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Abstract: This paper presents the Matlab/Simulink-based Software-in-the-Loop Simulation (SILS) tool 

for OSEK-OS based ECU. The SILS tool has the capability for temporal and functional simulations of 
control systems.  The temporal behavior of a control system is mainly dependent on the implemented 

software and hardware such as the real-time operating system (OSEK-OS), the target CPU, and the 

communication protocol.  The SILS components with temporal attributes are specified as tasks, task 

executions, real-time schedulers (OSEK-OS scheduler), and real-time networks.  Methods to realize these 

components in graphical block representations are investigated with Matlab/Simulink.  Furthermore, in 

order to achieve a seamless development process from SILS to Rapid Control Prototyping (RCP), the SILS 

block set is designed to support automatic code generation in C codes without tool changes and block 

modifications. 

�
�

1. INTRODUCTION 

One of the goals in automotive design is the creation of a 

seamless development framework from Software-in-the-Loop 

Simulation (SILS) to Rapid Control Prototyping (RCP).  
Current computer-aided control system design (CACSD) 

tools are inadequate for the realization of a seamless process 

due to their inability for representing certain software 

architecture and considering temporal behavior. 

The use of CACSD software in control systems for 
supporting design frameworks has increased over the years 

[1][2][3][4].  Among these tools Matlab/Simulink has 

become a standard tool for modeling and off-line simulation 

in control system design. Matlab/Simulink is not only a tool 

used for system modeling, simulation, and analysis, but it is 
also a powerful tool for the real-time system development in 

combination with automatic code generation technology [5]. 

Matlab/Simulink is used by control engineers to design 
control algorithms by focusing on the functional 

requirements [6].  In general, control engineers do not 

consider how events are timed and how tasks are scheduled.  

They usually assume equidistant sampling intervals and 

negligible or constant control delays which are the latency 

between the sampling of inputs to the controller and the 

generation of outputs [7].  For example, Simulink determines 

a fixed and variable time step that a simulation needs to task 
in order to meet target accuracy requirements.  The 

simulation accuracy is related only to functional performance. 

However, the performance of a control system is normally 

affected by implementation software architecture such as the 

task, operating system, and target execution platforms.  These 

factors are mostly related to how tasks are scheduled, which 

include task execution delays, scheduling delays, and 

network transmission delays.  Therefore, it is necessary to 

incorporate such temporal behavior into currently used 
CACSD tools. 

There have been several attempts to incorporate task 

scheduling into Matlab/Simulink environments such as 
TRUETIME and AIRES.  TRUETIME is a toolbox for the 

simulation of distributed real-time control systems and makes 

it possible to simulate the temporal behavior of real-time 

kernels executing controller tasks using S-functions provided 

by MathWorks [7].  However, the TRUETIME toolset only 

supports simulation and is not connected directly to 

automatic code generation.  In addition, TRUETIME does 

not support all Simulink blocks, which restricts graphical 
representations for the design of control algorithms.  AIRES 

is used as a co-simulation tool that is designed to model the 

embedded  software and the target execution platform, and to 

perform real-time analysis to give the system designer early 

feedback on system timing behavior [6].  However, real-time 

specifications must be described using a meta-modeling tool 

called Generic Modeling Environment (GME). 

Figure 1(a) shows two types of simulations in a single 
electronic control unit (ECU).  Basically, Simulink considers 

the execution time of a control algorithm as zero or simple 
delay, as shown on the left.  On the other hand, the control 

software running on the target ECU has complex time delays 

determined by the implementation platform such as the 

scheduling policy, task characteristics and ECU performance.  

The figure on the right shows an environment for the SILS-

based simulation of control algorithms.  The control 

algorithm consists of tasks, and each task is treated as a unit 

of function, and simulated by a real-time scheduler. 

In the case of a distributed control system, the control 

performance deteriorates due to network-induced delays 

which can vary widely according to the transmission time of 
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a message and the overhead time of transmission.  Figure 

1(b) shows differences between Simulink and the SILS 

environment simulation with multiple nodes.  SILS supports 

the simulation of functions and event timing in network-

based control systems. 

In this research, the SILS components with time attributes are 
specified as tasks, task executions, real-time schedulers, and 

real-time networks.  The OSEK-OS is used as a real-time 

scheduler of this research. CAN and LIN protocols are used 

as real-time networks. Possible methods for realizing these 
components in graphical block representations are 

investigated with Matlab/Simulink.  Additionally, in order to 

construct a seamless development process from SILS to RCP, 

the SILS block set is designed to support automatic code 

generation. 

 

 

 

2. SILS ENVIRONMENT 

In order to consider time delays induced by real-time tasks, 

schedulers, and networks, the SILS provides the following 

design elements: 

z Real-time scheduling kernel which is based on 

OSEK-OS scheduler 

z Task execution model which performs both 

simulation and code generation 

z Real-time network kernel commonly used in the 

automotive industry 

2.1 Modeling of real-time scheduler 

Over the past decade, automotive manufacturers have 

increased the deployment of embedded microcontrollers and 

software to enhance the quality, the safety, and the fuel 

efficiency of automobiles.  They have applied software 

architecture with a real-time operating system (RTOS) to 

provide control of the overall system performance and to 

improve reusability.  In many cases, the RTOS introduces a 

fixed priority scheduling algorithm to provide design 

flexibility.  OSEK-OS, which is a standard RTOS interface 

for automotive electronics, also specifies this scheduling 

policy. 

The real-time scheduler of the SILS supports scheduling 

policy of OSEK-OS which is fixed priority scheduling 

algorithm. 

 

 

2.2 OSEK-OS scheduler model 

The fixed priority-based scheduling algorithm is used for 

the scheduler model of OSEK-OS. The term ³priority-based 

scheduling algorithm´ refers to a large class of scheduling 

algorithms that never intentionally leave any resource idle [9].  

The scheduling algorithm assigns a static and unique priority 

to each task.  A set of priorities for task scheduling is selected 

to make a system schedulable and also to guarantee all 

deadlines, considering the resource, precedence, and 

synchronization requirements of all tasks. 

This scheduling mechanism operates based on events.  The 

scheduler responds to a set of events, where time is simply 

one particular type of event [8].  Each task in the system is 

activated by the arrival of a triggering event, and is ready to 

run.  At any scheduling decision time, the task with the 

highest priority is scheduled and executed on the available 

processors.  If the running task can be preempted, scheduling 

 
(a) 

 

 

 
(b) 

Fig. 1.  Comparison of conventional and SILS based control 

algorithm simulation: (a) single-node and (b) multi-nodes 

 
 

Fig. 2. State transition diagram of a task for fixed priority-

based scheduler 
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decisions are made whenever some task becomes ready for 

execution or the executed task is completed.  On the other 

hand, if a nonpreemptable task is running, the scheduling 

decision is only made when the task is terminated. 

The task executed by the fixed priority algorithm has an 

additional state: READY.  A task is started either in the 

SUSPENDED or READY state, depending on the 

configuration of the task.  The scheduler always assigns the 

CPU time to the highest priority task which is in the READY 

state at the scheduling decision time.  The state of the task 

changes from READY to RUNNING.  If the task is 

preemptable and higher priority tasks are in the READY state, 

the original task is preempted, and resumed when all higher 

priority tasks are completed.  When the CPU time assigned to 

the task in the RUNNING state is equal to its execution time, 

it is suspended by the scheduling kernel. 

The SILS considers two types of event triggers for the task 

execution: EVENT and TIMER.  EVENT is defined as an 

immediately processed trigger source.  It is usually applied to 

synchronize tasks.  A TIMER is triggered when the 

corresponding timer of the scheduler reaches a preset time 

value.  It is used to schedule a periodically executing or 

delayed task.  The scheduling kernel establishes and monitors 

the trigger of events and processes the execution and state 

transition of tasks. 

 

2.3 Task execution modeling 

A task is a component independently executed by the real-

time kernel.  Each task is assumed to take a specified nonzero 

amount of time to execute.  The properties of a task are 

defined by a set of attributes which consists of preemptive, 

priority, name and execution time. The execution time can be 

constantly updated by the user during simulation.  Other 

attributes are normally kept constant.  However, the 

execution time can be changed by calls to kernel primitives 

when the task is executing. 

In the SILS, all data for control are communicated through 

Simulink input and output ports.  When a task is triggered, 

the task computes output data using input data from the input 

ports based on internal logic.  After the task which is 

executing uses the CPU time, the data produced is passed to 

the output ports as soon as the task is triggered by the 

scheduling kernel. 

The execution of the task processed by a priority-based 

scheduler can be preempted by higher priority tasks or 

external interrupts. Design specifications such as precedence 

relationships and synchronizations between tasks 

intentionally allow task executions to be discontinued or 

delayed. Furthermore, due to nonpreemptable or 

noninterruptable constraints of the running task, the highest 

priority task or interrupt service can be blocked (see Figure 3). 

As the result, task execution is modeled as two 

independently executed subsystems (Figure 4).  The first 

subsystem, called a computation subsystem, is executed 

when a task is invoked.  It calculates output data, which is not 

available until the task is terminated.  In order to update 

output ports, the second subsystem, the output subsystem, is 

invoked.  The invocation of this subsystem is implemented 

using a function-call trigger provided from Simulink.  A 

function-call subsystem is converted into C functions during 

automatic code generation [10]. 

 

2.4 Modeling a real-time network 

In networked control systems, various delays of variable 

length occur from sharing a common network medium.  

These delays are called network-induced delays [11].  

Network-induced delays can vary widely according to the 

transmission time of messages and the overhead time, both of 

which are dependent on the applied network protocol.  The 

SILS and RCP environments support the simulation and 

realization of network-based control systems for Controller 

Area Network (CAN) and Local Interconnect Network (LIN) 

which are most popularly applied in the automotive industry. 

 

2.5 CAN protocol modeling 

CAN is referred to as a multi-master network, since all 

network nodes can act as a master or a slave.  During one 

message frame, only one node acts as a master and the other 

nodes act as slaves.  The multi-master capability of CAN 

uses a carrier sense multiple access and collision detection 

(CSMA/CD) arbitration protocol that determines which node 

sends its message frame to the bus via bitwise arbitration [12].   

Each message has a unique identifier represented as an 11-

bit number.  The identifier is used for two purposes: message 

filtering upon reception and priority assigning of a message 

[13]. 

 

1) A CAN Controller in each node selects the highest 

priority message among messages ready to be sent, and 

moves the message into the assigned transmit buffer to 

be sent onto the CAN bus. 

2) The CAN bus schedules the messages in all transmission 

buffers in a priority-driven manner.  The highest priority 

 

 

Fig. 3. Task execution model for priority based scheduling 

 

 
Fig. 4. Task execution Simulink block representation 
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message is transmitted to CAN Controllers.  The 

transmission delay is also defined as in equation (2). 

3) The message filtered by the CAN Controller is only 

stored in the reception buffer. 
 

A CAN message is able to hold up to 8 data bytes.  For 

each message, the total bit size of the message is determined 

by adding 47 bits and stuff bits to the bit size of each 

message data.  The communication overhead of 47 bits 

consists of the start of  

frame (SOF), arbitration, remote transmission request (RTR), 

control, cyclic redundant check (CRC), acknowledgment, end 

of frame (EOF), and possible stuff bits.  The maximum 

number of stuff bits which can be inserted to synchronize 

communication is defined by equation (1).  Equation (2) 

shows the maximum time ( C ) for CAN message 

transmission [9]. 

max

34 8 1
( )

4

s
Stuffbits

� �« »
 « »¬ ¼

                                (1) 

34 8 1
8 47

4
bit
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C s W

§ ·� �« »
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                           (2) 

where, s  is size of data field and 
bitW  is the transmission 

rate. 

 

2.6 LIN protocol modeling 

The LIN protocol has a single master with multiple slaves.  

Therefore, a LIN network consists of one master task and 

several slave tasks [15].  A master node contains the master 

task as well as a slave task.  All other nodes only contain a 

slave task only.  The master task decides when and which 

frame shall be transferred on the bus.  The slave tasks provide 

the data transmitted by each frame.   

The LIN protocol is designed to use a static cyclic 

scheduling algorithm for transmitting header frames.  The 

message scheduling table is constructed based on all message 

periods and transmission times.  The header contains an 

identifier which is uniquely assigned to each message.  The 

slave task designated to provide the response associated with 

the identifier transmits the response frame. (see Figure 6) 

 

1) The master task is periodically called by the scheduling 

kernel, and transmits header frames based on the 

schedule table.  The transmitted header frame is passed 

from the  

LIN bus to slave tasks with a transmission delay 

according to equation (3). 

2) All slave tasks in nodes connected to the LIN bus decide 

to send or receive the response frame associated with 

the identifier in the received header frame. 

3) The slave task designated by the identifier as the 

transmitting node sends the response data onto the LIN 

bus with a transmission delay according to equation (4). 

Then, slave tasks in the receiving node copy the 

response data to a message buffer for each task. 

  
 

The transmission time of a header frame is calculated 

using equation (3), which consists of the four time parameters 

and the transmission rate (
bitW ). 

34header bit INTER SYNBRK SYNDEL IDT P P P PW � � � �                   (3) 

where,  

INTERP : Delay for preparing a header frame transmission  

SYNBRKP : Additional time for synchronization of synch break field 

SYNDELP : Additional time for synchronization of delimiter field 

IDP : Delay for preparing identifier field 

 

A response frame can transmit up to 8 bytes of data, and 

contains one byte checksum field to verify the received data 

on the slave tasks.  The equation to calculate the transmission 

time of a response frame is formulated with two time 

 

 

Fig. 5. CAN communication modeling 

 

Fig. 6. LIN communication modeling  
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parameters: transmission rate and data length ( s ) as follows: 

 

10( 1)response bit INFRAME INTERBYTET s P P sW � � � u                     (4) 

where, 

INFRAMEP : Inter-frame response space 

INTERBYTEP : Inter-byte space  

 

3. THE SILS AND RCP BLOCK-SET 

Figure 7 shows the SILS block set which is designed using 

Level-2 M-file and C-file S-functions provided by 

Matlab/Simulink [10].  An S-function not only supports the 

simulation of the custom code, but also automatically 

generates the implementation code specified to a target 

platform.  The attributes configured in the SILS are followed 

by RCP, so that the scheduling properties are maintained 

after implementation.  The real-time scheduling kernel during 

the simulation phase is directly mapped to OSEK-OS 

[16].  All designed Simulink blocks are compatible with the 

RCP platform created during a previous study [17].  As a 

result, control engineers can develop the control algorithms 

and implement the controller to the target ECU in an identical 

design environment.  

 

 

 

4. CASE STUDY FOR THE SILS EVALUATION  

Figure 8 shows the evaluation system diagram to assess the 

feasibility of the proposed SILS environment.  The 

implementation code which is generated from the SILS/RCP 

environment is effectively tested and verified by using PC-

based Hardware-in-the-Loop Simulation (HILS).  The HILS 

provides a test and evaluation environment regardless of the 

modeling uncertainties, disturbances, and noises of real 

systems.  Therefore, the test result is mainly affected by the 

control algorithm and implementation platform.  

In this case, the control system is configured as a 

distributed control system using smart sensors and smart 

actuators, which exchange the control information through a 

network bus.  The main electronic control unit has three 

control algorithms, which are independently executed, in 

order to control three inverted pendulums (see Figure 9).  The 

angle of three pendulums and the position of three carts are 

controlled by the horizontally concentrated force which is 

calculated by LQR and PID control logics. 

The priority based scheduler, OSEK-OS, and the network 

bus, CAN, are configured as Table I and II.  There exist two 

tasks in each control loop.  The first task handles the sensor 

input and executes the state estimation, and the other task 

generates the control output based on designed control 

algorithms.  All control information between ECU and smart 

nodes are transferred in the form of network messages 

through the CAN.  

The integral of the absolute value of the input (IAI) instead 

of the error is used for performance evaluation of the control 

system [18].  The mathematical formula for the IAI is as 

follows: 

0
0

IAI ,
f

f

k
t

k
t

k k

F dt or F
 

 ¦³  

 
(a) 

 

 

 
(b) 

 

 

(c) 

 

Fig. 7. Simulink block-set: (a) RTOS, (b) CAN, and (c) LIN 

 

Fig. 8. HILS system for SILS environment evaluation 
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where, 
0 0( )t k  and ( )f ft k  are the initial and final times of 

the evaluation period in continuous (discrete) time, and F  is 

the input force for the control of a inverted pendulum system.   

We evaluate control performances according to the 

assignment of priorities of ECU¶s tasks and the sampling 

period of the smart sensors. Table I and II show the 

configuration of ECU¶s tasks and CAN messages for the 

simulation and the implementation.  Figure 10(a) shows the 

block diagram of the whole system which is formed by three 

sensor nodes, three actuator nodes, the main ECU, the CAN 

kernel, and three inverted pendulums.  Figure 10(b) shows 

block diagram in the main ECU including the scheduler 

block, task blocks and CAN interface blocks.  The simulation 

model is constructed using the SILS block-set in Figure 7.  

The identical Simulink model is used at the implementation 

phase. 

 

Figure 11(a) shows performance evaluation results of the 

simulation and the implementation configured as Case 1 and 

2 in table I. The evaluation systems are repeatedly simulated 

and tested by changing the realization time of the 

initialization tasks. Control inputs of Case 1 are smaller than 

those of Case 2 for both the simulation and the 

implementation.  In all cases, at implementation, the 

amplitude of control inputs is similar with the amplitude of 

control inputs in the simulation.  Additionally, in order to 

analyze the effect of the sensing period at the sensor nodes, 

the evaluation system is simulated with various sensing 

periods: 2ms, 3ms, 4ms, and 6ms.  Figure 11(b) shows that 

the SILS simulation results are similar to the implementation 

results for all tested sensing periods. 

The results show that the proposed SILS environment 

provides a realistic simulation result which is similar to the 

implementation result.  In the early design phase, control 

system designers can evaluate the control performance by 

considering temporal factors, such as task execution delay 

and real-time operating system and real-time network.  

 

5. CONCLUSION 

In this paper, we have proposed a SILS environment of 

specified graphical blocks such as tasks, task executions, 

real-time scheduler (OSEK-OS scheduler), and In-vehicle 

networks.  In addition, in order to achieve a seamless 

development process from SILS to RCP, the SILS block set 

is designed to support automatic code generation in C codes 

without tool changes and block modifications. 

The control engineer can use the SILS environment to 

evaluate the software-induced performance degradation of 

the complex time-delayed system by the CPU and the 

network during the simulation phase.  Also, this tool can be 

used by the software engineer to analyze the performance of 

designed control systems by changing the software design 

factors, such as real-time scheduling of the CPU and network, 

task assignment in one node, and allocation in multiple nodes.  

The SILS environment developed here will help bridge the 

gap between control and software engineering in the design 

and development processes. 
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(a)          (b) 

Fig. 10. Simulink models of the evaluation system: (a) System block diagram and  (b) Block diagram in ECU 

 

                  

(a)         (b) 

Fig. 11. (a) Control performance versus priority assignment and (b) Control performance versus sampling period 
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