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Abstract: This paper presents a new method to perform fault diagnosis for data-correlation
based process monitoring. As alternative to the traditional contribution plot method,
reconstruction-based contribution of fault detection indices is proposed. The monitored indices
are SPE, T 2 and a combined index ϕ. The lack of diagnosability of traditional contributions is
analyzed for the case of single sensor faults with large fault magnitudes, whereas for the same
case the proposed reconstruction-based contributions guarantee correct diagnosis. Monte Carlo
simulation results are provided for the case of modest fault magnitudes by randomly assigning
fault sensors and fault magnitudes.
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1. INTRODUCTION

Multivariate statistical methods such as principal com-
ponent analysis (PCA) have been successfully applied to
the monitoring of industrial processes (Nomikos and Mac-
Gregor [1995]; Wise and Gallagher [1996]). While much
work has been reported in fault detection using data-
correlation based models, only a few methods are available
for fault diagnosis. As an early and popular method, con-
tribution plots are used to diagnose the cause of a fault
by determining the contribution of each variable to the
fault detection statistics calculated (Miller et al. [1993],
Nomikos and MacGregor [1995], Westerhuis et al. [2000]).
Several approaches have been made for defining variable
contributions (Nomikos [1997]; Wise et al. [2006]; Qin
et al. [2001]; Cherry and Qin [2006]; Westerhuis et al.
[2000]). Some of the approaches are complete partitions
of the indices, some others involve several forms through
approximations. Although the contribution plot approach
is popular and has been adopted by many authors as
the “default” method, there has been no rigorous analysis
of diagnosability or guarantee of correct diagnosis in the
literature. There are, however, reports that contribution
plots involve fault “smearing” that can lead to misdiag-
nosis (Westerhuis et al. [2000]; Qin [2003]). The objective
of this work is to propose a new method for contribution
analysis based on the reconstruction of the fault detec-
tion index along the direction of a variable. In addition,
a diagnosability analysis of traditional contributions and
reconstruction-based contributions is performed.

2. STATISTICAL PROCESS MONITORING

2.1 Notation

A sample vector of n variables is denoted as x ∈ <n. If we
assume that there are m samples, we can construct a data

matrix X ∈ <m×n in which each row represents a sample.
The data matrix is constructed as follows,

X =


xT (1)
xT (2)

...
xT (m)

 (1)

The sample mean and covariance of the variables are
calculated from the data matrix X and used to scale the
data to zero mean and unit variance. The covariance of x
is approximated by the sample covariance matrix

S ' 1
m− 1

XTX (2)

Principal component analysis (PCA) performs eigende-
composition of the covariance matrix to obtain the prin-
cipal and residual loadings, P ∈ <n×l and P̃ ∈ <n×(n−l),
where l is the number of principal components (PCs)
retained in the model.

S = P̄Λ̄P̄T =
[
P P̃

] [Λ 0
0 Λ̃

] [
P P̃

]T
= PΛPT + P̃Λ̃P̃T (3)

The diagonal matrix Λ contains the principal eigenvalues
and the diagonal matrix Λ̃ contains the residual eigenval-
ues. It should be noticed that P and P̃ are orthonormal.

A measurement x can be decomposed as
x = x̂ + x̃ (4)

where

t = PTx ∈ <l (5)

x̂ = PPTx = Pt (6)
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are the scores and the projection to the PCS, respectively.
The matrix PPT is the projection matrix of the PCS and
will be denoted as C. The RS projection matrix will be
denoted as C̃ and the projection of x to the RS is defined
as

x̃ = P̃P̃Tx = C̃x (7)

2.2 Fault Detection Indices

Statistical process monitoring makes use of statistical
indices for fault detection. Qin [2003] summarizes five fault
detection indices; among them, the most popular are SPE,
T 2 and a combination of the two.

Squared prediction error, SPE The SPE index is de-
fined as the squared norm of the residual vector x̃.

SPE ≡ ‖x̃‖2 = xT P̃P̃Tx = xT C̃x (8)

with a control limit δ2 as

δ2 = gSPEχ2
α

(
hSPE

)
(9)

with (1− α)× 100% confidence level and

gSPE =
θ2
θ1

(10)

hSPE =
θ21
θ2

(11)

where θ1 =
∑n
i=l+1 λi, θ2 =

∑n
i=l+1 λ

2
i , and λi is the ith

eigenvalue of the covariance S.

Hotelling’s T 2 statistic The variation of a process in the
PCS is measured by the T 2 index and it is defined as

T 2 = tTΛ−1t = xTPΛ−1PTx = xTDx (12)

where D = PΛ−1PT is positive semidefinite. The process
is normal if

T 2 ≤ τ2 (13)

and the control limit τ2 is

τ2 = χ2
α (l) (14)

with confidence level (1− α)× 100%.

Combined index ϕ The combined index by Yue and Qin
[2001] combines the SPE and T 2 indices into one single
index as follows

ϕ =
SPE

δ2
+
T 2

τ2
= xTΦx (15)

where

Φ =
C̃
δ2

+
D
τ2

(16)

The process is considered normal if ϕ ≤ ζ2, where the
control limit ζ2 is

ζ2 = gϕχ2
α (hϕ) (17)

where

gϕ =
(
l

τ4
+
θ2
δ4

)
/

(
l

τ2
+
θ1
δ2

)
(18)

hϕ =
(
l

τ2
+
θ1
δ2

)2

/

(
l

τ4
+
θ2
δ4

)
(19)

with (1− α)× 100% confidence level.

2.3 Fault diagnosis by contribution plots

A fault is detected after one or more fault detection indices
exceed the control limits. Contribution plots are based
on the idea that the variables with the largest contri-
butions to the fault detection index are most likely the
faulty variables. The contributions plots are constructed
by determining the contribution of each variable to the
fault detection index calculated. In order to calculate these
contributions, first we have to notice that the expressions
of the fault detection indices given by Equations 8, 12 and
15 have the general quadratic form

Index(x) = xTMx = ‖x‖2M (20)

where M is given in Table 1 for each index.

Table 1. Values of M

Index M

SPE C̃
T 2 D
ϕ Φ

Index(x) can be expressed as

Index(x) = xTMx = ‖M 1
2 x‖2

=
n∑
i=1

(
ξTi M

1
2 x
)2

=
n∑
i=1

cIndexi (21)

where

cIndexi =
(
ξTi M

1
2 x
)2

(22)

is the contribution of variable xi to Index(x). Here ξi is
the ith column of the identity matrix and the direction of
xi; for example, in a system with five sensors, the direction
of sensor x3 is

ξ3 = [0 0 1 0 0]T (23)

SPE contribution The variable contributions for the
SPE index are obtained by substitution of M = C̃ into
Equation 22

cSPEi =
(
ξTi C̃x

)2

= x̃2
i (24)

which is the definition given by Miller et al. [1993].

T 2 contribution The variable contributions for the T 2

index are obtained by substitution of M = D into
Equation 22

cT
2

i =
(
ξTi D

1
2 x
)2

(25)

which is the definition proposed by Wise et al. [2006].
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ϕ contribution The variable contributions for the ϕ in-
dex are obtained by substitution of M = Φ into Equation
22

cϕi =
(
ξTi Φ

1
2 x
)2

(26)

Although there are other definitions for the variable con-
tributions of the T 2 and ϕ indices, such definitions involve
several forms through approximations (Nomikos [1997];
Qin et al. [2001]; Cherry and Qin [2006]). However, for
all fault detection indices there are two common problems
with the contribution plots.

i. When there is no fault, these contributions in Equa-
tions 24, 25 and 26 are uneven across variables. There-
fore, a fault in a normally small-contributing variable
may not have the largest contribution than other
variables unless the fault magnitude is very large.
This can be a source of misdiagnosis.

ii. As will be analyzed in Section 4 of this paper, these
definitions of contributions can lead to misdiagnosis
regardless of the fault magnitude even if a fault
happens only to a single variable.

These defective characteristics of the existing contribution
plots lead us to explore alternative methods for contribu-
tion analysis, which will be given in the next section.

3. CONTRIBUTION BY RECONSTRUCTION

The reconstruction of a fault detection index along a
variable direction minimizes the effect of such variable over
the detection index (Dunia and Qin [1998]). We can use
the amount of reconstruction along a variable direction
as an amount of contribution of the variable to the fault
detection index that is reconstructed. Hence, this amount
of reconstruction will be designated as the reconstruction-
based contribution (RBC) of this variable to the fault
detection index.

3.1 Reconstruction-based contribution

The reconstructed vector along direction ξi is
zi = x− ξifi (27)

and the fault detection index of the reconstructed mea-
surement is

Index(zi) = zTi Mzi = ‖zi‖2M (28)

= ‖x− ξifi‖2M (29)

The task of reconstruction is to find a value of fi such that
Index(zi) is minimized. This value of fi is found to be

fi =
(
ξTi Mξi

)−1
ξTi Mx (30)

The reconstruction-based contribution of variable xi to the
fault detection index, RBCIndexi , can be calculated from
Equations 29 and 30 as

RBCIndexi = ‖ξifi‖2M = ‖ξi
(
ξTi Mξi

)−1
ξTi Mx‖2M

= xTMξi
(
ξTi Mξi

)−1
ξTi Mx (31)

Although the RBC approach is defined by reconstruction
along each variable, the diagnosis power of RBC is not

limited to single-variable faults. It is to be used exactly
like the traditional contributions in Equations 24, 25 and
26. Furthermore, ξi direction in the above derivation does
not have to be a sensor direction as in Equation 23; it
can be an arbitrary process fault direction. In addition,
ξi does not have to be a vector; it can be a column-like
matrix representing a multi-dimensional fault or multiple
sensor faults. Therefore, RBC is more general than the
conventional contribution plots.

3.2 RBC of SPE index

RBCSPEi is obtained from Equation 31 using M = C̃

RBCSPEi = xT C̃ξi
(
ξTi C̃ξi

)−1

ξTi C̃x =

(
ξTi C̃x

)2

c̃ii
(32)

where c̃ii = ξTi C̃ξi is the ith diagonal element of C̃.

3.3 RBC for the T 2 and ϕ indices

RBCT
2

i can be found by substitution of M = D in
Equation 31,

RBCT
2

i = xTDξid−1
ii ξ

T
i Dx =

(
ξTi Dx

)2
dii

(33)

where dii is the ith diagonal element of D.

Regarding the ϕ index, RBCϕi is calculated by substitu-
tion of M = Φ into Equation 31, which leads to

RBCϕi = xTΦξi
(
ξTi Φξi

)−1
ξTi Φx =

(
ξTi Φx

)2
φii

(34)

where φii is the ith diagonal element of Φ.

3.4 Control limits of reconstruction-based contributions

If there are no faults, the control limits for the RBC’s
of the three indices can be derived from Equation 31
applying the results of Box [1954]. These control limits,
with (1− α)× 100% confidence level, are

γ2
(Index,i) = gIndexi χ2

α

(
hIndexi

)
(35)

where

gIndexi =
ξTi MSMξi
ξTi Mξi

(36)

and

hIndexi = 1 (37)

Unfortunately, these control limits cannot be used to iden-
tify which variable is the cause of the fault due to the effect
of smearing in these contributions. In the next section
we show that the effect of smearing exists even if the
fault sample is only in a single sensor direction. Therefore,
fault diagnosis can only be based on the magnitude of
contributions.
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4. DIAGNOSABILITY OF TRADITIONAL AND RBC
CONTRIBUTIONS

Contribution analysis has been used for fault diagnosis for
years, but there is no fundamental analysis on the con-
ditions of correct fault identification using contributions.
Westerhuis et al. [2000], for example, discuss that a fault
in one variable smears to contributions of other variables
in traditional contribution plots. In this section we show
that RBC’s also have smearing. However, we show that
RBC’s can always give correct fault diagnosis, while the
traditional contributions cannot guarantee correct diagno-
sis even if the fault measurement is only in a single variable
direction.
When there is a fault in a variable direction, the fault
measurement can be represented as x = x∗ + ξjf , where
x∗ is the fault-free part of the measurement and ξjf is
the faulty part, which is composed of the fault direction
ξj , and the magnitude of the fault f . In the simple case
where x is exactly in the ξj direction we have

x = ξjf (38)

We are concerned about whether or not the effect of a fault
in Variable j is smeared into the contribution of Variable
i and, if there is smearing, we want to know if cSPEj has
the largest of the contributions.

4.1 Fault smearing and diagnosability of SPE contributions

The SPE contributions of a fault sample of the form in
Equation 38 are

cSPEi =
(
ξTi C̃x

)2

=
[
ξTi C̃ (ξjf)

]2
= (c̃ijf)2

=
{
c̃2ijf

2 for i 6= j
c̃2jjf

2 for i = j
(39)

Similarly, the RBCSPEi values of this fault are

RBCSPEi = c̃−1
ii

(
ξTi C̃x

)2

= c̃−1
ii

[
ξTi C̃ (ξjf)

]2
=
(
c̃
− 1

2
ii c̃ijf

)2

=
{
c̃−1
ii c̃

2
ijf

2 for i 6= j
c̃jjf

2 for i = j
(40)

Therefore, the effect of a fault in Variable j is smeared into
the traditional contributions and RBC values of Variable
i. A natural question is whether or not the smearing leads
to misdiagnosis by cSPEi or RBCSPEi . This is, we want to
know if the contribution plots will make cSPEj the largest.
Correct diagnosis using cSPEi is guaranteed only if

c̃2jj ≥ c̃2ij (41)

and that using RBCSPEi is guaranteed only if

c̃jj ≥ c̃−1
ii c̃

2
ij (42)

The next theorem gives the answers.
Theorem 1. Even if a fault sample x coincides with the jth
variable direction ξj , there is no guarantee that cSPEj ≥
cSPEi for i 6= j, but we always have RBCSPEj ≥ RBCSPEi
for i 6= j.

The proof of this theorem is given in Appendix A. This
theorem raises a serious question about the possibility of
misdiagnosis using traditional contribution plots.

To give an example of misdiagnosis using cSPEi consider
the case of three variables and the residual loadings p̃ =
[p̃1 p̃2 p̃3]T . Since C̃ = p̃p̃T we have c̃2ij = p̃2

i p̃
2
j . Assume

|p̃1| is larger than |p̃2| and |p̃3| without loss of generality.
If the fault is in Variable j = 3, the contributions to SPE
are[

cSPE1 cSPE2 cSPE3

]
=
[
p̃2
1p̃

2
3 p̃2

2p̃
2
3 p̃2

3p̃
2
3

]
f2 (43)

The contribution of Variable 1, cSPE1 , is the largest even
though the fault is in Variable 3 direction.

4.2 Fault smearing and diagnosability of T 2 contributions

The T 2 contributions of a fault sample of the form in
Equation 38 are

cT
2

i =
(
ξTi D

1
2 x
)2

=
[
ξTi D

1
2 (ξjf)

]2
=
(

[D
1
2 ]ijf

)2

=

 [D
1
2 ]2ijf

2 for i 6= j[
D

1
2

]2
jj
f2 for i = j

(44)

where [D
1
2 ]ij is the ijth element of the square root of D.

The RBCT
2

i values of the fault sample are

RBCT
2

i = d−1
ii

(
ξTi Dx

)2
=
[
d
− 1

2
ii ξTi D (ξjf)

]2
=
[
d
− 1

2
ii dijf

]2
=
{
d−1
ii d

2
ijf

2 for i 6= j
djjf

2 for i = j
(45)

Similar to the SPE index, there is smearing of a fault
in Variable j into Variable i and it is desirable to know
whether or not the smearing effect may lead to misdiag-
nosis. Correct diagnosis for cT

2

i is guaranteed only if

[D
1
2 ]2jj ≥ [D

1
2 ]2ij (46)

and that for RBCT
2

i is guaranteed only if

djj ≥ d−1
ii d

2
ij (47)

The following theorem guarantees correct diagnosis using
RBCT

2

i but not the traditional contribution cT
2

i .
Theorem 2. Even if a fault sample x coincides with the jth

variable direction ξj , there is no guarantee that cT
2

j ≥ cT
2

i

for i 6= j, but we always have RBCT
2

j ≥ RBCT
2

i for i 6= j.

The proof of this theorem is given in Appendix B.

4.3 Fault smearing and diagnosability of ϕ contributions

For the case of ϕ , the variable contributions of a fault
sample of the form in Equation 38 are
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cϕi =
(
ξTi Φ

1
2 x
)2

=
(
ξTi Φ

1
2 ξjf

)2

=
(

[Φ
1
2 ]ijf

)2

=

 [Φ
1
2 ]2ijf

2 for i 6= j[
Φ

1
2

]2
jj
f2 for i = j

(48)

The term [Φ
1
2 ]ij is the ijth element of the squared root of

matrix Φ.

The RBCϕi values of the fault measurement can be found
in Equation 34 as

RBCϕi = φ−1
ii

(
ξTi Φx

)2
=
[
φ
− 1

2
ii ξTi Φ (ξjf)

]2
=
[
φ
− 1

2
ii φijf

]2
=
{
φ−1
ii φ

2
ijf

2 for i 6= j
φjjf

2 for i = j
(49)

Similar to the SPE and T 2 indices, there is a smearing
effect of a fault in Variable j into the values of cϕi and
RBCϕi . We can guarantee correct diagnosis for cϕj only if

[Φ
1
2 ]2jj ≥ [Φ

1
2 ]2ij (50)

and for RBCϕj only if

φjj ≥ φ−1
ii φ

2
ij (51)

The following theorem guarantees correct diagnosis using
RBCϕi but not the traditional contributions cϕi .
Theorem 3. Even if a fault sample x coincides with the jth
variable direction ξj , there is no guarantee that cϕj ≥ cϕi
for i 6= j, but we always have RBCϕj > RBCϕi for i 6= j.

The proof of this theorem is given in Appendix C.

In summary, for the simple case of a sensor fault, RBC
methods guarantee correct fault diagnosis, but the tradi-
tional contribution approaches do not guarantee it. The
case depicted in Equation 38 is also the case of a very
large fault magnitude which makes the normal portion x∗
negligible. For modest fault magnitude the randomness in
x∗ will likely affect the diagnosis results, which will be
studied next by simulation.

5. SIMULATION STUDY

The purpose of this example is to compare the rate of de-
tection given by each fault detection index by Monte-Carlo
simulation. In addition, the rate of correct fault diagnosis
by the contribution approaches cIndexi and RBCIndexi will
be determined given that a fault is detected using one of
the fault detection indices. The process model to be used
is
x1

x2

x3

x4

x5

x6

 =


−0.2310 −0.0816 −0.2662
−0.3241 0.7055 −0.2158
−0.217 −0.3056 −0.5207
−0.4089 −0.3442 −0.4501
−0.6408 0.3102 0.2372
−0.4655 −0.433 0.5938


[
t1
t2
t3

]
+ noise(52)

where t1, t2 and t3 are zero-mean random variables with
standard deviations of 1, 0.8 and 0.6, respectively. The

noise included in the process is zero-mean with standard
deviation of 0.2 and is normally distributed. In order to
build the model, 1000 samples are generated. The data is
scaled to zero-mean and unit variance. After generating
and scaling the data, PCA is applied to make the model.
The simulated faults are of the form

xfaulty = x∗ + ξif (53)

where x∗ is generated according to the model given above
and the fault magnitude f is a random number uniformly
distributed between 0 and 5. Also, the direction ξi is uni-
formly random out of the six possible variable directions.
The number of simulated faults is 2000.

The rate of successful fault detection is given in Table 2 in
three categories: faults detected by SPE, faults detected
by T 2 and faults detected by ϕ. As we can see from Table
2, for single sensor faults the SPE index has a higher
fault detection rate than the T 2 and ϕ indices. However,
the difference between the SPE and ϕ rates is negligible
compared to the difference between the SPE and T 2 rates.

Table 3 shows the rates of correct diagnosis given by the
traditional contribution and RBC methods when a fault
is detected by the SPE index (column 1), the T 2 index
(column 2) and the ϕ index (column 3). For the first
column, the first row shows the rate of correct diagnosis
obtained when cSPEi and RBCSPEi are used, the second
row shows rates of correct diagnosis given by cT

2

i and
RBCT

2

i , and the third row shows the diagnosis results of
cϕi and RBCϕi . The second and third columns are similar
to the first column except that, in these cases, the faults
are detected using the T 2 and ϕ indices. In all cases in
Table 3 the rate of correct diagnosis by RBC is larger than
that of the traditional contribution methods. Also, the
largest rates are given when the contribution approaches
that involve the combined index are used.

Table 2. Percent of faults successfully detected
by SPE, T 2, ϕ.

Index SPE T 2 ϕ

Rate(%) 78.4 25.7 76.5

Table 3. Rate of correct diagnosis given by
cIndexi and RBCIndexi for faults detected by

Index.

% SPE T 2 ϕ

Index Cont RBC Cont RBC Cont RBC

SPE 78.3 90.9 60.7 91.1 78.0 91.2
T 2 46.8 57.6 93.8 95.8 48.0 58.3
ϕ 95.3 97.9 100 100 97.0 99.0

6. CONCLUSION

A new reconstruction-based contribution method is pro-
posed for fault diagnosis as an alternative to the traditional
contribution plots. This RBC method has a larger rate of
correct fault diagnosis compared to the traditional contri-
bution methods. Although the contribution plot method
has been popular and adopted by many researchers and
practitioners, it is surprising that, even for the simple case
of sensor faults and large fault magnitudes, the traditional
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contribution plots fail to guarantee correct diagnosis re-
sults. On the other hand, the proposed reconstruction-
based contribution method guarantees that the faulty vari-
able has the largest contribution. For the case of modest
fault magnitudes where the noise plays a role, Monte Carlo
simulation results show that the proposed RBC method
has a higher rate of correct diagnosis for SPE, T 2 and the
combined index. To our knowledge this is the first work
that provides rigorous analysis of the contribution plots,
although evidence of misdiagnosis has been reported in the
literature.
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Appendix A. PROOF OF THEOREM 1

Since C̃ ≥ 0, we have

[ξi ξj ]
T C̃ [ξi ξj ] =

[
c̃ii c̃ij
c̃ij c̃jj

]
≥ 0 (A.1)

Since c̃2jj ≥ c̃2ij does not always hold, cSPEj ≥ cSPEi is not
guaranteed. However,

det

[
c̃ii c̃ij
c̃ij c̃jj

]
= c̃iic̃jj − c̃2ij ≥ 0 (A.2)

c̃iic̃jj ≥ c̃2ij
c̃jj ≥ c̃−1

ii c̃
2
ij

c̃jjf
2 ≥ c̃−1

ii c̃
2
ijf

2

RBCSPEj ≥RBCSPEi (A.3)

Appendix B. PROOF OF THEOREM 2

Since D ≥ 0, we have D
1
2 ≥ 0. Therefore

[ξi ξj ]
T D

1
2 [ξi ξj ] =


[
D

1
2

]
ii

[
D

1
2

]
ij[

D
1
2

]
ij

[
D

1
2

]
jj

 ≥ 0 (B.1)

Since [D
1
2 ]2jj ≥ [D

1
2 ]2ij does not always hold, cT

2

j ≥ cT
2

i is
not guaranteed. However, from D ≥ 0 we have

[ξi ξj ]
T D [ξi ξj ] =

[
dii dij
dij djj

]
≥ 0 (B.2)

det

[
dii dij
dij djj

]
= diidjj − d2

ij ≥ 0 (B.3)

diidjj ≥ d2
ij

djj ≥ d−1
ii d

2
ij

djjf
2 ≥ d−1

ii d
2
ijf

2

RBCT
2

j ≥RBCT
2

i (B.4)

Appendix C. PROOF OF THEOREM 3

Since Φ > 0, we have Φ
1
2 > 0. Therefore

[ξi ξj ]
T Φ

1
2 [ξi ξj ] =


[
Φ

1
2

]
ii

[
Φ

1
2

]
ij[

Φ
1
2

]
ij

[
Φ

1
2

]
jj

 > 0 (C.1)

Since
[
Φ

1
2

]2
jj
≥
[
Φ

1
2

]2
ij

does not always hold, cϕj ≥ cϕi is

not guaranteed. On the other hand, from Φ > 0 we have

[ξi ξj ]
T Φ [ξi ξj ] =

[
φii φij
φij φjj

]
> 0 (C.2)

det

[
φii φij
φij φjj

]
= φiiφjj − φ2

ij > 0 (C.3)

φiiφjj >φ2
ij

φjj >φ−1
ii φ

2
ij

φjjf
2 >φ−1

ii φ
2
ijf

2

RBCϕj >RBCϕi (C.4)
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