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Abstract: The case-based reasoning (CBR) system was developed for the identification of
different operating situations in paper machines. Because similar break sensitivities can result
from a multitude of dissimilar cases, the case base system is based on a division into categories
which correspond to different levels of break sensitivity. The system is based on the linguistic
equations (LE) approach and basic fuzzy logic, and it combines expert knowledge and on-line
measurements from the wet-end of the paper machine. Nonlinear interactions are handled with
a special scaling functions and linear equations. Each equation provides a new fact with a degree
of membership, and the resulting set of facts is used in the fuzzy reasoning of process cases and
break categories. The LE models are essential in compacting the system since each equation
corresponds to a rule set in the fuzzy set systems. The application operates as a case retrieval
and reuse application, predicting web break sensitivity in paper machine. Similarity measures
based on model errors in the scaled range represent the importance of the models in activating
the cases. The break category is defined by the case with the highest degree of membership.
Although, the case base is fairly small the results from the on-line tests were relatively good
compared to real break sensitivity. The predicted break sensitivity is an indirect measurement,
which provides an early indication of process changes. The list of variables in the active cases
can be used to avoid harmful operating conditions.

Keywords: case-based reasoning; fuzzy logic; linguistic equations; paper web breaks;
runnability .

1. INTRODUCTION

Monitoring the performance of nonlinear, multivariable
and strongly interactive industrial processes, for example,
in paper machines, is highly complex. There are many and
long time-varying delays, process feedback is provided at
several levels, the control loops are closed, not all factors
can be measured and the physical and chemical factors
interact with each other. The analysis can be based on
detecting previously known operating conditions. Uncer-
tainty is unavoidable in real-world applications since there
are always some unknown factors affecting the process
conditions. [Juuso, 2004, Ahola and Leiviskä, 2005]

Case-based reasoning (CBR) integrates problem solving
and learning in a variety of domains [Aamodt and Plaza,
1994]. A CBR system searches its knowledge base for sim-
ilar cases using various techniques, a survey on this topic
can be found in [Watson, 1999]. The nearest neighbour
techniques compare attributes of the problem case to the
corresponding attributes of the cases in the case-library.
And, each attribute has a specific importance weighting
factor. In its simplest form, CBR can be implemented us-
ing database technology. The advantages of the CBR sys-
tem are that it resembles human decision making processes
and it does not need a complete set of information to make
a decision.

A fuzzy similarity based inference process provides a
problem-centred preference ordering induced upon a set
of cases by using partial matching [Plaza et al., 1998].
Case representation can also be done with fuzzy-valued
properties [Slonim and Schneider, 2001]. Fuzzy logic gives
CBR the power to deal with impreciseness and uncertainty,
even in distributed case bases where it enables a solution
based on collective experience [Chaudhury et al., 2004].
Similarity relations are an adequate means of formaliza-
tion, not only for case retrieval but also for case base
building, because they reduce the size of the case base [Sun
et al., 2004]. Li and Dick [2006] measure similarity between
two linguistic fuzzy rulebases using a granular computing
technique of linguistic gradients which extracts structural
information from the fuzzy rulebases.

Hybrid systems with rule-based reasoning and fuzzy logic
have been presented in [Chan, 2005]. Veh́ı and Mujica
[2003] used CBR with self-organising maps (SOM), and
wavelet transforms (WT) for damage identification. Fyfe
and Corchado [2002] compare the use of kernel methods in
problems for which it is difficult to define rules. Instance
based reasoning is a term which tends to be applied to
systems containing a great amount of data. The accuracy
and speed in case matching can be enhanced with ad-
vanced search strategies, e.g. Kuo et al. [2005] integrate
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ant colony systems and fuzzy CBR systems. The retrieved
solution cannot always be reused directly, e.g. in design
tasks the retrieved solution can be regarded as an initial
solution that should be refined to reflect the differences
between the new and retrieved problems. Craw et al. [2006]
describe an introspective learning approach where the case
knowledge itself provides a source from which the training
data for the adaptation task can be assembled.

Successful applications for performance monitoring require
the integration of data-based methods and expert knowl-
edge. For small specialized systems a large number of
feasible solutions can be found, but the development of
truly adaptive, and still understandable, systems for highly
complex systems require more compact approaches in the
basic level. The linguistic equation (LE) approach, which
originates from fuzzy logic, is an efficient technique for
this kind of problems [Juuso and Leiviskä, 1992, Juuso,
2004]. The relevance of the model is ensured by using
expert knowledge to assess the modules and by taking
measurements in appropriate operating areas.[Ahola and
Leiviskä, 2005].

This paper presents the linguistic equations approach as
an environment for combining expertise and data in the
development of intelligent systems. The LE approach is
combined with fuzzy set systems and adapted to a case-
based reasoning tool to provide early indication of process
changes.

2. LINGUISTIC EQUATIONS APPROACH

The linguistic equations (LE) approach provides a flexible
environment for combining expertise and data in the
development of intelligent systems. The approach was
developed at the Control Engineering Laboratory of the
University of Oulu in the beginning of the 1990s [Juuso
and Leiviskä, 1992]. The basic idea of this methodology is
to combine nonlinear scaling of variables and linear models
[Juuso, 2004].

2.1 Membership definitions

A membership definition stands for the (nonlinear) map-
ping of variable values xj ∈ R, within their range to
certain values Xj ∈ R, which are defined within a closed
interval [−2, 2]. The main idea of the mapping is to scale
the real values in such a way that linear models can be
used. The range is called the linguistic range because it
can be interpreted using linguistic terms; the values -
2, -1, 0, 1 and 2 could, for example, correspond to the
linguistic labels very small, small, normal, big and very
big. The membership definitions are based on a feasible
range defined by a trapezoidal membership function: the
main area of an operation is called the core area, and the
support area is formed by the whole variable range, as
defined in the fuzzy set theory [Zimmermann, 1992]. The
parameters of the scaling function can be defined on the
basis of expert knowledge or extracted from data [Juuso,
2004]. The support area corresponds to the full range
[−2, 2] and it is defined by the minimum and maximum
values of each variable xj . The core area correspond to
the range [−1, 1]. The core area and the centre value for
each variable xj can be obtained with statistical analysis
[Juuso, 2004].

Membership definitions consist of two second order poly-
nomials: one for the negative values of X and the other
the for positive values of X . In order to result feasible
systems, both functions, f−

j and f+
j , should be monoto-

nous increasing and they should be used in a continuous
form in the linguistic equation systems. The upper and
lower parts should overlap at the linguistic value 0. The
polynomials, f−

j and f+
j , are defined by the corner points

of the feasible area: three points are needed to define a
second order polynomial [Juuso, 2004]. In some cases, the
corner points need to be modified to obtain monotonous
increasing functions.

2.2 Interactions

The basic element of the linguistic equation approach is
the equation

m∑

j=1

AijXj + Bi = 0, (1)

where Xj ∈ [−2, 2] tells the linguistic level of the variable
j, j = 1...m. The coefficients Aij represent the direction
and strength of the interaction. The bias term Bi is used
e.g. in diagnostic applications, but its value can also be
zero. The subscript i refers to the ith equation in the
system of several equations. A linguistic equation (LE)
model formed by several equations is written as a matrix
equation

AX + B = 0, (2)

where A is an interaction matrix of size n×m, X is a vector
of linguistic values and B is the bias vector. Each row of the
interaction matrix belongs to an individual model, which
can be generated separately. [Juuso, 2004].

Fig. 1. Example of the model surface of a single equation.

Any variable xj can be calculated from other variables in
three steps: first all the other variables are scaled to the
linguistic range, then Xj is solved from (1), and finally
the values Xj are scaled back to real values xj with
membership definitions, i.e. the second order polynomials,
f−

j and f+
j . The linguistic levels of the input variables

are calculated from actual measurements using the inverse
functions of the variable specific second order polynomials
[Juuso, 2004]. In an example shown in Fig. 1, the wavy sur-
face shows that there are nonlinear interactions between
the three variables.
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(a) Calculations.

(b) Degree of membership.

Fig. 2. Example of a linguistic equation [Ahola et al., 2004].

In small systems, the directions of interactions are usually
quite clear, and only the absolute values of the coefficients
need to be defined. In the case of more complex systems,
a set of alternative equations is first developed, and the
final set of equations is then selected on the basis of error
measurements and expert knowledge. Correlation analysis
and principal component analysis are used in the selection
of the original variable groups [Ahola et al., 2007].

There are several ways to generate linguistic equations:
automatically from data, from expert knowledge or from
existing rule bases. Equations are selected in a sequence
defined by fuzziness so that each new equation will bring
at least one new variable to the model. Each vector
(Ai1 Ai2 . . . Aim Bi) is normalised in order to attain error
measures which are comparable between equation alter-
natives. Additional selection rules are needed in systems
which are intended for the detection of the operating
conditions.

The interpretation of the model surface is done by compar-
ing the levels of different variables. Before implementation
expert evaluation and final tuning of the LE models is
required. The possibility of expert assessment is one of
the most important features in the development of real
applications.

The LE models are very compact, e.g. the model shown in
Figure 1 consists of only one equation and three member-
ship definitions. A corresponding complete fuzzy model
requires 25 rules, if five membership functions are used.
A similar number of neurons would be needed in a SOM

based neural model. A set of membership functions could
be defined by choosing suitable locations, i.e. real values
from the range [−2, 2]. Existing rulebases and SOM-
networks can be used in developing LE models.

2.3 Case detection with LE models

The points on the surface (Fig. 1) represent conditions
where the model is exactly true. The fit of each equation
i, i = 1, . . . , n, is evaluated in the linguistic range on the
basis of the fuzziness of the equations,

εi =
m∑

j=1

AijXj + Bi. (3)

If an equation is true, the degree of membership of that
equation is one. All deviations reduce this degree according
to a triangular membership function (Fig. 2).

An example shown in Figure 2 includes three variables: the
power of the pulp grinder, broke feed, and the pH of the
bleached pulp. Due to confidentiality reasons the original
numerical measurement values are scaled between 0 and
100. The measured values of the variables are scaled within
the range [−2, 2]. The equation at the bottom shows that
the equation does not fit as the error εi is 0.96425 (Fig.
2(a)). A symmetrical triangular membership function is
used in Figure 2(b) to evaluate the degree of membership
of the equation.

3. LINGUISTIC EQUATIONS IN CBR CYCLE

The CBR tool presented in this paper was primarily devel-
oped for the identification of different operating situations
in paper machines [Juuso et al., 2002]. The basic idea was
to use previous break sensitivity cases to estimate web
break sensitivity in paper machines. The implementation
of this tool follows the structure of the CBR cycle [Aamodt
and Plaza, 1994], consisting retrieve, reuse, revise and
retain phases. The online application operates as a case
retrieval and reuse application, and the evaluation of the
solution is based on real process situations. This revise
stage is performed offline with a simulator using real
process measurements. The structure of the CBR stages
is presented in Figure 3. The cases are represented by LE
models, and the case retrieval is based on fuzzy reasoning
where the performance measures of the LE models are used
as similarity measures.

3.1 Representation of cases

The Case Base (CB) system of the application is based
on a division into categories which correspond to different
levels of break sensitivity (Fig. 4). Each category contains
a certain number of case models and each case corresponds
to certain operating conditions. A case model is a set of
linear equations presenting the interactions between the
variables which best describe the process conditions in
the corresponding case category. The nonlinear scaling
functions of each variable are also included in the case
model. The models are stored as simple numerical matrices
sorted by category and case numbers. Each case model
has specific variables and equations represented by (2).
The classification of cases and the selection of variables is
based on expert knowledge.
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Fig. 3. Structure of the CRR cycle: RETRIEVE and
REUSE in on-line application, and REVISE and
RETAIN in off-line analysis.

Fig. 4. Structure of the Case Base (CB).

3.2 Case retrieval

A new problem is presented to the system as a set of on-line
measurements (x1, x2, x3, . . . xm). These measurements
are scaled resulting in linguistic values (X1, X2, X3, . . . Xm).
The following calculations show how closely the new set of
variables resembles the existing cases in the CB, i.e. they
evaluate the error vectors εi for the cases i = 1, . . . , n. If
εi = 0, the equation is true and the new variables fit into
the equation perfectly, in other cases some error exists. The
closer the error is to zero, the better the resemblance of the
new set of values to the existing equation. The error vector
calculated with the scaled values Xj from (3) provides a
similarity measure εi for each equation i.

Each equation provides a new fact, i.e. a relationship
between 3 . . . 5 variables can be represented by a LE model
with a degree of membership, μe(i), based on the similarity
measure εi. The degree of membership of the case k,
denoted as μc(k), is evaluated by taking the weighted
average of the degrees of membership of the individual
equations:

μc(k) =
∑ne(k)

i=1 we(i, k)μe(i)
∑ne(k)

i=1 we(i, k)
, (4)

where each equation i has its own weight value we(i) in
case k. The number of equations, ne(k), is case specific.
The weight values can be generated automatically based
on information on how well the equations describe the
training data. The weights can also be set manually
based on expert knowledge. It is important to give all
the matched equations the appropriate weight [Juuso and
Ahola, 2007].

Each case k provides a new fact, i.e. case k is active
with a degree of membership calculated from (4). The
best-fitting category can be selected by combining these
facts with fuzzy reasoning. The degree of membership of
each web break category is generated from the degrees of
membership calculated for all the cases included in the
category. Once again, the weighted average could be used

μcat(l) =
∑nc(l)

k=1 wc(k, l)μc(i)
∑nc(l)

k=1 wc(k, l)
, (5)

where nc(l) is the number of cases in the category l, and
wc(k, l) is the weight average of case k in the category l.

Since only one case needs to be active to enable the
provision of evidence to a certain category, a more simple
method can also be used to retrieve the membership value
of the best fitting case and to use it to represent the whole
category

μcat(l) = max
i=1,...,nc(l)

μc(i). (6)

This solution is reasonable since the cases within a single
category do not necessarily coexist, which also means that
the weights of the cases are not well-defined. This has
been clearly seen in paper machine applications: similar
break sensitivity levels, especially normal levels, have been
detected in very different operating conditions; very good
and very bad conditions do not have as many cases.

3.3 Case reuse

Several cases with different degrees of membership can
coexist as the cases are based on gradual differences
in break sensitivity. The output of the application is
the solution of the best fitting category. This category,
Npredicted

cat , is simply the one with the biggest degree of
membership,

max
l=1,...,ncat

μcat(l). (7)

Break sensitivity could also be obtained as a weighted
average of the sensitivities of the active categories. The
difference of the results is not drastic since break sensitiv-
ity is calculated every minute, and a longer time average
is used as a final result.

3.4 Case revision

The revise stage involves calculating the difference be-
tween the predicted and the real operating situations.
The tested case will provide an estimate of the degree
of quality. The learning takes place when the degree of
quality is poor. This usually means that the memberships
of the case models are also not at the acceptable level,
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Fig. 5. Implementation of the web break sensitivity indicator in a Matlab R© environment.

and therefore the current operating situation can not be
identified properly. [Ahola et al., 2003]

If no resemblance is found, meaning that all the errors
εi are bigger than the tolerance, the question may arise,
whether we are dealing with a totally new case. The revise
stage consists of calculating the difference between the
predicted and the actual break sensitivity. The degree of
quality of the tested case, i.e. how much the predicted cat-
egory deviates from the actual one, provides information
on the web break sensitivity of the case.

3.5 Case retainment – Learning

In the retain stage, new potential cases are modelled with
the classification information. The learned new cases are
saved in the case base as new examples. The case analysis
can also be performed to find out universally applicable
models that operate well in most operating situations.
When this information is used, some cases can also be
removed from the case base. [Ahola et al., 2004]

Learning takes place in the analysis and it occurs when the
degree of quality is poor. In the retain stage, new potential
cases are modelled with the break class information. The
case base is completed with a new set of equations. As
the LE models are configured with numerical parameters
defining the nonlinear scaling functions and the interac-
tions, various learning methods can be used.

4. WEB BREAK SENSITIVITY INDICATOR

The continuous ambition to increase the production of pa-
per has made paper machine runnability a widely studied
area of research in recent years. Paper machine runnabil-
ity is usually measured by the number of web breaks in
comparison to paper machine speed. A web break takes
place when the strain on the paper exceeds its strength.
Paper web breaks can cause 2-7 % of the total production
loss of one paper machine, meaning a loss on 1.5 million

euros per year. According to statistics only 10-15 % of web
breaks have a distinct reason and this makes the prediction
of runnability difficult. When runnability is good, a paper
machine can be run at a desired speed with the smallest
possible number of breaks. Web break sensitivity is under-
stood as an indirect measurement of the runnability.

The aim was to combine on-line measurements and expert
knowledge in the model-based development of a web
break sensitivity indicator. Fig. 5 presents an example
of the basic operations and functions of an application
together with data analysis and modelling tasks. The
data set contains 73 measurements selected from the on-
line measurements of a paper machine taken during a
time span of about 300 days in the years 2000-2003.
In addition to the on-line measurements, the data set
also contains information on break occurrence. The data
sets were classified into 10 categories, depending on how
many breaks there were in one day: from no breaks to
more than 9 breaks in a day. Using the information on
break frequency example data sets were selected for the
cases, and later on these selected operating situations were
modelled with linguistic equations. The data analysis is
based on the comparison of various operating situations in
the process. [Ahola et al., 2004]

The case base of the system contains case models corre-
sponding to different amounts of breaks (Fig. 4). The first
on-line tests were already started in October 2001. The
indicator compares the new case to the examples in the
case base and it uses information from the best fitting case
to calculate the predicted break sensitivity. As its output,
the system gives numerical values for the predicted amount
of breaks. Since the same break level can be obtained from
several relatively different cases, the problems cannot be
solved by simple regression. The new facts provided by
the LE models are essential in compacting the fuzzy CBR
system, since each equation replaces a large number of
rules.
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The indicator contains about 40 cases which is a small set
of alternatives in comparision to the number of possible
ways to run a paper machine and the usual number of
cases in CBR applications. Anyway, according to the test
results the collection of example cases seems to fit the
most common process situations [Ahola and Juuso, 2006].
Of course, changing process conditions and new ways of
running the process will later increase the importance
of retaining new learned example cases in the case base.
[Ahola et al., 2004, Ahola, 2005]

The application in the paper mill also collects process
measurements related to web break sensitivity. The data
is saved for the performance analysis of the application
later on. These measurements can also be used for test-
ing the performance of different indicator versions. The
predicted break sensitivity is an indirect measurement,
which provides an early indication of process changes. The
list of active case variables can be used to avoid harmful
operating conditions.

5. CONCLUSIONS

This paper presents an effective tool for combining ex-
pert knowledge and on-line data in the development of
case based reasoning application. Linguistic equations ap-
proach with fuzzy logic operates considerably well when
CBR application is build for the estimation of web break
sensitivity on paper machine. The indirect measurement
and the levels of variables in the active cases provide
information for improving the runnability.
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