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Abstract:
Like the well-known RC (Repetitive Control) and AFC (Adaptive Feedforward Cancellation)
methods, the new iterative learning control (ILC) method developed recently for the rejection
of periodic disturbances also utilize the steady-state behavior of the closed-loop system and
requires a settling time + some periods for the satisfactory rejection of periodic disturbances.
However, in case of the new ILC method, an iterative update scheme is needed to achieve
successful rejection of periodic disturbances ever in the presence of aperiodic disturbances and
plant uncertainties. In this paper, we introduce the concept of dwell time instead of settling
time to accelerate the rejection speed of the new ILC method. The effectiveness and practicality
of the proposed method is demonstrated through mathematical performance analysis as well as
various simulation results.
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1. INTRODUCTION

Many engineering applications often face unavoidable dis-
turbances which can degrade system performance seri-
ously. In particular, periodic disturbances are inherent in
rotating machinery. For an example, in a data storage
system, there are periodic disturbances due to the ec-
centricity of tracks on a disk. This periodic disturbance
generally occurs at frequencies that are integer multiples
of the frequency of disk rotation and can be a considerable
source of tracking error. Since the fundamental period of
the periodic disturbances is known, much control effort has
been usually expended to compensate for these periodic
disturbances.

Recently, numerous control design methods have been de-
veloped specifically for eliminating periodic disturbances.
Generally these methods generate the control input,
whereby the system asymptotically tracks the periodic
disturbance in the output. One of them is the RC (Repet-
itive Control) mehtod which is based on the well-known
internal model principle Hara et al. [1988]. It was applied
to practical disk drive systems and has proved its use-
fulness in improvement of tracking performance as well
as elimination of harmonic components in spectrum of
position error Kempf et al. [1993], Onuki et al. [2001],
Fujimoto et al. [2004]. However, it is commonly known that
the RC method usually tends to amplify the effect of non-
repeatable disturbances whose frequencies are located near
those of periodic disturbances. Therefore, design engineers
should consider some tradeoff between system stability and
tracking performance as an important factor Moon et al.
[1998], Doh et al. [2006].

On the other hand, the AFC (Adaptive Feedforward
Concellation) method considered in Messner et al. [1994]-
Zhang et al. [1997] simply rejects sinusoidal disturbances

at the input of the plant by adding the negative of
their values at all times. It is shown in Bodson et al.
[1994] that it is equivalent in some sense to the well-
known internal model principle. So one can design an AFC
controller easily by using the well-developed linear control
theory. Unfortunately, the AFC method requires intensive
computation when rejecting periodic disturbances with
many harmonic components. Also, it need be designed
carefully, considering some tradeoff between convergence
rate and system stability.

Some ILC (Iterative Learning Control) methods to pe-
riodic disturbance rejection were recently proposed in
Takaishi [2006], Ha et al. [2005], and Sidman [1991] for
a class of linear systems and in Han et al. [1998]-Kim
et al. [2000] for a class of nonlinear systems. Different
from the conventional ILC methods Arimoto et al. [1985]-
Moore [1993], these new ILC methods do not require the
resetting of the initial conditions at each iteration. Like
the AFC method, these new ILC methods also estimate
the magnitude and phase of the harmonic components but
the estimation carries out off-line at every fundamental
period. So they do not raise such destabilization problem
involved inevitably in the actual implementation of the RC
and AFC methods. Furthermore, they are less sensitive to
the effect of noise and other aperiodic disturbances. As will
be shown in Section 3, the RC and AFC methods as well
as the new ILC methods also need a settling time + one
period for the satisfactory rejection of the periodic distur-
bances. Different from the RC and AFC methods, however,
these new ILC methods have to perform some iterative
update schemes in order to reject the periodic disturbances
successfully even in the presence of aperiodic disturbances
and plant uncertainties. In the paper, we introduce the
concept of dwell time instead of settling time. Thereby, we
attempt to accelerate the disturbance rejection speed of
these new ILC methods in such nonideal environment. The
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effectiveness and practicality of the proposed method is
demonstrated through mathematical performance analysis
as well as various simulation results.

2. MAIN RESULTS

The proposed learning control scheme is depicted in Fig.
1, where Kc(s) is a stabilizing controller designed so as
to stabilize the closed-loop system and to satisfy design
specifications. We assume that there are two classes of
bounded disturbances : (i) specific periodic disturbance
dP (t) to reject and (ii) other periodic and aperiodic
disturbances dN (t). We also assume that the plant is a
linear system with Laplace transfer function P (s). And

d̂P (t) is the estimate of dP (t) estimated off-line and is
used as the feedforward term which is updated once at
each iteration rather than continuously in time.

Since dP (t) is periodic with a known period T, it can be
expressed as the following Fourier series representation :

dP (t) =

N
∑

i=1

Re
[

cie
−jωit

]

(1)

where ωi , 2πni/T and ci ∈ C, i = 1, 2, · · · , N . Here, N
and the ni are nonnegative integers. In this context, we

can also express d̂P (t) as follows :

d̂P (t) = d̂ k
P (t) ,

N
∑

i=1

Re
[

ĉi,ke−jωit
]

,

if t ∈ [tk, tk+1), k = 0, 1, 2, · · ·

(2)

where t0 , 0 and ĉi,k ∈ C, i = 1, 2, · · · , N . Let

∆d̂ l
P (t) ,

N
∑

i=1

Re
[

∆ĉi,le
−jωit

]

v(t − tl),

l = 0, 1, 2, · · · ,

(3)

v(t) ,

{

1, t > 0
0, otherwise

(4)

where ∆ĉi,l , ĉi,l − ĉi,l−1, l = 0, 1, 2, · · · , but ĉi,−1 , ci.

Then, d̂(t) can be written in the following form :

d̂P (t) =

∞
∑

l=0

∆d̂ l
P (t). (5)

On the other hand, from Fig. 1 and (5), we can easily
derive the following expression of the position error e(t) :

E(s) = S(s)R(s) + H(s)DN(s) −
∞
∑

l=0

H(s)∆D̂ l
P (s) (6)
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Fig. 1. Blockdiagram representation of the proposed learn-
ing control scheme

where S(s) , 1
1+P (s)Kc(s)

, H(s) ,
P (s)

1+P (s)Kc(s)
, E(s) ,

L[e(t)] , R(s) , L[r(t)], DN(s) , L[dN (t)], and ∆D̂ l
P (s) ,

L[∆d̂ l
P (t)]. We denote the nominal value of H(jω) by

Ĥ(jω). Also, we define a kind of periodic impulse response
h−1

N (t) by

h−1
N (t) ,

2

T

N
∑

i=1

Re

[

e−jωit

H∗(jωi)

]

. (7)

We also define

γ−1
N , sup

0≤t≤T

|h−1
N (t)|. (8)

Now, we are ready to describe precisely the update scheme
of our off-line learning control algorithm. In what follows,
the subscript k is used to denote the iteration number and
z∗ denotes the conjugate of a complex number z.

Step 1) Set k = 0, t = 0 and d̂P (t) = d̂ 0
P (t) (initial

guess).

Step 2) Wait for some dwell time τk. Let tk+1 , tk +
τk + T .

Step 3) Save the time history of the position error
e(t) on the time interval [tk + τk, tk+1] by letting

e k
ss(t̄) , e(t̄+tk+τk) for each t̄ ∈ [0, T ]. Then, determine

d̂k+1
P (t) by

d̂k+1
P (t) , d̂ k

P (t) +
1

k + 1

∫ T

0

e k
ss(τ)ĥ−1

N (t − τ)dτ. (9)

Step 4) At t = tk+1, set d̂P (t) = d̂k+1
P (t) and increase

k by one. Then jump to Step 2.

For better understanding of the update scheme stated
above, we depict its timing diagram in Fig. 2. The kth

estimate d̂ k
P (t) is determined by the (k − 1)th estimate

d̂k−1
P (t) and the steady-state response of the closed-loop

system with the feedforward term d̂k−1
P (t). At the kth

update time tk, we then wait for the dwell time τk after
which the learning systems is ready for data acquisition.

For further discussion on the proper choice of the dwell
times τk, k = 0, 1, · · · , we now investigate the convergence
performance of the proposed algorithm. For this aim, we
need the following Lemma 1.

Lemma 1. The position error e(t) can be divided into
three components: steady-state response, transient re-
sponse, and aperiodic-disturbance response as follows:

0τ 11 τ+t

0 1t 2t

t
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1
tdP

)(0 tess )(1 tess

)(
2

tdP

0=k 1=k 2=k

^ ^ ^

Fig. 2. Timing diagram of the proposed update scheme
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e(t) = ess(t) + etr(t) + vN (t) (10)

where

ess(t) ,

∫ ∞

0

s(τ)r(t − τ)dτ

−

∞
∑

l=0

[

N
∑

i=1

Re
[

H∗(jωi)∆ĉi,le
−jωit

]

]

v(t − tl),

(11)

etr(t) , −

∫ ∞

t

s(τ)r(t − τ)dτ

+

∞
∑

l=0

[

v(t − tl)

∫ ∞

t−tl

h(τ)∆d̂ l
P (t − τ)dτ

]

,

(12)

vN (t) ,

∫ t

0

h(τ)dN (t − τ)dτ. (13)

2

We also need to make the following assumptions.

A1) All poles of S(s) and H(s) are in the left-half complex
plane and S(0) = 0.

A2) The learning system is initially relaxed at t = 0.

By A1), we see that the impulse responses s(t) ,

L−1[S(s)], h(t) , L−1[H(s)] satisfy the following inequal-
ities for some positive constants αs, αh, βs, βh :

|s(t)| ≤ αse
−βst, |h(t)| ≤ αhe−βht, t ≥ 0. (14)

Now, we are ready to state our main result.

Theorem 1. Further, suppose that (i) the time average of
vNejωit is zero, i = 1, 2, · · · , N . (ii) there is no modelling

uncertainty such as Ĥ(jωi) = H(jωi), i = 1, 2, · · · , N , and
(iii) the dwell times τk, k = 0, 1, · · · are chosen so as to
satisfy

τk ≥















max

{

1

βs

ln
r0αs

βs
2ǫk

,
1

βh

ln
δ0αh

βh
2ǫk

, 0

}

, if k = 0

max

{

1

βh

ln
δkαh

βh
2ǫk

, 0

}

, otherwise
(15)

where ǫ is a positive constant and

δk , sup
0≤t≤T

|∆d̂ k
P (t)|, (16)

ǫk ,
ǫ

1 + e−βskT − e−βs(k+1)T − e−βh(k+1)T
. (17)

Then, the update scheme described by Steps 1) - 4) assures
that

lim
k→∞

|ĉi,k − ci| ≤
2ǫ

|H(jωi)|T
, i = 1, 2, · · · , N , (18)

lim
k→∞

sup
tk≤t≤tk+1

|dP (t) − d̂ k
P (t)| ≤ γ−1

N ǫ, (19)

lim
k→∞

sup
tk+τk≤t≤tk+1

|e(t)| ≤ ǫ

[

2N

T
+

βh

1 − e−βhT

]

+ lim
k→∞

sup
tk+τk≤t≤tk+1

|vN (t)|.
(20)

2

The proofs of Lemma 1 and Theorem 1 are omitted
because of limited space.

Note from (15) that larger difference between d̂k−1
P (t) and

d̂ k
P (t) requires the next kth dwell time to be chosen larger.

Thus, the dwell time should be the minimum time after
which the transient response of position error becomes
sufficiently small. When the information of the parameters
δ0, αs, αh, βs, βh is not available, the dwell time can be
chosen simply as the settling time, say, ts of the closed-
loop system. In particular when dN (t) = 0, t ≥ 0, then

the estimation error dP (t) − d̂P (t) is reduced near zero
after t = τ0 + T , as is implied in the proof of Theorem 1.
However, the iteration number k more than 1 is usually
needed in the presence of the aperiodic disturbances dN .
Also, note from Theorem 1 that the effect of the aperiodic
disturbance on the estimation error tends to disappear as
k → ∞. This quite desirable feature is due to our unique
choice of the update gain as 1

k+1 in (9).

Finally, we address the issue of practical implementation
of the proposed iterative learning control algorithm. Let
Ts be a sampling time. For computational simplicity, we
assume that T = MTs for a positive integer and M >> 1.
Then, we can show that the iteration equation in (9) can
be well approximated by

d̂k+1
P (nTs) = d̂ k

P (nTs)

+
1

2(k + 1)

M−1
∑

l=0

[

e k
ss(lTs)h

−1
N ((n − l)Ts)

+ e k
ss((l + 1)Ts)h

−1
N ((n − l − 1)Ts)

]

,

n = 0, 1, · · · . (21)

Thus, the proposed learning control algorithm can be con-
verted into the form of a FIR filter, where h−1

N (mTs), m =
0, 1, · · · , (M − 1) can be pre-computed and stored in the
microprocessor memory.

3. SIMULATION RESULTS

In this section, we present some simulation results to illu-
minate further the effectiveness of the proposed learning
control method. For fair comparison of the proposed ILC
method with the previously known RC and AFC methods,
we have assumed in our simulation that P (s) and Kc(s)
are given by

P (s) =
75

s2 + 60s + 150000
, (22)

Kc(s) = 5.4 × 106 3.87(s + 1364)(s + 9425)

(s + 942)(s + 87965)
, (23)

as in the DVD-ROM system considered in [Doh et al.,
2006].

Then, the 98% settling time of the time responses of
position error to a step disturbance input is ts = 0.0024s.
Other data used in simulation are as follows :

δ0 = 0.05 , d̂ 0
P (t) = 0 , T = 0.025s , N = 3 , ni = i ,

(24)
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c1 = 0.03−0.01j , c2 = 0.015+0.006j , c3 = −0.003+0.002j.
(25)

Based on the simulation data, we can calculate or choose
the following values:

βs = 10200s−1 , αs = 24000 , βh = 7600s−1 , αh = 0.0058 .
(26)

In the following simulation results, all of three methods
were turned on equally at the third cycle (i.e., t0 = 0.075s,
as indicated by △ in Fig. 3 - Fig. 8).

Observe from Fig. 3, 4, and 5 that in the ideal case (no
plant uncertainty and no noise), the RC and AFC method
as well as the proposed ILC method need at least (ts +
T ) time (=0.1024s here) in order to reject the periodic
disturbances effectively. This is mainly because all of three
methods get the information of the periodic disturbance
basically from the steady-state responses of the closed-loop
system. Particularly, in the case of the RC method, some
tracking error still exists even after (ts + T ) time. This is
due to the low-pass filter needed for the stability of the
closed-loop system.

Next, we consider the case that dN (t) is the white noise
and there is no plant uncertainty. Comparing the simula-
tion results in Fig. 6 and 7 with the one in Fig. 8, the RC
and AFC methods are more sensitive to the white noise.
This is mainly because the RC and AFC methods usually
destabilize the closed loop system. It also can be observed
from Figs. 8 that as the iteration number is increased, the
estimation errors converge to zero even in the presence of
dN (t), while the position error does not due to the effect
of dN (t). This results can be explained well by Theorem
1.

4. CONCLUSION

We have presented a learning control method, in which
the update time is adjusted adaptively at each iteration.
Its excellent estimation performance has been demon-
strated by both mathematical analysis and simulation
results. However, we have considered only the case of
no plant uncertainty. Nonetheless, it can be shown with
much more complicated mathematical analysis that if
|1 − H(jωi)/Ĥ(jωi)| < 1, i = 1, 2, · · · , N, the proposed
method still can provide good estimation performance,
although the iteration number k need be increased more
than 1, as in the presence of dN (t). On the other hand,
the estimation speed of the RC and AFC methods are
not affected by plant uncertainty. Nonetheless, the RC
and AFC methods can destabilize the closed-loop system.
Therefore, the stabilizing controller Kc(s) has to be used
mainly to restabilize the destabilized closed-loop system.
In fact, the situation becomes worse in the case of lightly
damped processes. In contrast, the proposed ILC method
does not destabilize the closed-loop system and hence
Kc(s) can be used to achieve better control performance
such as fast settling time for lightly damped processes
or effective attenuation of aperiodic disturbances. Finally,
it also should be noted that the proposed method for
disturbance rejection can be directly extended with slight
modification to asymptotic tracking.
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