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Abstract: In this paper an actuator fault-tolerant control (FTC) strategy based on invariant
set computation is presented. The proposed scheme is based on a bank of observers which
match different fault situations that can occur in the plant. Each of these observers produces
an estimation error with a distinctive behavior when the observer matches the current fault
situation in the plant. With the information of the estimation errors from each of the considered
observers, a fault diagnosis and isolation (FDI) module is able to reconfigure the control loop
by selecting the appropriate stabilising controller from a bank of precomputed control laws,
each of them related to one of the considered fault models. The decision criteria of the FDI
is based on the computation of invariant sets of the estimation errors for each fault scenario
and for each control configuration. Conditions for the design of the FDI module and for fault-
tolerant closed-loop stability are given, and the effectiveness of the approach is illustrated with
an example.
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1. INTRODUCTION

Modern automatic control industrial systems can have
their reliability degraded due to the huge number of com-
ponents and their increasing number of possible faults
(understood as a deviation from a specified mode of be-
havior). It is known that those abnormal situations due to
instrument or component failure can prevent or endanger
continuous operation. A classic treatment of fault-tolerant
control (FTC) systems is given in Blanke et al. (2003). In
the present study, attention is focused on severe actuator
faults (i.e., total loss of some actuators). Therefore, the
presence of a fault diagnosis and isolation (FDI) module
is required to detect and identify the fault. In addition, an
active fault-tolerant control (FTC) strategy is necessary
to ensure, in presence of a fault, the highest possible
performance of the controlled system. As soon as the FTC
unit receives the signal from the FDI module identifying
the type of the fault, an appropriate decision must be
made in order to maintain the system properties, namely
stability and performance.

The actuator FTC strategy proposed in this paper is
based on invariant set computation (see, e.g., Kofman
et al. (2007)). The proposed scheme consists of a bank
of unknown input observers (UIO), see Wang and Lum
(2007), which match different fault situations that could
occur in the plant. Each one of these observers produces
an estimation error with a distinctive behavior when
the estimator matches the current fault situation in the
plant. With the information of the estimation errors, the
FDI module is able to reconfigure the control loop by
selecting the appropriate stabilising controller from a bank
of precomputed control laws, each of them related to one

of the considered fault models. The decision criteria of the
FDI is based on the computation of invariant sets of the
estimation errors of each observer for each fault scenario
and for each control configuration.

A key property for the correct fault diagnosis in the
proposed scheme is the separation of the invariant sets
that characterise healthy operation from the ones that
characterise faulty operation. The inherent component re-
dundancy that is required for an actuator fault-tolerant
scheme provides, in many applications, enough flexibility
to achieve the aforementioned set separation. In addi-
tion, the proposed technique is particularly well suited
for reference tracking problems, especially when the ref-
erence signal contains an offset component. In those cases,
the reference signal provides an additional mechanism to
achieve set separation. Conditions for the design of the
FDI module and for achieving the required set separation
are discussed in this paper. Under those conditions, fault-
tolerant closed-loop stability of the proposed scheme can
be guaranteed.

The main contributions of this paper are, firstly, that
stability of the proposed scheme can be guaranteed under
an easily checkable set of conditions. Moreover, design
choices so as to achieve the proper set of conditions for
closed-loop stability are discussed in detail. Secondly, a
remarkable feature is the simplicity of the fault diagnosis
and isolation mechanism. In effect, once the required set
of conditions is satisfied by design (this set of conditions—
set separation—can be checked off-line), then the design of
the FDI is very simple, its complexity depending linearly
on the number of actuators that can possibly fail. In
contrast with other schemes, (see, e.g., Larson et al.
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(2002); Hajiyev and Caliskan (2000)), which use stochastic
arguments for fault detection and control reconfiguration,
the approach followed here is purely deterministic and does
not require any statistical description neither for noises,
disturbances nor fault occurrences. The work presented
in this paper was inspired by previous results on fault-
tolerant multisensor switching control, see Seron et al.
(2008). However, the actuator fault-tolerant problem has
posed a different set of challenges with respect to its
sensor fault-tolerant counterpart, since the plant mixes
the effects of actuator malfunctions as observed from the
system output.

2. ACTUATOR FAULT DETECTION AND
RECONFIGURATION SCHEME

In this section, the proposed actuator fault detection and
reconfiguration scheme is described. The schematic of the
whole system is depicted in Figure 1 and its constitutive
parts are explained in the following subsections.
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Fig. 1. Proposed fault detection and reconfiguration
scheme.

2.1 Nominal Plant and Fault Models

We consider a linear perturbed system described by

ẋ(t) = Ax(t) + BLui(t) + Ed(t), (1a)

y(t) = Cx(t), (1b)

where x(t) ∈ R
n is the system state, ui(t) ∈ R

m is the
control input (where the subindex i will be explained in the
following sections), d(t) ∈ R

p is an unknown disturbance
assumed to be bounded, i.e., |d(t)| ≤ dmax, where dmax ∈
R

p is a vector with positive components. y(t) ∈ R
q is

the output and A, B, C, and E are constant matrices
of suitable dimensions. Matrix L is used to model the
occurrence of actuator faults. It is defined as

L , diag[l1 l2 . . . lm], li ∈ {0, 1}. (2)

As mentioned in the introduction, this paper is focused
on severe (outage) actuator faults. Accordingly, the case
li = 1 represents no fault in the i-th actuator; whereas,
li = 0 models an outage in the i-th actuator. In the
nominal case, i.e., no faults, L is the identity matrix

(L0 = I). In this paper, it is considered, for simplicity
of exposition, that only one actuator can fail at the time.
That is, the matrix L in (2) can take m+1 different values
L = Lk, where

L0 = I, Lk = diag[1 . . .

k
↓

0 . . . 1], k = 1, . . . , m. (3)

Next, an actuator redundancy assumption is imposed,
which is inherent to the actuator FTC scheme.

Assumption 2.1. The system (1)–(2) is controllable for all
possible values of L = Lk, with k = 0, . . . , m, as defined
in (3). ◦

We remark that, provided the system continues to be con-
trollable, simultaneous outage of more than one actuator
can also be contemplated within the present framework.

2.2 Exosystem for Reference Tracking

The exosystem module generates input and state reference
trajectories, uref,i(t) and xref,i(t), for each possible fault
situation, that is, for each possible value of the matrix L
in (3). These reference trajectories satisfy

ẋref,i(t) = Axref,i(t) + BLiuref,i(t), (4)

yref,i(t) = Cxref,i(t), (5)

with i = 0, . . . , m, where xref,i and uref,i are bounded
signals. Notice that this is always possible by using an
auxiliary control loop inside the exosystem, since the
exosystem model (4)–(5) mimics the plant model and,
hence, also satisfies Assumption 2.1. The exosystem (4)–
(5) is designed such that its output tracks exponentially a
signal y∗(t), that is

lim
t→∞

[yref,i(t) − y∗(t)] = 0, (6)

where y∗(t) is an output reference trajectory that we
ultimately wish the plant output y(t) to follow under
all possible fault situations. To guarantee the latter ob-
jective, stabilising state feedback gains are designed (see
Section 2.3 below) which ensure that, in the absence of
disturbances, the system state x(t) in (1) asymptotically
tracks the exosystem reference states xref,i(t) for each
possible fault situation.

2.3 Feedback Control Laws

This part of the scheme consists of a set of state feedback
gains which are computed off-line for the nominal case (no
faults) and for each possible fault scenario. These gains
are represented by the block Ki in Figure 1 and satisfy
the following assumption.

Assumption 2.2. The feedback control gains Ki are such
that the closed-loop matrices A+BLkKi, for i = 0, . . . , m
and k = 0, . . . , m, are Hurwitz. ◦

In combination with the exosystem described in Sec-
tion 2.2, these gains guarantee the desired tracking ob-
jective that the system output y(t) in (1) asymptotically
track the output reference trajectory y∗(t) in the absence
of disturbances. In order to achieve this objective for
the nominal and each possible fault scenarios, the state
tracking error is defined as

zi(t) , x(t) − xref,i(t), (7)
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for i = 0, . . . , m, and the control law assumes the form

ui(t) , Kizi(t) + uref,i(t). (8)

The FDI module (described below in Section 2.5) decides
the index i ∈ {0, . . . , m} that corresponds to the evaluated
scenario and passes the corresponding control input (8)
to the plant (1). Hence, from (1), (4), (7), and (8), the
dynamics of the state tracking error zi(t) are written as

żi(t) = (A + BLKi)zi(t) + B(L − Li)uref,i + Ed(t). (9)

2.4 Plant State Observers

The actuator fault detection is done using a bank of
unknown input observers (UIO) of the form proposed in
Wang and Lum (2007), namely,

ẇi
j(t) = Fwi

j(t) + GBLjui(t) + Mx(t), (10a)

x̂i
j(t) = wi

j(t) + Hx(t), (10b)

with j = 1, . . . , m, where x̂i
j(t) ∈ R

n is the state estimate,

wi
j(t) ∈ R

n is the observer state, ui(t) is the control
input (8) applied to the plant, x(t) is the plant state
assumed to be available for measurement, and Lj are as
defined in (3). F , G, M , and H are matrices to be designed
below. The estimation error for each observer is defined as

ei
j(t) , x(t) − x̂i

j(t). (11)

Substituting (1) and (10) in the time derivative of (11),
the dynamics of the estimation error can be written as

ėi
j(t) = [A − HA − M1] e

i
j(t) + [(I − H)BL − GBLj ] ui(t)

+ (I − H)Ed(t) + [(A − HA − M1) − F ] wi
j(t)

+ [(A − HA − M1)H − M2] x(t),

where M = M1 + M2, M1 and M2 being design matrices
to be determined. Following Wang and Lum (2007), we
choose the matrices F , G, H , M1, and M2 such that

G = I − H, GE = 0, (12a)

F = GA − M1, M2 = FH, (12b)

with F a Hurwitz matrix. The estimation error dynamics
then satisfy

ėi
j(t) = Fei

j(t) + GB(L − Lj)ui(t). (13)

Finally, substituting ui(t) from (8) in (13) yields

ėi
j(t) = Fei

j(t) + GB(L − Lj)Kizi(t) + GB(L − Lj)uref,i.
(14)

Notice that (9)–(13) define, for fixed i and j, a stable
system excited by bounded inputs, hence the error tra-
jectories will converge to the invariant sets that will be
computed in Section 3.1 below.

2.5 Fault Diagnosis and Isolation (FDI) Module

This module receives the estimation errors obtained from
the observers described in Section 2.4. The approach
for diagnosis and isolation by the FDI, with guaranteed
fault tolerance, is the main contribution of this paper.
This approach is described in Section 3 below. Once the
fault is detected and isolated, the FDI module selects the
appropriate index i for both the feedback control law and
the exosystem, and this index is used to implement the
control input (8). Thus, in the absence of disturbances,

the tracking error zi(t) defined in (7) asymptotically tends
to zero and, in consequence, y(t) asymptotically tends to
y∗(t), as desired.

3. DETERMINISTIC ACTUATOR FAULT
DIAGNOSIS

3.1 Invariant Sets Computation

The computation of the invariant sets for each estimation
error ei

j(t) in (14) is explained in this section. From (14)
we note that the dynamics of the estimation errors are
stable with inputs uref,i(t) and zi(t). The reference input
uref,i(t) is assumed to be bounded (see Section 2.2) and
can be expressed as uref,i(t) = ūref,i + ũref,i(t), where ūref,i

is a constant offset level and ũref,i(t) is a variation around
the offset, with amplitude bounded as |ũref,i(t)| ≤ ũmax

ref,i,
for all t.

Next, we compute ultimate bounds for the state tracking
error zi(t), whose dynamics obey (9) with inputs uref,i(t) =
ūref,i + ũref,i(t) (as explained above) and d(t). The latter
is the unknown disturbance, whose values are assumed to
be centered around zero and bounded by |d(t)| ≤ dmax.
We can then express the state tracking error as zi(t) =
z̄i + z̃i(t), where z̄i is a constant offset level and z̃i(t)
is a variation around that offset. The offset level can be
computed from (9) in steady state with constant input
ūref,i, and is given by:

z̄i = −(A + BLKi)
−1 B(L − Li)ūref,i. (15)

Performing the change of coordinates ũref,i(t) = uref,i(t)−
uref,i and z̃i(t) = zi(t)− z̄i, we can express equation (9) as

˙̃zi(t) = (A+BLKi)z̃i(t)+B(L−Li)ũref,i(t)+Ed(t). (16)

According to Assumption 2.2 and the fact that the inputs
are bounded as |ũref,i(t)| ≤ ũmax

ref,i and |d(t)| ≤ dmax, we can

then use (a minor modification of) Theorem 1 in Kofman
et al. (2007) to compute ultimate bounds on the elements
of z̃i(t) as |z̃i(t)| ≤ z̃max

i , where the bounds are given by

z̃max
i = |Vi|

∣

∣(Re(Λi))
−1

∣

∣

∣

∣V −1
i [E B(L − Li)]

∣

∣

[

dmax

ũmax
ref,i

]

,

(17)
and where (Λi, Vi) correspond to the Jordan decomposi-
tion A + BLKi = ViΛi V −1

i .

Finally, following similar steps, invariant sets for the
estimation errors ei

j(t) in (14) are computed. We call
Υj = GB(L − Lj), and express the estimation errors as
ei

j(t) = ei
j + ẽi

j(t), where the offset level is computed from

ei
j = −F−1Υj(Kiz̄i + uref,i). (18)

Hence, the dynamics for the variations of the estimation
error around the offset level are given by:

˙̃ei
j(t) = F ẽi

j(t) + ΥjKiz̃i(t) + Υjũref,i(t). (19)

Using again Theorem 1 in Kofman et al. (2007), with
F = V Λ V −1, invariant sets for the variations of the
estimation errors around the offset level are computed as

S̃
i

j =
{

ẽi
j ∈ R

n :
∣

∣V −1ẽi

∣

∣ ≤
∣

∣(Re(Λ))−1
∣

∣

∣

∣V −1[ΥjKi Υj ]
∣

∣

[

z̃max
i

ũmax
ref,i

]}

, (20)
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where z̃max
i was previously obtained in (17). Noting that

ei
j(t) = ei

j + ẽi
j(t), then an invariant set for the estimation

error, Si
j , can be computed as the Minkowski sum of the set

S̃
i

j in (20) and the singleton {ei
j} whose value is computed

from (18). Thus we have:

Si
j = S̃

i

j ⊕ {ei
j}. (21)

Remark 3.1. It should be noted that the sets in (21) are
invariant and attractive for the estimation error trajecto-
ries, see Kofman et al. (2007). That is, trajectories starting
inside the set will remain inside the set, whereas trajecto-
ries starting outside will converge towards the set. 1 ◦

Remark 3.2. Notice from (18), (20), and (21) that, when
Lj = L, we have Υj = 0 and hence Si

j = {0}. That is, when

the j-th observer has matrix Lj (cf. (14)) that matches the
current fault situation of the plant, represented by L in (1),
the estimation error dynamics converge to zero. ◦

3.2 Fault Detection Criterion

A key property that the proposed scheme requires is
that the invariant sets Si

j computed using (18), (20), and

(21), are separated from the origin when Lj 6= L (i.e.,
when the j-th observer does not match the current fault
situation of the plant). In Section 3.3 below, we will discuss
mechanisms to achieve this set separation, but for the
moment, it will be assumed that this is the case. Recall
also, that when Lj = L the estimation error trajectories
converge to zero with dynamics ėi

j(t) = Fei
j(t) [see (13)].

The FDI approach proposed in this paper considers balls
Brj

centered around the origin of the error space for each
observer. The radii of these balls, rj , are determined in
such a way that they do not overlap with any of the
invariant sets Si

j computed beforehand from (21), when
Lj 6= L. Then, the condition for selecting a control
configuration depends on whether the error trajectory
remains inside of this ball for one and only one of the
observers at a given time. However, this condition is
related to the time of convergence of the estimation error
trajectories. We will denote by ts an upper bound for the
convergence time of trajectories starting in any set Si

j and
ending up in any other set Sr

l , for all i, j, l, r ∈ {0, . . . , m}.
(This upper bound time ts can be adjusted by the design
of the matrix F—see (12b)—that governs the dynamics of
the estimation error trajectories according to (14).)

The criterion implemented by the FDI is as follows:

Algorithm 3.1. (FDI Criterion).

(1) While ei
j(t), for some j ∈ {0, . . . , m}, is inside the

corresponding ball Brj
around the origin, keep control

law Ki in place, with i = j;
(2) If ei

j(t) leaves the corresponding ball Brj
around the

origin, wait for ts units of time;
(3) Check all trajectories ei

j(t), t ≥ ts, for j = 0, . . . , m.
Choose the control law Ki, with i = ̃, corresponding

1 To be rigorous, the right hand side of the inequalities defining the
invariant sets in (20) should be expanded by a vector of arbitrarily
small positive components in order to guarantee convergence to the
invariant sets in finite time. However, this technicality will be avoided
for simplicity of exposition.

e1

e2

Brj1

t ≤ ts

t ≤ ts

(a) Invariant sets for observer j1.

e1

e2

Brj2

t ≤ ts

(b) Invariant sets for observer j2.

Fig. 2. Conceptual scheme of the invariant set approach.

to the trajectory ei
̃(t) inside the corresponding ball

Br̃
around the origin.

Note that, in order to avoid abrupt changes in situations
when, due to transient behavior, there are two or more
trajectories inside of their corresponding balls or when,
a trajectory different from the one that should converge
to the origin for the current fault scenario crosses its
ball during a transient, the FDI decision according to the
criterion above remains the same for a time ts necessary
for the transient behavior to settle down. This feature
(hysteresis) prevents from undesired oscillations in the FDI
decisions and on the closed-loop behavior.

The operation of the fault detection scheme is illustrated in
Figure 2. In the figure, the estimation error spaces of two
observers have been conceptually depicted. 2 The initial
fault situation in the plant is such that L in (1) is matched
by the observer matrix Lj1 . Consequently, the trajectories
of observer j1 are at the origin (Lj1 = L), whereas
the trajectories of observers j2 lie on their corresponding
invariant sets Si

j2
, away from the origin (since Lj2 6= L). At

some point in time, the fault situation in the plant changes
L so that it is now matched by observer j2 (Lj2 = L).
Therefore, according to Remark 3.2, the trajectories of
observer j2 will converge to the origin and the trajectories
of the observer j1 will converge to the corresponding
invariant set Si

j1
, away from the origin (since Lj1 6= L).

All the transitions between sets illustrated in Figure 2 will
take a time less than the upper bound ts, hence by the time
the FDI makes a new decision, all trajectories will have
converged to their respective invariant sets, reflecting the
new fault situation in the plant. Once the FDI switches to
the controller that corresponds to the new fault situation,
all the trajectories away from the origin will experience
a new transient to the invariant sets related to the new
controller. This situation is illustrated, for observer j1,
in Figure 2(a). However, the trajectory of observer j2
will remain at the origin according to Remark 3.2 (since
Lj2 = L).

3.3 Conditions for Correct Fault Diagnosis

As mentioned above, and illustrated in Figure 2, a key
feature that is required for correct fault diagnosis based
on the FDI criterion presented in Section 3.2, is for
the sets Si

j to be separated from the origin whenever
Lj 6= L. Depending of the problem setup, some of these

2 With some abuse of notation, the vector components in the
estimation error spaces are denoted by e1 and e2.
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sets could overlap with the origin. We will discuss below
some design mechanisms for the overall reference tracking
control system, that can be used in order to achieve the
required set separation.

Three aspects play an important role in the separation of
the invariant sets. Firstly, an offset value for the reference
signal y∗(t), to be followed by the exosystem (and in turn
by the plant), will imply an offset value, ūref,i, for the
reference input. This offset implies in turn an offset in
the corresponding invariant sets Si

j . Secondly, according to
Assumption 2.1, in the presence of a fault in a particular
actuator k ∈ {1, . . . , m}, the k-th component of the input
vector ui ∈ R

m related to the faulty actuator constitutes
a degree of freedom which can be varied conveniently so as
to achieve set separation. Notice that this k-th component
of the input vector will not be seen by the plant due to
the type of fault model considered (total outage). This
component can be introduced by the new control signal

ui(t) , Kizi(t) + uref,i(t) + udf,i, (22)

where udf,i denotes the aforementioned degree of freedom.
The offset level of ei

j(t)in (18) is now given by

ei
j = −F−1Υj (Kiz̄i + ūref,i + udf,i) . (23)

Finally, and related to the previous situation, since the k-
th input channel is not seen by the plant, there is flexibility
in the design of the k-th row of the feedback control
gain Ki which, again, will influence the offset level of the
estimation error trajectories according to (23).

3.4 Closed Loop Stability

Our stability proof is based on the following assumptions
related to the fault scenario and set separation.

Assumption 3.1. When Lj 6= L, 0 /∈ Si
j , where the sets Si

j

are computed as in (21). ◦

Assumption 3.2. Before the occurrence of the first change
in fault scenario, the system has been operating under a
particular condition for a sufficiently long time such that
all estimation error trajectories are inside the correspond-
ing invariant sets. ◦

Assumption 3.3. The minimum time interval between
faults, denoted by tf , satisfies

tf ≥ 2ts (24)

where ts is an upper bound for the convergence time of
trajectories starting in any set Si

j and ending up in any
other set Sr

l , for all i, j, l, r ∈ {0, . . . , m}. ◦

We then have the following result.

Theorem 1. Under the conditions stated in Assumptions
2.2, 3.1 and 3.2, the system (1), in closed loop with control
law (8) reconfigured by the FDI criterion of Algorithm 3.1,
is closed-loop stable and, in the absence of disturbances, its
output y(t) follows asymptotically the reference trajectory
y∗(t) for any fault scenario that satisfies Assumption 3.3.

Proof. (Outline) From Assumption 3.2, the system has
been operating under a particular condition, say L = L̂,
̂ ∈ {0, . . . , m}, for a sufficiently long time. Then, it follows
that before the occurrence of a new fault scenario, all the
trajectories ei

j(t) for the observers for which Lj 6= L are

inside their corresponding invariant sets away from the
origin (Assumption 3.1), and the trajectory corresponding
to the observer for which L̂ = L remains at the origin
(Remark 3.2). When the next fault scenario occurs, there
will be only one new observer that matches the current
fault scenario (L̃ = L, ̃ 6= ̂) whose trajectory will
converge towards the origin. All the trajectories ei

j(t), for
j 6= ̃, will migrate to their new corresponding invariant
sets (away from the origin by Assumption 3.1), in partic-
ular the previous trajectory at the origin corresponding
to an observer that no longer matches the fault situation
(L̂ 6= L). When the trajectory of the latter observer
leaves the corresponding ball Br̂

around the origin, the
FDI detects the presence of the new fault situation. By
design, the FDI will not make a new decision until a
time ts has elapsed (Algorithm 3.1). This implies, since
ts is an upper bound for all settling times, that all ei

j(t)
trajectories will have settled down in their new invariant
sets by the time the FDI makes the decision, guaranteing
the correctness of the decision. The reconfiguration of the
control law induced by the FDI decision will imply that
all trajectories will once again move towards new invariant
sets, attractive for the new control configuration according
to (14). However, the estimation error trajectories of the
matched observer (L̃ = L) will continue to remain at the
origin. Assumption 3.3 guarantees that all the previously
described transients occur before the appearance of a new
fault scenario, which ensures the correct operation of the
fault detection and reconfiguration scheme. Note that the
system will now be back in an operating condition that
satisfies Assumption 3.2 and, hence, it is closed-loop stable
since all trajectories will remain bounded. Moreover, from
Assumption 2.2, A + BLKi with i = ̃ is Hurwitz. It then
follows from (9) that, since (see previous discussion) the
FDI effectively identifies the fault (Li = L, with i = ̃),
the state tracking error defined in (7) will, in the absence
of disturbances, converges to zero in steady state (unless
a new fault scenario occurs, in which case the analysis
above has to be repeated). Finally, (6) implies that the
plant output y(t) = Cx(t) follows the reference trajectory
y∗(t). 2

4. EXAMPLE

Consider the electric circuit shown in Figure 3, whose
equations in state-space representation can be written as
in (1), with the following system matrices:

A =

[

− 1
ReqC

R1

ReqC

1
L

(

R2

Req
− 1

)

− 1
L

(

R1R2

Req
− R3

)

]

,

B =

[

1
ReqC

0

− R2

LReq

1
L

]

, E =

[ α1

ReqC

1
L

(

α2 −
R2

Req
α1

)

]

,

where R1 = R3 = 20Ω, R2 = 1KΩ, L = 80mH ,
C = 50µF , and Req = R1 + R2. The states (capacitor
voltage, vC(t), and inductor current, iL(t)) are available
for measurement. In Figure 3, the signal d(t) represents a
disturbance introduced to the circuit by inductive coupling
with an external circuit (not represented in the figure).
This effect has been modeled using dependent linear volt-
age sources with proportionality constants α1 and α2, with
values α1 = α2 = 1. This external disturbance signal is
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bounded as |d(t)| ≤ dmax, with dmax = 1. The capacitor
voltage is required to track a reference signal of the form
y∗(t) = a+b sin ωt, where ω = 20π, a = 50V and b = 1.5V .
The fault scenarios considered are:

+

-

V1(t) V2(t)

R1

R2

R3iL(t) L

CvC(t)
α1d(t) α2d(t)

Fig. 3. Electrical circuit used as a case study for FTC.

• Scenario 0: Both voltage sources, V1 and V2, are
operational. This scenario is modeled by L = L0,
where L0 = diag [1, 1].

• Scenario 1: Voltage source V1 is short-circuited,
that is u1(t) = 0, and V2 is operational. This fault
scenario is modeled by L = L1, where L1 = diag [0, 1].

• Scenario 2: Voltage source V2 is short-circuited,
that is u2(t) = 0, and V1 is operational. This fault
scenario is modeled by L = L2, where L2 = diag [1, 0].

The observers are designed as described in Section 2.4,
with H = EE+ (where E+ denotes the pseudoinverse
matrix of E), and M1 = diag [80,−1]. The feedback
control gains Ki used in (8), corresponding to the different
fault scenarios with i = 0, 1, 2, are designed using the
LQR methodology with R = 0.1I and Q = I, where
I = diag [1, 1].

Figure 4 shows the sequence of fault scenarios considered
and the FDI decision output, according to Algorithm 3.1
with ts = 0.004s. In this figure, values 0, 1 and 2 are
related to Scenario 0, Scenario 1, and Scenario 2, re-
spectively, as described above. Although the instantaneous
commutation between two faulty scenarios is unlikely, this
situation has been contemplated in this simulation at
t = 0.9s to test the operation of the FDI scheme. Note
from the simulation that the FDI makes, in all cases, the
right decision after a time ts. Figure 5 shows (due to space
limitations) only the invariant sets Si

j of observers related
to Scenario 0 and Scenario 1, considering all feedback
control gains. Also shown in the figures are the balls Br0

and Br1
around the origin, upon which the FDI decisions

are based. (Note that the balls are distorted because of
the scales employed in the representation.) Notice that the
error trajectories in Figure 5(a) cross the corresponding
balls when the commutation between Scenario 2 and
Scenario 1, at time t = 0.9, occurs. In this case, the FDI
diagnoses correctly due to the inclusion of a waiting time
ts in the FDI criterion. The overall operation of the fault-
tolerant scheme satisfies the desired control objectives;
namely, it maintains closed-loop stability and achieves
reference tracking under all fault scenarios contemplated.

5. CONCLUSION

This paper has proposed a new actuator fault-tolerant
control (FTC) scheme based on the computation of in-
variant sets where the estimation errors corresponding
to each fault situation lie, and the appropriate use of
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Fig. 4. Sequence of simulated fault scenarios (top graph)
and the corresponding FDI decision (bottom graph).
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(a) Invariant sets of observer re-
lated to Scenario 0.
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(b) Invariant sets of observer re-
lated to Scenario 1.

Fig. 5. Invariant sets for the observers of the example.
(Although not appreciated in Figure 5(a), there is a
very small invariant set near the point (0,-2.6) towards
which some trajectories transitorily converge.)

this information by a fault diagnosis and isolation (FDI)
module in the selection of a matching controller from a
bank of precomputed stabilising controllers. Conditions for
guaranteeing the correct decision of the FDI, and hence
stability and fault tolerance of the scheme, are given.
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