmission time of

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10712 10.3182/20080706-5-KR-1001.3980

a message and the overhead time of transmission. Figure

1(b) shows differences between Simulink and the SILS

environment simulation with multiple nodes. SILS supports

the simulation of functions and event timing in network-

based control systems.

In this research, the SILS components with time attributes are
specified as tasks, task executions, real-time schedulers, and

real-time networks. The OSEK-OS is used as a real-time

scheduler of this research. CAN and LIN protocols are used

as real-time networks. Possible methods for realizing these
components in graphical block representations are

investigated with Matlab/Simulink. Additionally, in order to

construct a seamless development process from SILS to RCP,

the SILS block set is designed to support automatic code

generation.

2. SILS ENVIRONMENT

In order to consider time delays induced by real-time tasks,

schedulers, and networks, the SILS provides the following

design elements:

z Real-time scheduling kernel which is based on

OSEK-OS scheduler

z Task execution model which performs both

simulation and code generation

z Real-time network kernel commonly used in the

automotive industry

2.1 Modeling of real-time scheduler

Over the past decade, automotive manufacturers have

increased the deployment of embedded microcontrollers and

software to enhance the quality, the safety, and the fuel

efficiency of automobiles. They have applied software

architecture with a real-time operating system (RTOS) to

provide control of the overall system performance and to

improve reusability. In many cases, the RTOS introduces a

fixed priority scheduling algorithm to provide design

flexibility. OSEK-OS, which is a standard RTOS interface

for automotive electronics, also specifies this scheduling

policy.

The real-time scheduler of the SILS supports scheduling

policy of OSEK-OS which is fixed priority scheduling

algorithm.

2.2 OSEK-OS scheduler model

The fixed priority-based scheduling algorithm is used for

the scheduler model of OSEK-OS. The term ³priority-based

scheduling algorithm´ refers to a large class of scheduling

algorithms that never intentionally leave any resource idle [9].

The scheduling algorithm assigns a static and unique priority

to each task. A set of priorities for task scheduling is selected

to make a system schedulable and also to guarantee all

deadlines, considering the resource, precedence, and

synchronization requirements of all tasks.

This scheduling mechanism operates based on events. The

scheduler responds to a set of events, where time is simply

one particular type of event [8]. Each task in the system is

activated by the arrival of a triggering event, and is ready to

run. At any scheduling decision time, the task with the

highest priority is scheduled and executed on the available

processors. If the running task can be preempted, scheduling

(a)

(b)

Fig. 1. Comparison of conventional and SILS based control

algorithm simulation: (a) single-node and (b) multi-nodes

Fig. 2. State transition diagram of a task for fixed priority-

based scheduler

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10713

decisions are made whenever some task becomes ready for

execution or the executed task is completed. On the other

hand, if a nonpreemptable task is running, the scheduling

decision is only made when the task is terminated.

The task executed by the fixed priority algorithm has an

additional state: READY. A task is started either in the

SUSPENDED or READY state, depending on the

configuration of the task. The scheduler always assigns the

CPU time to the highest priority task which is in the READY

state at the scheduling decision time. The state of the task

changes from READY to RUNNING. If the task is

preemptable and higher priority tasks are in the READY state,

the original task is preempted, and resumed when all higher

priority tasks are completed. When the CPU time assigned to

the task in the RUNNING state is equal to its execution time,

it is suspended by the scheduling kernel.

The SILS considers two types of event triggers for the task

execution: EVENT and TIMER. EVENT is defined as an

immediately processed trigger source. It is usually applied to

synchronize tasks. A TIMER is triggered when the

corresponding timer of the scheduler reaches a preset time

value. It is used to schedule a periodically executing or

delayed task. The scheduling kernel establishes and monitors

the trigger of events and processes the execution and state

transition of tasks.

2.3 Task execution modeling

A task is a component independently executed by the real-

time kernel. Each task is assumed to take a specified nonzero

amount of time to execute. The properties of a task are

defined by a set of attributes which consists of preemptive,

priority, name and execution time. The execution time can be

constantly updated by the user during simulation. Other

attributes are normally kept constant. However, the

execution time can be changed by calls to kernel primitives

when the task is executing.

In the SILS, all data for control are communicated through

Simulink input and output ports. When a task is triggered,

the task computes output data using input data from the input

ports based on internal logic. After the task which is

executing uses the CPU time, the data produced is passed to

the output ports as soon as the task is triggered by the

scheduling kernel.

The execution of the task processed by a priority-based

scheduler can be preempted by higher priority tasks or

external interrupts. Design specifications such as precedence

relationships and synchronizations between tasks

intentionally allow task executions to be discontinued or

delayed. Furthermore, due to nonpreemptable or

noninterruptable constraints of the running task, the highest

priority task or interrupt service can be blocked (see Figure 3).

As the result, task execution is modeled as two

independently executed subsystems (Figure 4). The first

subsystem, called a computation subsystem, is executed

when a task is invoked. It calculates output data, which is not

available until the task is terminated. In order to update

output ports, the second subsystem, the output subsystem, is

invoked. The invocation of this subsystem is implemented

using a function-call trigger provided from Simulink. A

function-call subsystem is converted into C functions during

automatic code generation [10].

2.4 Modeling a real-time network

In networked control systems, various delays of variable

length occur from sharing a common network medium.

These delays are called network-induced delays [11].

Network-induced delays can vary widely according to the

transmission time of messages and the overhead time, both of

which are dependent on the applied network protocol. The

SILS and RCP environments support the simulation and

realization of network-based control systems for Controller

Area Network (CAN) and Local Interconnect Network (LIN)

which are most popularly applied in the automotive industry.

2.5 CAN protocol modeling

CAN is referred to as a multi-master network, since all

network nodes can act as a master or a slave. During one

message frame, only one node acts as a master and the other

nodes act as slaves. The multi-master capability of CAN

uses a carrier sense multiple access and collision detection

(CSMA/CD) arbitration protocol that determines which node

sends its message frame to the bus via bitwise arbitration [12].

Each message has a unique identifier represented as an 11-

bit number. The identifier is used for two purposes: message

filtering upon reception and priority assigning of a message

[13].

1) A CAN Controller in each node selects the highest

priority message among messages ready to be sent, and

moves the message into the assigned transmit buffer to

be sent onto the CAN bus.

2) The CAN bus schedules the messages in all transmission

buffers in a priority-driven manner. The highest priority

Fig. 3. Task execution model for priority based scheduling

Fig. 4. Task execution Simulink block representation

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10714

message is transmitted to CAN Controllers. The

transmission delay is also defined as in equation (2).

3) The message filtered by the CAN Controller is only

stored in the reception buffer.

A CAN message is able to hold up to 8 data bytes. For

each message, the total bit size of the message is determined

by adding 47 bits and stuff bits to the bit size of each

message data. The communication overhead of 47 bits

consists of the start of

frame (SOF), arbitration, remote transmission request (RTR),

control, cyclic redundant check (CRC), acknowledgment, end

of frame (EOF), and possible stuff bits. The maximum

number of stuff bits which can be inserted to synchronize

communication is defined by equation (1). Equation (2)

shows the maximum time (C) for CAN message

transmission [9].

max

34 8 1
()

4

s
Stuffbits

� �« »
 « »¬ ¼

 (1)

34 8 1
8 47

4
bit

s
C s W

§ ·� �« »
 � �¨ ¸« »¬ ¼© ¹

 (2)

where, s is size of data field and
bitW is the transmission

rate.

2.6 LIN protocol modeling

The LIN protocol has a single master with multiple slaves.

Therefore, a LIN network consists of one master task and

several slave tasks [15]. A master node contains the master

task as well as a slave task. All other nodes only contain a

slave task only. The master task decides when and which

frame shall be transferred on the bus. The slave tasks provide

the data transmitted by each frame.

The LIN protocol is designed to use a static cyclic

scheduling algorithm for transmitting header frames. The

message scheduling table is constructed based on all message

periods and transmission times. The header contains an

identifier which is uniquely assigned to each message. The

slave task designated to provide the response associated with

the identifier transmits the response frame. (see Figure 6)

1) The master task is periodically called by the scheduling

kernel, and transmits header frames based on the

schedule table. The transmitted header frame is passed

from the

LIN bus to slave tasks with a transmission delay

according to equation (3).

2) All slave tasks in nodes connected to the LIN bus decide

to send or receive the response frame associated with

the identifier in the received header frame.

3) The slave task designated by the identifier as the

transmitting node sends the response data onto the LIN

bus with a transmission delay according to equation (4).

Then, slave tasks in the receiving node copy the

response data to a message buffer for each task.

The transmission time of a header frame is calculated

using equation (3), which consists of the four time parameters

and the transmission rate (
bitW).

34header bit INTER SYNBRK SYNDEL IDT P P P PW � � � � (3)

where,

INTERP : Delay for preparing a header frame transmission

SYNBRKP : Additional time for synchronization of synch break field

SYNDELP : Additional time for synchronization of delimiter field

IDP : Delay for preparing identifier field

A response frame can transmit up to 8 bytes of data, and

contains one byte checksum field to verify the received data

on the slave tasks. The equation to calculate the transmission

time of a response frame is formulated with two time

Fig. 5. CAN communication modeling

Fig. 6. LIN communication modeling

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10715

parameters: transmission rate and data length (s) as follows:

10(1)response bit INFRAME INTERBYTET s P P sW � � � u (4)

where,

INFRAMEP : Inter-frame response space

INTERBYTEP : Inter-byte space

3. THE SILS AND RCP BLOCK-SET

Figure 7 shows the SILS block set which is designed using

Level-2 M-file and C-file S-functions provided by

Matlab/Simulink [10]. An S-function not only supports the

simulation of the custom code, but also automatically

generates the implementation code specified to a target

platform. The attributes configured in the SILS are followed

by RCP, so that the scheduling properties are maintained

after implementation. The real-time scheduling kernel during

the simulation phase is directly mapped to OSEK-OS

[16]. All designed Simulink blocks are compatible with the

RCP platform created during a previous study [17]. As a

result, control engineers can develop the control algorithms

and implement the controller to the target ECU in an identical

design environment.

4. CASE STUDY FOR THE SILS EVALUATION

Figure 8 shows the evaluation system diagram to assess the

feasibility of the proposed SILS environment. The

implementation code which is generated from the SILS/RCP

environment is effectively tested and verified by using PC-

based Hardware-in-the-Loop Simulation (HILS). The HILS

provides a test and evaluation environment regardless of the

modeling uncertainties, disturbances, and noises of real

systems. Therefore, the test result is mainly affected by the

control algorithm and implementation platform.

In this case, the control system is configured as a

distributed control system using smart sensors and smart

actuators, which exchange the control information through a

network bus. The main electronic control unit has three

control algorithms, which are independently executed, in

order to control three inverted pendulums (see Figure 9). The

angle of three pendulums and the position of three carts are

controlled by the horizontally concentrated force which is

calculated by LQR and PID control logics.

The priority based scheduler, OSEK-OS, and the network

bus, CAN, are configured as Table I and II. There exist two

tasks in each control loop. The first task handles the sensor

input and executes the state estimation, and the other task

generates the control output based on designed control

algorithms. All control information between ECU and smart

nodes are transferred in the form of network messages

through the CAN.

The integral of the absolute value of the input (IAI) instead

of the error is used for performance evaluation of the control

system [18]. The mathematical formula for the IAI is as

follows:

0
0

IAI ,
f

f

k
t

k
t

k k

F dt or F

 ¦³

(a)

(b)

(c)

Fig. 7. Simulink block-set: (a) RTOS, (b) CAN, and (c) LIN

Fig. 8. HILS system for SILS environment evaluation

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10716

where,
0 0()t k and ()f ft k are the initial and final times of

the evaluation period in continuous (discrete) time, and F is

the input force for the control of a inverted pendulum system.

We evaluate control performances according to the

assignment of priorities of ECU¶s tasks and the sampling

period of the smart sensors. Table I and II show the

configuration of ECU¶s tasks and CAN messages for the

simulation and the implementation. Figure 10(a) shows the

block diagram of the whole system which is formed by three

sensor nodes, three actuator nodes, the main ECU, the CAN

kernel, and three inverted pendulums. Figure 10(b) shows

block diagram in the main ECU including the scheduler

block, task blocks and CAN interface blocks. The simulation

model is constructed using the SILS block-set in Figure 7.

The identical Simulink model is used at the implementation

phase.

Figure 11(a) shows performance evaluation results of the

simulation and the implementation configured as Case 1 and

2 in table I. The evaluation systems are repeatedly simulated

and tested by changing the realization time of the

initialization tasks. Control inputs of Case 1 are smaller than

those of Case 2 for both the simulation and the

implementation. In all cases, at implementation, the

amplitude of control inputs is similar with the amplitude of

control inputs in the simulation. Additionally, in order to

analyze the effect of the sensing period at the sensor nodes,

the evaluation system is simulated with various sensing

periods: 2ms, 3ms, 4ms, and 6ms. Figure 11(b) shows that

the SILS simulation results are similar to the implementation

results for all tested sensing periods.

The results show that the proposed SILS environment

provides a realistic simulation result which is similar to the

implementation result. In the early design phase, control

system designers can evaluate the control performance by

considering temporal factors, such as task execution delay

and real-time operating system and real-time network.

5. CONCLUSION

In this paper, we have proposed a SILS environment of

specified graphical blocks such as tasks, task executions,

real-time scheduler (OSEK-OS scheduler), and In-vehicle

networks. In addition, in order to achieve a seamless

development process from SILS to RCP, the SILS block set

is designed to support automatic code generation in C codes

without tool changes and block modifications.

The control engineer can use the SILS environment to

evaluate the software-induced performance degradation of

the complex time-delayed system by the CPU and the

network during the simulation phase. Also, this tool can be

used by the software engineer to analyze the performance of

designed control systems by changing the software design

factors, such as real-time scheduling of the CPU and network,

task assignment in one node, and allocation in multiple nodes.

The SILS environment developed here will help bridge the

gap between control and software engineering in the design

and development processes.

ACKNOWLEDGMENTS

This work was supported by the Korea Science and

Engineering Foundation (KOSEF) through the National

Research Lab. Program funded by the Ministry of Science

and Technology (No. M10400000339-06J0000-33910).

REFERENCES

[1] W. Lee, S. Park, M. Sunwoo, "Towards a seamless
development process for automotive engine-control system",
Control Engineering Practice, Vol. 12, pp.977~986, 2004

[2] M. Shin, W. Lee, M. Sunwoo, "Implementation- conscious
Rapid Control Prototyping Platform for Advanced Model-

based Engine Control", SAE Congress paper, 2003-01-0355

TABLE II

CAN INFORMATION: 500KBPS

Message name ID
Data Length

[bytes]
Data Type

Period

[ms]

Cart1_pos_msg 1 8 Double 10

Pend1_ang_msg 2 8 Double 10

Cart1_input_msg 3 8 Double 10

Cart2_pos_msg 4 8 Double 10

Pend2_ang_msg 5 8 Double 10

Cart2_input_msg 6 8 Double 10

Cart3_pos_msg 7 8 Double 10

Pend3_ang_msg 8 8 Double 10

Cart3_input_msg 9 8 Double 10

TABLE I

TASK INFORMATION

Task name
Period

[ms]

exe. time

[ms]
Preemption

Priority

Case 1 Case 2

Pend1_In_T 10 0.7 yes 13 13

Pend1_Out_T 10 0.8 yes 8 12

Pend2_In_T 10 0.7 yes 12 11

Pend2_Out_T 10 0.8 yes 9 10

Pend3_In_T 10 0.7 yes 11 9

Pend3_Out_T 10 0.8 yes 10 8

Fig. 9. Configuration of the evaluation system with three

pendulums

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10717

[3] S. Toeppe, S. Ranville, D. Bostic, Y. Wang, "Practical

Validation of Model Based Code Generation for Automotive
Applications", IEEE, 1999

[4] G. Hodge, J. Ye, W. Stuart, "Multi-Target Modeling for
Embedded Software Development for Automotive
Applications", 2004 World Congress SAE International, 2004

[5] MathWorks, http://www.mathworks.com
[6] Z. Gu, S. Wang, J. Kim, K. Shin, "Integrated Modeling and

Analysis of Automotive Embedded control systems with Real-
Time Scheduling", SAE Congress paper, 2004-01-0279

[7] D. Henriksson, A. Cervin, K. Arzen, "TrueTime: Simulation of
Control Loops Under Shared Computer Resources", 15th IFAC
World Congress on Automatic Control, 2002

[8] T. Rolina, N. Tracey, ³:K\� 6ZLWFK� WR� DQ� 26(.� 5726� DQG�
How to $GGUHVV� WKH� $VVRFLDWHG� &KDOOHQJHV´, SAE Congress
paper, 2005-01-0312

[9] J. Liu, ³Real-Time Systems´, Prentice Hall, 2000
[10] MathWorks, Writing S-Functions Ver.4, 2004
[11] W. Kwon, S. Choi, ³ Real-Time Distributed Software-In-the-

Loop Simulation for Distributed Control Systems´, IEEE
International Symposium on Computer Aided Control System
Design, 1999

[12] T. Gerke, C, Schanze, ³Development and Verification of In-
Vehicle Networks in a Virtual Environment´, SAE Congress

paper, 2005-01-1534

[13] K. Tindell, A. Burns, "Guaranteeing message latencies on
control area network (CAN)", Technical report, Department of
computer science. University of York. England, 1994

[14] Freescale Semiconductor, http://www.freescale.com
[15] J. Youn, M. Shin, W. Lee, M. Sunwoo, "A Study on Timing

Model and Analysis of LIN Protocol", 2003 spring conference
proceeding of the KSAE, pp.952~957, 2003

[16] Motorola, ³OSEK/VDX Operating System Ver. 2.1´, 2000
[17] J. Ma, J. Youn, M. Shin, M. Sunwoo, "SILS/ RCP: Integrated

Model based System Development Tool for automotive
embedded control system design", 2004 spring conference
proceeding of the KSAE, pp.143~149, 2004

[18] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback
Control of Dynamic Systems, 3rd ed. Reading, MA: Addison-
Wesley, 1994.

(a) (b)

Fig. 10. Simulink models of the evaluation system: (a) System block diagram and (b) Block diagram in ECU

(a) (b)

Fig. 11. (a) Control performance versus priority assignment and (b) Control performance versus sampling period

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10718

