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Abstract: This paper addresses a problem of set-valued state estimation for uncertain
continuous-time systems via limited capacity communication channels. The uncertainty of the
systems satisfies an integral quadratic constraint. Using results from the robust Kalman filtering,
we design a coder/decoder-estimator pair that allows us to construct set-valued state estimate
of the systems via communication channels.
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1. INTRODUCTION

A standard assumption in the classical control theory is
that the data transmission required by the control algo-
rithm can be performed with infinite precision. However,
it is becoming more common to employ digital limited-
capacity communication networks for exchange of informa-
tion between system components. The resources available
in such systems for communication between sensors, con-
trollers and actuators can be severely limited due to size
or cost. This problem may arise where the large number of
mobile units need to be controlled remotely by a single con-
troller. Since the radio spectrum is limited, communication
constraints are a real concern. For example, the paper Stil-
well and Bishop [2000] shows that the major difficulty in
controlling a platoon of autonomous underwater vehicles
is the bandwidth limitation on communication between
the vehicles. Another classes of examples are offered by
complex networked sensor systems containing a very large
number of low power sensors and micro-electromechanical
systems. In all these problems, classical optimal control
and estimation theory cannot be applied since the control
signals and the state information are sent via a limited
capacity digital communication channel, hence, the con-
troller or estimator only observes the transmitted sequence
of finite-valued symbols.

Due to the enormous growth in communication technology,
there has been a significant interest in the problem of
control and state estimation via limited capacity com-
munication channels in recent years (see, e.g., Delchamps
[1990], Brockett and Liberzon [2000], Elia and Mitter
[2001], Petersen and Savkin [2001], Ishii and Francis [2002],
Liberzon [2003], Savkin and Petersen [2003], De Persis
and Isidori [2004], Nair and Evans [2004], Matveev and
Savkin [2005], Malyavej and Savkin [2005], Liberzon and
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Hespanha [2005], Savkin [2006], Savkin and Cheng [2007],
Cheng and Savkin [2007], Matveev and Savkin [2007,
2008]). Minimum capacity of the communication channels
required for state estimation and control has been investi-
gated in, e.g., Nair and Evans [2004], Savkin [2006].

In terms of robust state estimation, the works of Savkin
and Petersen [2003], Malyavej and Savkin [2005] provide
algorithms that allow one to reliably estimate states of an
uncertain system through communication networks. The
algorithms were developed based on the robust Kalman
filtering technique of Petersen and Savkin [1999].

This paper continues the research of Malyavej and Savkin
[2005]. The principal difference with Malyavej and Savkin
[2005] is that here we encode the output rather than
the state estimate of the uncertain systems. A major
advantage in encoding the measured output is that the
dimension of the quantisation region can be reduced, and
hence the required date rate may be reduced. It is because
the dimension of the measured output vector is normally
less than that of the state vector. Also, if the sensors that
measure the output vector are spatially distributed, it is
more convenience to transmit the measurements directly,
rather than collecting all the measurements and processing
them at an encoder before transmission.

The paper is organised as follows. In Section 2, we for-
mulate a problem of set-valued state estimation via lim-
ited communication channels. In Section 3, by using a
static quantisation scheme, a design of a coder/decoder-
estimator pair that solves the proposed problem is pre-
sented. For a special class of systems, Section 4 presents
a design of a coder/decoder-estimator pair that utilises a
dynamic quantisation scheme.

The proofs of the results will be given in the full version
of the paper.
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2. PROBLEM STATEMENT

Consider the time-varying uncertain system defined over
the finite time interval [0, NT ]:

ẋ(t) = A(t)x(t) + B(t)w(t)

z(t) = K(t)x(t)

y(t) = C(t)x(t) + v(t)

(1)

where N > 0 is an integer, T > 0 is a given constant,
x ∈ R

n is the state, w(t) ∈ R
p and v(t) ∈ R

l are the
uncertainty inputs, z(t) ∈ R

q is the uncertainty output, and
y(t) ∈ R

l is the measured output; and A(·), B(·), C(·) and
K(·) are bounded piecewise continuous matrix functions.

Notation 2.1. Let x = [x1 x2 · · · xn]′ be a vector from
Rn. Then ‖x‖∞ := maxj=1,...,n |xj |. Furthermore, ‖ ·
‖ denotes the standard Euclidean vector norm: ‖x‖ :=
√

∑n
j=1

x2

j .

The uncertainty [w(t) v(t)]′ vector in system (1) satisfies
the following integral quadratic constraint (IQC). Let Y0 =
Y ′

0
> 0 be a given matrix, x0 ∈ R

n be a given vector,
and Q(·) = Q(·)′ and R(·) = R(·)′ be given bounded
piecewise continuous matrix weighting functions satisfying
the following condition. There exists a constant δ > 0 such
that Q(t) ≥ δI, R(t) ≥ δI for all t. Then for a given time
interval [0, s], s ≤ NT , we will consider the uncertainty
inputs w(·) and v(·) and initial condition x(0) such that

(x(0) − x0)
′Y0(x(0) − x0) +

∫ s

0

(w(t)′Q(t)w(t)+

v(t)′R(t)v(t))dt ≤ d +

∫ s

0

‖z(t)‖2dt.

(2)

Besides the IQC (2), we assume that there exists a known
bound α > 0 for v(·) such that ‖v(s)‖ ≤ α for s ≤ NT .

In our estimation problem, a sensor measures the output
y(t) of the system (1) and the information of y(t) is sent
to a remote location. The only way of communicating
information from the sensor to that remote location is via a
digital communication channel which carries one discrete-
valued symbol h(kT ) at time kT , selected from a coding
alphabet H of size ν. Here T > 0 is a given period and
k = 0, 1, 2, 3, . . .. This restricted number ν of codewords
h(kT ) is determined by the transmission data rate of the
channel. For example, if µ is the number of bits that our
channel can transmit at any time instant, then ν = 2µ is
the number of admissible codewords. We assume that the
channel is a perfect noiseless channel and there is no time
delay.

We consider the problem of set-valued estimation of the
state of system (1) via a limited capacity communication
channel. Our estimating scheme consists of two compo-
nents: a coder F and a decoder-estimator G. The coder
is developed at the measurement location by taking the
measured output y(·) and coding to the codeword h(kT ).
Then the codeword h(kT ) is transmitted via a limited
capacity communication channel to the decoder-estimator
that is remotely located. The decoder-estimator takes the
codeword h(kT ) and produces a set XkT that overbounds
the true set of possible state x(kT ) at the remote loca-
tion. This situation is illustrated in Figure 1. The coder
and the decoder-estimator are of the following form: for
k = 0, 1, 2, 3, . . . , N ,

Coder: h(kT ) = F
(

y(·)|kT
0

)

;

Decoder-estimator: XkT = G (h(T ), h(2T ), ..., h(kT )) .
(3)

Uncertain

System Coder
Decoder-

estimator
Communication channel

Fig. 1. Set-valued state estimation via digital communica-
tion channel

Notation 2.2. Let y(t) = y0(t) be a fixed measured out-
put of the uncertain system (1) and let the finite time
interval [0, s] be given. Furthermore, let F and G be given
coder and decoder-estimator. Then, Xs[x0, y0(·)|s0, d,F ,G]
denotes the set produces by the coder/decoder-estimator
pair that captures all possible state x(s) at time s for the
uncertain system (1) with uncertain inputs satisfying the
constraint (2).

The problem of set-valued state estimation via limited ca-
pacity communication channels considered in this paper is
the problem of constructing the coder/decoder-estimator
pair (F ,G) and the set Xs[x0, y0(·)|s0, d,F ,G].

In the next section, we present an algorithm for con-
structing a coder/decoder-estimator pair using a static
quantisation scheme that solves the above state estimation
problem.

3. CODER/DECODER-ESTIMATOR WITH STATIC
QUANTISATION SCHEME

In order to construct the coder/decoder-estimator pair
using a static quantisation scheme, we first require the
solution to the following Riccati equation:

−Ṡ(t) = S(t)A(t) + A(t)′S(t)

+ S(t)B(t)Q(t)−1B(t)S(t) + K(t)′K(t),

S(0) = Y0, t ∈ [0, NT ].

(4)

Also, we need the solution of the state equation: for
t ∈ [0, NT ],

η̇(t) = −[A(t) + B(t)Q(t)−1B(t)S(t)]′η(t), η(0) = Y0x0.
(5)

Let Xs[x0, d] be the set of all possible states x(s) at time
s of the uncertain system (1) with uncertain inputs satis-
fying the constraint (2). The following robust prediction
result was obtained in Moheimani et al. [1998] and it is
useful to determine the size of a quantisation region.

Theorem 1. Let Y = Y0 > 0 be a given matrix, and
Q(·) = Q(·)′ and R(·) = R(·)′ be given matrix functions
such that condition (2) holds on the time interval [0, NT ].
Then, for a given vector x0 ∈ R

n, a constant d > 0 and
any time s ∈ [0, NT ], the set Xs[x0, d] is bounded if and
only if the Riccati equation (4) has a solution over [0, NT ]
such that S(·) > 0. Furthermore, the set Xs[x0, d] is given
by

Xs[x0, d] = {xs ∈ R
n : x′

sS(s)xs − 2x′
sη(s) + hs ≤ d}

(6)

where

hs = x′
0
S0x0 −

∫ s

0

η(t)′B(t)Q(t)−1B(t)′η(t)dt.
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Proof: See Moheimani et al. [1998].

By using Theorem 1, it can be shown that if the Riccati
equation (4) has a solution over [0, NT ] such that S(·) > 0,
then for all s ∈ [0, NT ],

‖x(s)‖∞ ≤ ‖ζ(s)‖∞ + max
i=1,2,...,n

√

[S−1(s)]i,i

×
√

d + ζ(s)′S(s)ζ(s) − hs

(7)

where [S−1(s)]i,i is the (i, i) diagonal element of the matrix
S−1(s) and ζ(s) := S−1(s)η(s). Then, using (7), we can
define a bound for y(·) over the time interval [0, NT ] as
follows:

L := max
s≤NT

{‖C(s)‖∞‖x(s)‖∞ + ‖v(s)‖∞}. (8)

Such a bound L exists since C(·), x(·) and v(·) are all
bounded over the time interval [0, NT ]. Also, L can be pre-
computed without the knowledge of the actual output y(·).
This bound is then used to define the quantisation region,
as we are to going to encode the output measurement
y(kT ), k = 0, 1, 2, . . . , N .

Our proposed coder/decoder-estimator (F ,G) uses uni-
form quantisation of the output y(·) of system (1). Also, we
let the set BL :=

{

y ∈ Rl : ‖y‖∞ ≤ L
}

be the quantisation
region. We propose to quantise the output y by dividing
the quantisation region BL uniformly into ql hypercubes
where q is a specified integer. For example, for l = 2, q = 3,
L = a, the region BL would be divided into nine regions
as shown in Figure 2.

Fig. 2. Uniform quantisation of the state space.

Indeed, for each i ∈ {1, 2, . . . , l}, we divide the correspond-
ing component of the vector y into q intervals as follows:

Ii
1
(L) :=

{

yi : yi ∈ [−L, −L +
2L

q
)

}

;

Ii
2
(L) :=

{

yi : yi ∈ [−L +
2L

q
, −L +

4L

q
)

}

; · · ·

Ii
q(L) :=

{

yi : yi ∈ [L − 2L

q
, L]

}

.

(9)

Then for any y ∈ BL, there exist unique integers
i1, i2, . . . , il ∈ {1, 2, . . . , q} such that y ∈ I1

i1
(L) ×

I2

i2
(L) × . . . × I l

il
(L). Also, corresponding to the integers

i1, i2, . . . , il, we define the vector η as follows:

η(i1, i2, . . . , il) :=

− L +

[

L(2i1 − 1)

q

L(2i2 − 1)

q
· · · L(2il − 1)

q

]′

.

(10)

The vector η(·) is the centre of the hypercube I1

i1 (L) ×
I2

i2
(L) × . . . × I l

il
(L) containing the original point y. Note

the regions I1

i1 (L) × I2

i2 (L) × . . . × I l
il
(L) partition the

region BL into ql regions. In our proposed coder/decoder-
estimator, each one of these regions or hypercubes will be
assigned a codeword and the coder will transmit the code-
word corresponding to the current output vector y(kT ).
The transmitted codeword will correspond to the integers
i1, i2, . . . , il. By defining ȳ(kT ) := η(i1, i2, . . . , il), for a
given ǫ > 0, we can choose q > 0 such that

‖y(kT )− ȳ(kT )‖∞ ≤ L/q ≤ ǫ, ∀k = 0, 1, 2, . . . , N.
(11)

In other words, ǫ gives the quantisation error and it can
be controlled by varying the parameter q.

Before introducing the coder/decoder-estimator, we con-
sider the following jump Riccati equation:

Ṗ (t) = A(t)P (t) + P (t)A(t)′ + B(t)Q−1(t)B(t)′

+ P (t)K(t)′K(t)P (t), for t 6= kT

P (kT ) = [P−1(kT−) + C(kT )′R̄C(kT )]−1,

for k = 1, 2, . . . , N.

(12)

where R̄ = r−1I and r > 0 is a given scalar. Here P (t−)
denotes the limit of the matrix function P (·) at the point t
from the left, i.e., P (t−) := limǫ>0,ǫ→0 P (t− ǫ). The jump
Riccati differential equation (12) behaves like a standard
Riccati differential equation between sampling instants.
However, at the sample times, its solution exhibits finite
jump.

Now, we are in position to introduce our proposed
coder/decoder-estimator that uses the static quantisation
scheme:

Coder F
h(kT ) = {i1, i2, . . . , il}, for k = 0, 1, 2, . . . , N

and y(kT ) ∈ I1

i1(L) × I2

i2(L) × . . . × I l
il
(L).

(13)

Decoder-estimator G
˙̂x(t) = [A(t) + P (t)K(t)′K(t)]x̂(t), for t 6= kT

x̂(kT ) = x̂(kT−) − P (kT−)C(kT )′R̄C(kT )x̂(kT−)

+ P (kT−)C(kT )′R̄ȳ(kT ), for k = 1, 2, . . . , N,

ȳ(kT ) = η(i1, i2, . . . , il), for h(kT ) = {i1, i2, . . . , il},
x̂(0) = x0,

(14)

The result of this section is stated as follows:

Theorem 2. Consider the uncertain system (1), (2) and
the coder/decoder-estimator pair (F ,G) (13), (14). Let
Y = Y0 > 0 be a given matrix, x0 ∈ R

n be a given
vector, and Q(·) = Q(·)′ and R(·) = R(·)′ be given matrix
functions such that Q(t) ≥ δI, R(t) ≥ δI on time interval
[0, NT ] for some δ > 0. Also, let R̄ = r−1I > 0 be a
given diagonal matrix, d > 0, T > 0, α > 0, and ǫ > 0
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be given constants, and s ∈ (0, NT ] be given. Suppose
that the solution S(·) to the Riccati Equation (4) with
initial condition S(0) = Y0 is defined and positive-definite
on the interval [0, NT ], and the solution P (·) to the jump
Riccati equation (12) is defined and positive-definite on
the interval [0, NT ] with initial condition P (0) = Y −1

0
.

Furthermore, suppose that the quantisation parameter q
satisfying

q ≥ L/ǫ, (15)

where L is defined in (8). Then,

Xs[x0, y0(·)|s0, d,F ,G] =

{xs ∈ R
n : (xs − x̂(s))′P (s)−1(xs − x̂(s)) ≤ d + ρ(s)}

(16)

where

ρ(s) :=

∫ s

0

‖K(t)x̂(t)‖2dt +
N(α + ǫ

√
l)2

r

−
∑

kT≤s

‖R̄1/2(C(kT )x̂(kT ) − ȳ0(kT ))‖2,

the state x̂(·) is defined by the jump state equation (14)
with initial condition x0, the signal ȳ0(·) is the sampled
and quantised fixed measurement output y0(·) of the
uncertain system (1), (2).

Proof: The proof of Theorem 2 will be given in the full
version of the paper.

Remark 3.1. The set Xs[x0, y0(·)|s0, d,F ,G] is an ellipsoid
and the centroid of this ellipsoid x̂(s) can be used to
provide a point-valued state estimate.

The proposed coder/decoder-estimator with static quanti-
sation scheme in this section requires us to determine the
bound L (8) a priori. One can imagine that the constant L
can be very large, requiring a large q to keep the condition
L/q ≤ ǫ holds for a given ǫ. As a result, this scheme
requires large data rate communication channels. In the
next section, a dynamic quantisation scheme is proposed
for a special class of system (1), and this scheme may
require a lesser data rate.

4. CODER/DECODER-ESTIMATOR WITH
DYNAMIC QUANTISATION SCHEME

In this section, we consider the time-varying uncertain
system defined over the finite time interval [0, NT ]:

ẋ(t) = A(t)x(t) + B(t)w(t)

y(t) = C(t)x(t) + v(t)
(17)

where N > 0 is an integer, T > 0 is a given constant,
x ∈ R

n is the state, w(t) ∈ R
p and v(t) ∈ R

l are
the uncertainty inputs from L2[0, NT ], and y(t) ∈ R

l is
the measured output; and A(·), B(·), C(·) are bounded
piecewise continuous matrix functions.

The uncertainty [w(t) v(t)]′ vector in system (17) and the
initial condition x(0) satisfies the following condition. Let
Y0 = Y ′

0
> 0 be a given matrix, x0 ∈ R

n be a given vector,
and Q(·) = Q(·)′ and R(·) = R(·)′ be given bounded
piecewise continuous matrix weighting functions satisfying
the following condition: there exists a constant δ > 0 such
that Q(t) ≥ δI, R(t) ≥ δI for all t. Then for a given time

interval [0, s], s ≤ NT , we will consider the uncertainty
inputs w(·) and v(·) and initial condition x(0) such that

(x(0) − x0)
′Y0(x(0) − x0) +

∫ s

0

(w(t)′Q(t)w(t)+

v(t)′R(t)v(t))dt ≤ d.

(18)

Moreover, the bound α of the uncertainty input v(·) is
known, i.e., ‖v(s)‖ ≤ α for s ≤ NT .

Essentially, the uncertain system (17), (18) is a special case
of system (1), (2) with K(·) ≡ 0.

We first consider the following jump Riccati equation:

Ṗ (t) = A(t)P (t) + P (t)A(t)′

+ B(t)Q−1(t)B(t)′, for t 6= kT ;

P (kT ) = [P−1(kT−) + C(kT )′R̄C(kT )]−1,

for k = 1, 2, . . . , N.

(19)

where R̄ = r−1I and r > 0 is a given scalar. Suppose the
solution P (·) to the jump Riccati equation (19) is defined
and positive-definite on the interval [0, NT ] with initial
condition P (0). Then there exists a constant β > 0 such
that the solution P (·) satisfies

max
i=1,2,...,n

√

[P (kT )]i,i ≤ β, for k = 0, 1, 2, . . . , N. (20)

Since the matrix C(·) is a bounded piecewise continuous
matrix function, there exists a constant γ > 0 such that

max
k=0,1,2,...,N

‖C(kT )‖∞ ≤ γ, (21)

where ‖C(·)‖∞ denotes the maximum row sum ma-
trix norm of the matrix ‖C(·)‖∞, i.e., ‖C(·)‖∞ :=
maxi

∑n
j=1

|c(·)ij | and c(·)ij is the ij-th element of the

matrix C(·).
In this section, our proposed coder/decoder-estimator
(F ,G) uses uniform quantisation of the difference between
the output y(kT ) of the system (17) and the predicted
output ŷ(kT−), for k = 0, 1, 2, . . . , N , (as defined in the
coder/decoder-estimator (F ,G) (23) and (24)), instead of
only y(kT ) as in Section 3. We let a > 0 be a given constant
and the set

Ba :=
{

(y(kT ) − ŷ(kT−)) ∈ Rl : ‖(y(kT ) − ŷ(kT−))‖∞ ≤ a
}

(22)

be the quantisation region. Again, we quantise the differ-
ence (y(kT )− ŷ(kT−) by dividing the quantisation region
Ba uniformly into ql hypercubes where q is a specified
integer.

Now, we introduce the coder/decoder-estimator that uses
the dynamic quantisation scheme:

Coder F
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˙̂x(t) = A(t)x̂(t), for t 6= kT ;

x̂(kT ) = x̂(kT−) − P (kT−)C(kT )′R̄C(kT )x̂(kT−)

+ P (kT−)C(kT )′R̄ȳ(kT ), for k = 1, 2, . . . , N ;

ŷ(kT−) = C(kT−)x̂(kT−); x̂(0) = x0;

h(kT ) = {i1, i2, . . . , il}, for k = 1, 2, . . . , N

and (y(kT ) − ŷ(kT−)) ∈ I1

i1 (a) × I2

i2(a) × . . . × I l
il
(a);

ȳ(kT ) = ŷ(kT−) + η(i1, i2, . . . , il),

for h(kT ) = {i1, i2, . . . , il};
(23)

Decoder-estimator G
˙̂x(t) = A(t)x̂(t), for t 6= kT ;

x̂(kT ) = x̂(kT−) − P (kT−)C(kT )′R̄C(kT )x̂(kT−)

+ P (kT−)C(kT )′R̄ȳ(kT ), for k = 1, 2, . . . , N ;

ȳ(kT ) = ŷ(kT−) + η(i1, i2, . . . , il),

for h(kT ) = {i1, i2, . . . , il};
ŷ(kT−) = C(kT−)x̂(kT−); x̂(0) = x0.

(24)

We are now in position to state the result of this section.

Theorem 3. Consider the uncertain system (17), (18) and
the coder/decoder-estimator pair (F ,G) (23), (24). Let
Y = Y0 > 0 be a given matrix, x0 ∈ R

n be a given
vector, and Q(·) = Q(·)′ and R(·) = R(·)′ be given matrix
functions such that Q(t) ≥ δI, R(t) ≥ δI on the time
interval [0, NT ] for some δ > 0. Also, let R̄ = r−1I > 0
be a given diagonal matrix, d > 0, T > 0, α > 0, γ > 0,
β > 0, and ǫ > 0 be given constants, and s ∈ (0, NT ]
be given. Suppose that the solution P (·) to the jump
Riccati equation (19) is defined and positive-definite on
the interval [0, NT ] with initial condition P (0) = Y −1

0
.

Furthermore, suppose that the quantisation parameter q
satisfying

q ≥ a/ǫ (25)

where

a := γβ
√

d̄ + α, d̄ := d + N(α + ǫ
√

l)2/r. (26)

Then,

Xs[x0, y0(·)|s0, d,F ,G] =

{xs ∈ R
n : (xs − x̂(s))′P (s)−1(xs − x̂(s)) ≤ d + ρ(s)}

(27)

where

ρ(s) := N(α + ǫ
√

l)2/r

−
∑

kT≤s

‖R̄1/2(C(kT )x̂(kT ) − ȳ0(kT ))‖2, (28)

the state x̂(·) is defined by the jump state equation (24)
with initial condition x0, the signal ȳ0(·) is the sampled
and quantised fixed measurement output y0(·) of the
uncertain system (17), (18).

Proof: The proof of Theorem 3 will be given in the full
version of the paper.

5. CONCLUSION

A problem of set-valued state estimation for uncertain
continuous-time systems via limited capacity communi-
cation channels was studied in this paper. To solve the
problem, we designed a coder and a decoder-estimator,
by employing the robust Kalman filtering technique, that
allow us to estimate the states of the uncertain systems via
communication channels. The decoder-estimator generates
set-valued state estimate that is an ellipsoid containing all
the possible states of the uncertain system. The results
presented in this work will be useful in estimating states
of spatially distributed systems. Since the set that captures
all the possible states may be overly conservative, the
tightness of this set deserves further investigation.
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