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Abstract: This paper proposes a sequential importance sampling (SIS) particle filtering framework to 
track the human with overcoming the warping and low resolution. We utilize a foreground-based 
importance sampling mechanism for efficiently converge to the target distribution. We construct a tracking 
system with the fusion image likelihood, even the human raises the head. Furthermore, the two-space 
integration to evaluate the likelihood measurement is proposed to robustly track human for overcome the 
warping effect. The overall performance has been validated in the experiments. 

 

1. INTRODUCTION 

Visual tracking in a dynamic environment has drawn much 
attention nowadays. We want to develop a vision system for 
human tracking under complex environments and covering 
large space. Utilizing different kinds of cameras will lead to 
different properties in regard to the above mentioned problem. 
Compared with other cameras, the omnidirectional cameras 
have a wider filed of view covering large space, which 
approaches to 360 degrees. However, it suffers from a serious 
distortion and low resolution problems. Therefore, the 
approach for the developed omnidirectional camera here 
should be immune to these drawbacks. 

1.1 Related Works 

In practice, omnidirectional cameras are often utilized in 
many applications, like autonomous mobile robot (Yagi et al., 
2005), video conference (Wallhoff et al., 2004), military 
purpose (Boult et al., 2001), virtual reality (Ikeuchi et al., 
2004), collaboration with PTZ camera (Scotti et al., 2005) 
(Scotti et al., 2004), visual tracking. The techniques for 
detection and tracking using an omnidirectional camera can 
be grouped into two categories, one in warping space and the 
other in unwarping space. 

For techniques that work in warping space, they usually 
utilize color information as features and integrate different 
algorithms for detection and tracking, such as, optical flow, 
CAMShift, Kalman filters, and particle filters. A simple 
method for tracking a single person is to extract human 
features and integrate them with optical flow regions (Yagi et 
al., 2002). However, optical flow is unsuitable for tracking in 
the image plane. To overcome this limitation, the work in 
(Wang et al., 2006) combined optical flow with the 
CAMShift algorithm. The author used background 
subtraction to detect the single person, and then the 
CAMShift algorithm is used for extracting color information 
of the target in order to facilitate subsequent tracking. The 

advantage of integrating optical flow and the CAMShift is 
that the system can achieve automatic tracking. The work in 
(Matsumura et al., 2002) modeled skin color with a Gaussian 
distribution in normalized RGB color space, and used that 
skin color information under the Kalman filter framework to 
detect and track people. The state vector of the Kalman filter 
consists of position and velocity of the target. However, the 
Kalman filter assumes that humans move linearly and models 
the probability as a Gaussian distribution. It does not 
correspond to the actual condition. In (Ortegon-Aguilar et al., 
2006), the particle filter was proposed to track foreground 
regions in an omnidirectional sequence where the foreground 
regions were detected by background subtraction. The 
recently proposed approaches only used the color model as 
the feature without taking any other information, thus making 
tracking unstable. It is why unwarping space is applied here. 

The technique of tracking work in unwarping space is based 
on a global transforming algorithm. In general, such 
techniques consist of four steps, i.e., transforming into 
panoramic image, background subtraction, modeling skin 
color distribution, and tracking framework. The aim of 
transform into panoramic image and background subtraction 
is to obtain an unwarping foreground, whereas that of 
modeling skin color distribution is to extract features. And 
the last step, i.e., tracking framework, is to predict the 
position of the target. For this tracking system in unwarping 
space, Cielniak et al. (Cielniak et al., 2003) presents an 
appearance-based algorithm for tracking a single person 
using an artificial neural network to learn the appearance 
model to be incorporated with the Kalman filter. Features are 
extracted from the panoramic images, and then an artificial 
neural network is trained to estimate the distance of the 
person from the camera. The Kalman filter was used to track 
the position of the person. Wallhoff et al. (Wallhoff et al., 
2004) later employed the particle filter to track multiple 
people. First, an omnidirectional image was transformed to 
an unwarping image. Next, the skin color was converted from 
RGB color space into normalized rg-Chroma space and is 
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modeled with a Gaussian mixture model to be used to 
segment human regions and to compute face likelihood. 
Finally, the particle filter based face tracking system is used 
to track multiple people (Cauchois et al., 2005), which begins 
with transformation of omnidirectional images to panoramic 
images, then adopts background subtraction to detect the 
object, and finally track it by utilizing an CAMShift 
algorithm. Nevertheless, the property of unwarping space was 
not utilized to solve the problem of the distortion. It not only 
loses the meaning of transforming original omnidirectional 
space into unwarping space but also wastes time. 

1.2 System Overview 

In this paper, we propose an approach to perform the human 
detection and tracking in a more effective manner. Fig. 1 
shows the block diagram of the proposed algorithm. The 
main idea is to utilize the foreground-based importance 
sampling mechanism to draw particles efficiently. Most, we 
extract color and contour features and regard these two kinds 
of features as the likelihood measurement. The multiple cue 
fusion integrating color and contour features makes track 
humans more accurate. Evaluating the likelihood 
measurement on two-space integration can solve distortion 
drawbacks. Because we simultaneously use the two-space of 
information to evaluate the likelihood measurement, our 
system can overcome distortion problems and make the 
tracking capability more robust. On the other hand, since 
contour information is used, CAMShift is no longer fit to the 
tracking rule. Hence, we choose SIS particle filter to 
overthrow the problem with non-linear movement and lack of 
Gaussian distribution. SIS particle filter is more effective to 
draw particles than the particle filter. 

This paper is organized as follows. The foreground-based 
importance sampling mechanism is described in section II. 
Section III addresses the feature extraction algorithm. The 
likelihood evaluation based on the two-space integration is 
described in section IV. In section V, we demonstrate the 
effectiveness of the developed approach by providing some 
appealing experimental results. Finally, we conclude the 
paper in section VI with some relevant discussion. 

 
Fig. 1. The block diagram of the proposed algorithm. 

2. Foreground-Based Importance Sampling 

In this paper, we use SIS particle filter to detect and track the 
human. In order to draw particles efficiently, how to identify 
the importance sampling function is very crucial. If the 
importance sampling function is good enough, the particles 
will be drawn efficiently, and then we can detect the targets 
fast. Therefore, we integrate the auxiliary knowledge in the 
form of an importance function, which represents the 
probability of the possible target locations and is called the 
foreground-based importance sampling mechanism. 

In our tracking system, the targets are heads of humans. 
Because our omnidirectional camera is installed on the 
ceiling, the heads of the humans in the images captured by 
our omnidirectional camera are approximating a circle. So we 
define the state vector as ( ), ,t x y r=X , where ( , )x y  is the 
center of the head with the purple point, and r  is the radius 
of the head as shown in Fig. 2. The state vector ( ), ,t x y r=X  
can describe a circle to model a head which we observe from 
the omnidirectional camera. ( )A X  means the every pixels 
inside the particle ( ), ,t x y r=X . ( )C X  means the every 

pixels around circumference of the particle ( ), ,t x y r=X . Z  
is the observer vector containing color and contour 
information we can observe from the image. So we must 
estimate the current state tX  from observations 

0: 0 1, ,...t t=Z Z Z Z  to get the posterior ( )0:|t tX Zp . 

( )A X

( , , )rx y=X

( )C X
Z

 

Fig. 2. Mathematical definition of our system. 

 

In the foreground-based importance sampling mechanism, 
there are two major steps. The first one is the foreground 
segmentation, and the second one is sampling distribution. 
The targets can be detected by foreground segmentation the 
first step (Adams et al., 1994) (Huang, 2007), and then 
sampling distribution is the second step can be processed, 
where the particles can be drawn inside the foreground. 

2.1  Sampling Distribution 

In our human tracking system, we define 
( ){ ,  1,..., }mq m M=X  as the importance functions 

representing the probability distribution of the M  targets. 
Each importance function takes charge of a tracking task for 
a single specific target. Now, let 1( , )q x y  denote the 
probability distribution projected on the x and y axis and 

2 ( )q r  be just a uniform probability distribution. Therefore, 
( )q X  satisfies the following equation: 
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1 2( ) ( , , ) ( , ) ( )q q x y r q x y q r= =X , (1) 
where 

1( , ) ( , ) ( | ) ( )q x y P X Y P Y X P X= =  (2) 
with 

( , )
( ) ( , )/ ( , )

j i j
P X x B x j B i j= =∑ ∑  (3) 

and 

{  ( ,  ) = 0      if   ( , ) 0 
  ( ,  ) = 1      otherwise
B i j i j
B i j

= . (4) 

In Fig 3, we first project every pixel on the x axis to make 
( )P X  distribution. Then we randomly choice a position on 

the ( )P X  distribution where the pixel number larger than 
one. So we just project every pixel of a range regarding the 
position as the center on the y axis to make ( | )P Y X  
distribution. Also we randomly choice a position on the 

( | )P Y X  distribution where the pixel number larger than one. 
Finally, we can randomly get a position on the 2D image. 
According to the obtained probability distribution, we can 
draw significant samples. Fig. 4 shows the overall 
foreground-based importance sampling mechanism. 

( )P X

( | )P Y X

Project to X axis

P
roject to Y

 axis

 
Fig. 3. Sampling distribution from foreground detection. 
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Fig. 4. Foreground-based importance sampling mechanism. 

3. Multiple Cue Fusion 

In order to get enough features to track targets robustly, we 
use the color and contour information to model and update 
the likelihood, which can be factored as 

( ) ( ) ( )| | |t t contour t t color t tp p p∝ ⋅Z X Z X Z X . (5) 

3.1 Contour Likelihood 

We obtain the contour images from the original warping 
images with the Sobel operator. Let the gradient magnitude 
as ( , )G x y , and the contour distance ( | )contourD Z X  of a 
specific particle X  can be defined as 

( , ) ( )

1( | ) 1 ( , )
( )contour

x y C
D G x y

C ∈

= − ∑
X

Z X
X

. (6) 

Then, the normalized contour distance ( | )contourD Z X  of a 
specific particle X  can be defined as 

min

max min

( | )
( | ) contour contour

contour
contour contour

D D
D

D D
−

=
−

Z X
Z X . (7) 

As a result, the contour likelihood measurement function can 
be expressed as 

( ) ( )| exp |contour contour contourp Dλ⎡ ⎤∝ −⎣ ⎦Z X Z X , (8) 

where contourλ  is the coefficient of the contour likelihood 
measurement function. 

3.2 Color Likelihood 

The color distribution can be exploited as a useful feature to 
enhance the tracking performance. As shown in Fig. 5, we 
define an N-bin color histogram reference model as 

{ }*
0 1
( ) N

n
q n

=
=q , (9) 

which is the color distribution of region ( )A X . Here, we use 

the normalized histograms, i.e. 0
1

( ) 1
N

n
q n

=

=∑ . Now, we 

consider the color histogram in the associated image region 
as 

{ } 1
( ) ( ; ) N

n
q n

=
=q X X , (10) 

which is the color distribution of the template. Then, 
comparing these two histograms, we define the distribution 
likelihood as 

( ) ( )2 *| exp , ( )color c colorp Dλ⎡ ⎤∝ −⎣ ⎦Z X q q X , (11) 

where cλ  is the coefficient of the color likelihood 

measurement function, and ( )* , ( )D q q X  is the 
Bhattacharyya distance, which is defined as 

( )
1
2

*
0

1
, ( ) 1 ( ) ( ; )

N

n

D q n q n
=

⎡ ⎤= − ⋅⎢ ⎥
⎣ ⎦
∑q q X X . (12) 
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*q ( )q x

 
Fig. 5. An explanation of histogram likelihood. 
 

4. Two-Space Integration 

In general, the circumference of the circle on warping space 
is the width of the image on unwarping space and the radius 
of the circle on warping space is the height of the image on 
unwarping space as shown in Fig. 7. 

Warping SpaceWarping Space Unwarping SpaceUnwarping Space

Width

Height

 
Fig. 6. Global unwarping transformation. 
 

(a) (b)

BorderBorder BorderBorder

 

Fig. 7. The person on the border of the image on two-space. 

 

4.1 Color and Contour Properties on Two-Space 

In this section, we introduce the different influences based on 
warping and unwarping space for color and contour features. 
Despite the person in different positions, it is obvious for 
color information no matter what the person locate. So we 
evaluate the color likelihood measurement ( )|color t tp Z X  on 

warping space. But there is heavy distortion for contour 
information when the person is on the center of the image on 
unwarping space as shown in Fig. 6. So we evaluate the 
contour likelihood measurement ( )|contour t tp Z X  on warping 
space when the person is near the center of the image. We 
observe that there are better circular contours on unwarping 
space as shown in Fig. 7. So, we evaluate the contour 
likelihood measurement ( )|contour t tp Z X  on unwarping space 
when the person is near the border of the image. 

4.2 Local Unwarping Transformation 

Because we just transform the border of the image on 
warping space to unwarping space, the transformation 
method is local unwarping transformation as shown in Fig. 9. 
It is not like the Global unwarping transformation  as shown 
in Fig. 6. We utilize the sampling method to do the local 
unwarping transformation. The detail transformation is 
shown in Fig. 10. We use inner circumference to be the width 
on unwarping space. If we use outer circumference to be the 
width on unwarping space, it will be several pixels 
corresponding to only one pixel. It can not solve the 
distortion. In our method, it samples the pixels to transform 
warping space to unwarping space. In the implementation, a 
circle map as shown in Fig. 8 is established. The image is 
separated into three parts. The black part is useless. The 
particles X  in the gray part are transformed into unwarping 
space to evaluate contour likelihood measurement. The 
contour likelihood measurement is evaluated on warping 
space when the particles X  are in the white part. 

If the particles X  are in the gray part, they are transformed 
into unwarping space. We transform ( )C X  formed by the 
particle X  to unwarping space '( )C X  using the transform 
function ( ( ), '( ))T P PX X . The transform function 

( ( ), '( ))T P PX X  is shown in the following: 

0 2

0 2

warp

(R ') cos ,
(R ')sin ,

',
(2 ')/Width ,

x x y
y y y
r r

x

θ
θ

θ π

= + +
= + +
=
=

 (13) 

where ( , , ) ( )x y r C= ∈X X  on warping space and 
' ( ', ', ') '( )x y r C= ∈X X  on unwarping space. 0 0( , )x y  is the 

center of the image on warping space. 2R  and warpWidth  are 
shown in Fig. 10. 'r  is a average distance between '( )C X  
and ( ', ')x y . 

 
Fig. 8. Circle map. 
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BorderBorder BorderBorder

Local Unwarping

 
Fig. 9. Local unwarping transformation. 

Warping SpaceWarping Space Unwarping SpaceUnwarping Space

BorderBorder BorderBorder

R1: Radius of outer circumference 

Sampling
Height

HeightWidth

Height = R1 － R2

R2: Radius of inner circumference 

Width

Width = Widthwarp  
Fig. 10. Local unwarping transformation method. 
 

4.3 Contour Likelihood Evaluation Redefine 

We redefine the likelihood measurement in (5). The new 
likelihood measurement can be factored as 

( ) ( ) ( )| ' | |t t contour t t color t tp p p∝ ⋅Z X Z X Z X , (14) 
where 

( ) ( )' | exp ' |contour contour contourp Dλ⎡ ⎤∝ −⎣ ⎦Z X Z X , (15) 

with 

( )
( )
( )

2

2

     |
' |

     |
c

c

p contour
contour unwarp

p contour

r R D
D

r R D

⎧ ≤⎪= ⎨ >⎪⎩

Z X
Z X

Z X
, (16) 

and 
cpr  means the distance between the particle X  and the 

center of the image on warping space. 

 

5. Experiment Results 

A well-known open source library, OpenCV, is used to 
facilitate the development of the system. The fisheye camera 
is combined the fisheye lens and the camera platform of 
AXIS 216 Network Camera. The angle of the view is 185 
degrees. In our experiment, we use the 640×480 resolution 
which can be captured 30 frames per second. Furthermore, 
we process the image on-line with a computer which is Intel 
Core2 1.83GHz and the RAM is 1GB. 

Fig. 11 and Fig. 12 are the tracking result evaluating 
likelihood by color and contour information and integrating 
two-space. In Fig. 11, regardless of the person near the center 
of the image in frame#68 and frame#85 or on the boundary of 
other images, the results show that the target can be detected 
and tracked robustly even when the person changes the pose, 
like raising his head. In Fig. 12, it shows the robust and 
correct tracking when two persons walk randomly and 
change pose. 

 

6. Conclusion 

In this paper, we perform the human tracking using the SIS 
particle filter with the single omnidirectional camera. In order 
to draw particles efficiently, we extend the particle filter to 
the SIS particle filter. A foreground-based importance 
sampling mechanism is proposed to evaluate the importance 
function. It draws the particles from the importance function 
rather than the prior distribution. Moreover, we fuse the 
contour features and color features as the likelihood 
measurement function for evaluating the particle sets of the 
human. Fusion of multiple cues for likelihood evaluation 
tracks the human in a more accurate way. Furthermore, 
combining the color and contour features of warping space 
and the contour features of unwarping space makes the 
features more significant. Likelihood evaluation by 
integrating two-space enhances the robustness of the tracking 
system. The experimental results demonstrate that our 
proposed method can successfully track the human even 
under a complex environment with a large space coverage. 
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Frame#33                                 Frame#47                                 Frame#53                                  Frame#68 

   
Frame#85                                 Frame#94                                 Frame#98                                  Frame#108 

Fig. 11. Single human tracking. 
 

   
Frame#66                                 Frame#69                                 Frame#70 

   
Frame#71                                 Frame#78                                 Frame#83 

Fig. 12. Multiple human tracking. 
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