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Abstract: Models of biological or technical applications are represented by nonlinear systems,
which are defined by ordinary differential equations. These systems generally contain multiple
uncertain or unknown parameters. These uncertainties result from measurement errors or from
modeling, e.g. numerical modeling. For several applications, the guaranteed enclosure of all
possible solutions of an initial value problem (IVP) of a given uncertain system is demanded.
In general the calculation of guaranteed bounds of the given uncertain nonlinear system cannot
be done directly, because the solution set of an IVP can be solved algebraically only in certain
cases. Furthermore, most numerical methods which compute the solution of IVPs cannot handle
systems with uncertain parameters. But for the class of cooperative systems tight guaranteed
bounds for all solutions of the IVP can be computed. This class satisfies certain monotony
conditions. Moreover the computation of guaranteed lower and upper bounds can be applied
to a larger class of ordinary differential equations, which does not satisfy all conditions for
uncertain cooperative systems. For this class of monotone systems the guaranteed enclosure can
show some overestimation. Some examples illustrate the methods described in this contribution.

Keywords: Application of nonlinear analysis and design; Uncertainty descriptions;
Parameter-varying systems.

1. INTRODUCTION

A wide range of biological and technical systems is repre-
sented by ordinary differential equations. The representa-
tion of such systems is given by

ẋ(t) = f̃(x, t) with x(0) = x0, (1)

where the number of states is given by n. The right hand
side is given by the function f̃ which does not depend
on any uncertain parameters. But these systems often
contain uncertain parameters, due to model uncertainties
or measurement errors. Also numerical system modeling
methods, e.g. Finite Element Methods, can result in un-
certain parameters. The uncertainties are represented by
intervals, which means that the value of each parameter p
lies between the infimum pL and the supremum pR. This
representation also denotes the left and right end of the
corresponding interval pI . Thus, a system with uncertain
parameters is given by

ẋ(t) = f(x, t;p) with x(0) = x0 and p ∈ pI (2)

where pI represents the interval parameter vector. The
number of uncertain parameters is given by P .

⋆ The presentation of this paper was supported by Rheinkalk GmbH,

Am Kalkstein 1, 42489 Wuelfrath, Germany.

The set of all possible solutions of the given IVP of the sys-
tem (2) with respect to the uncertain parameters is often
needed. In general the solution is hard to find for nonlinear
systems and guaranteed bounds for uncertain nonlinear
systems cannot be computed directly. The Monte-Carlo
method is a common method to determine a solution
subset of the given IVP (2). With this method the IVP
is solved several times with randomly chosen values from
the interval vector pI . Thus, in general the Monte-Carlo
method does not deliver a guaranteed enclosure for all pos-
sible solutions; it returns only a subset of the designated
domain enclosed by the guaranteed bounds.

The main target is to determine guaranteed bounds for
uncertain systems as an exact enclosure. This can be done
for so called cooperative systems. Moreover, for monotone
systems guaranteed bounds can also easily be computed,
although these bounds may suffer from overestimation.
This means that the given set of all possible solutions of the
IVP of a monotone system is only a conservative enclosure.
Nevertheless the computed solution does give a guaranteed
enclosure of all IVP solutions with respect to the uncertain
parametersand in general compute a tighter enclosure than
other guaranteed bounds for uncertain systems providing
methods, c.f. Tibken and Gennat (2005, 2006); Gennat and
Tibken (2007); Aschemann et al. (2005).
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2. COOPERATIVE SYSTEMS

Nonlinear uncertain systems that fulfill certain monotony
conditions, are calles cooperative systems, c.f. Angeli and
Sontag (2003); Smith (1986, 1998). For systems which
fulfill the conditions for cooperative systems the simulation
has to be done two times, one for the lower bound and one
for the upper bound. The region between the bounds define
the set of all possible solutions given by the uncertainties.
In this contribution a simulation of a nonlinear system
means the numerical solution of an IVP given by an
ordinary differential equation (2). This can be done e.g. by
using the Matlab ODE-solver, c.f. Shampine and Reichelt
(1997). A validated solution of the IVP can be computed
by using Lohner’s AWA-algorithm, see Lohner (1988);
Ludyk (1990).

A given system (1) is called a cooperative system, if
all states of the system are monotone and leave the
nonnegative orthant invariant. A system is monotone if it
preserves the ordering of the initial data. This means the
system (1) is monotone, if two states x, y for the ordering

x ≥ y and xi = yi (3)

the condition

f̃i(x, t) ≥ f̃i(y, t) ∀ t ≥ 0 (4)

is fulfilled for all i = 1, · · · , n. An additional condition
for cooperative systems is given by the property that all
states of the system do not leave the nonnegative orthant
or in other words that x(t) ≥ 0 ∀ t ≥ 0. The nonnegative
orthant is given by

R≥0 = {x | xi ≥ 0 ∀ i = 1, · · · , n, x ∈ R
n}. (5)

The examination of the condition (4) and the nonnega-
tivity condition can be done with necessary and sufficient
conditions for the continuously differentiable functions on
the right hand side of the system (1).

The continuously differentiable system (1) is a cooperative
system, if and only if

x ∈ R≥0 (6)

and

∂f̃i

∂xj

(x, t) ≥ 0 ∀ i 6= j with i, j = 1, · · · , n. (7)

hold. All elements of the Jacobian of f̃ except those on the
main diagonal have to be positive or zero.

2.1 Uncertain Cooperative Systems

The expansion of these conditions to uncertain systems
(2), which also depend on the parameters p, is accom-
plished by expanding the system of differential equations.
The resulting new system is given by

(

ẋ(t)
ṗ

)

=

(

f (x, t;p)
0

)

, x(0) = x0,p ∈ pI (8)

or ż(t) = g (z, t;p)

with z = (x p)T . This system has to fulfill conditions (6)
and (7). Thus, the conditions for cooperativity of uncertain
systems are reformulated as follows. The continuously

differentiable system (8) is a cooperative system, if and
only if

x ∈ R≥0 (9)

and
∂gi

∂zj

(z(t), t;p) ≥ 0 ∀ i 6= j, with i, j = 1, · · · , n + P. (10)

hold. In this case, the uncertain system (8) is cooperative
for all p ∈ pI . To prove the nonnegativity of the states
for all times, the states dependency on the parameters has
also to be examined. The nonnegativity can be proven by
showing

d

dt
xi|xi=0 =fi(x;p)|xi=0 ≥ 0 ∀i = 1,· · ·, n and (11)

d

dt

(

∂xi

∂pj

)∣

∣

∣

∣

∂xi
∂pj

=0
≥ 0 ∀i = 1,· · ·, n, j = 1,· · ·, P (12)

(13)

with xk ≥ 0,

(

∂xk

∂pl

)

≥ 0, k = 1,· · ·, n, l = 1,· · ·, P.

Then, the time derivatives of all states (11) and all states’
partial derivatives with respect to all parameters (12) are
nonnegative. Uncertain systems which fulfill the conditions
(10), (11) and (12) are named uncertain cooperative sys-
tems in this contribution.

Lower and upper bounds to include all possible solutions
of the IVP (2) can be computed by solving the two IVPs
of the systems

ẋ(t) = f(x, t;pL) with x(0) = x0 (14)

and

ẋ(t) = f(x, t;pR) with x(0) = x0. (15)

Thus, the system (8) is cooperative with respect to the
uncertain parameters and the solutions of IVPs (14) and
(15) determine the lower and upper bound of the set of all
possible solutions of (2).

2.2 First Example

To illustrate the idea of cooperative systems and their
guaranteed enclosure, a simple arbitrary two-dimensional
example is given. Consider a system represented by the
differential equations

ẋ1 = p1x2 + p2x
2
1

ẋ2 = x1 − x2
2 + x1x2

(16)

with initial values x(0) = (5 0)T . The uncertain param-
eters are given by pI

1 = [1, 1.1] and pI
2 = [−1,−0.9]. To

examine the conditions (9) and (10) the Jacobian has to
be computed. It results in

∂g

∂z
(z, t;p) =







2 p2x1 p1 x2 x2
1

1 + x2 −2 x2 + x1 0 0
0 0 0 0
0 0 0 0






.

Assuming all states are nonnegative, all elements of the
Jacobian except those on the main diagonal are also
nonnegative. Thus, (10) is fulfilled. The nonnegativity
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Fig. 1. first example: simulation of x1 with guaranteed
bounds and Monte-Carlo simulations

conditions (11) and (12) are examined in the following.
The inequalities

f1(0, x2)≥0 with x2 ≥ 0 and (17)

f2(x1, 0)≥0 with x1 ≥ 0 (18)

prove the nonnegativity of the system with respect to the
states. The nonnegativity with respect to the parameters
is shown by examination of

d

dt

(

∂x

∂p

)

=
∂f

∂x
(x;p) ·

∂x

∂p
+

∂f

∂p
(19)

d

dt

(

∂x

∂p

)

=

(

2 p2x1 p1

1 + x2 −2 x2 + x1

)







∂x1

∂p1

∂x1

∂p2

∂x2

∂p1

∂x2

∂p2






+

(

x2 x2
1

0 0

)

.

From (17) and (18) follows

f1(0, x2) = p1x2 ≥ 0,
f2(x1, 0) = x1 ≥ 0

and from (19) the inequalities

d

dt

(

∂x1

∂p1

) ∣

∣

∣

∣

∂x1

∂p1
=0

= p1

(

∂x2

∂p1

)

+ x2 ≥ 0

d

dt

(

∂x2

∂p1

) ∣

∣

∣

∣

∂x2

∂p1
=0

= (1 + x2)

(

∂x1

∂p1

)

≥ 0

d

dt

(

∂x1

∂p2

) ∣

∣

∣

∣

∂x1

∂p2
=0

= p1

(

∂x2

∂p2

)

+ x2
1 ≥ 0

d

dt

(

∂x2

∂p2

) ∣

∣

∣

∣

∂x2

∂p2
=0

= (1 + x2)

(

∂x1

∂p2

)

≥ 0

are derived. With (17), (18) and (19) it is shown that all
solutions of the IVP given by the system (16) stay in the
nonnegative orthant for all times.

To determine the guaranteed lower and upper bound, the
two IVPs (14) and (15) has to be solved. The resulting
graphs of the solutions are shown in Fig. 1 and Fig. 2,
where the green graphs represent 64 Monte-Carlo simula-
tions for comparison only.

3. UNCERTAIN MONOTONE SYSTEMS

It is possible to get tight guaranteed lower and upper
bounds for a nonlinear system, which does not fulfill the
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Fig. 2. first example: simulation of x2 with guaranteed
bounds and Monte-Carlo simulations

conditions for uncertain cooperative systems. If the sys-
tem represents a cooperative system without considering
the uncertain parameters, an expansion of the parameter
vector p can turn the uncertain system into an uncertain
monotone system. Thus, guaranteed bounds can be com-
puted easily with a modification of the equations in (14)
and (15). This type of system is called uncertain monotone
system. It is not an uncertain cooperative system, because
the condition (10) for the parameters is not fulfilled. The
expansion of the parameter vector and the computation of
the lower and upper bounds for the uncertain system are
described in the following.

To fulfill the condition (10) for all uncertain parameters,
the parameter vector p will be augmented to p̃, thus every
component of the parameter vector p in the system (2) will
occur exactly one time in the system

ẋ(t) = f(x, t; p̃) with x(0) = x0 and p̃ ∈ p̃I (20)

with the new interval parameter vector p̃I . If a parameter
pi occurs two or more times in the system (2), the
new vector p̃ is augmented by one or more components,
depending on the number of occurrences of pi. The new
uncertain parameter p̃I

P+1 is set to pI
i on the second

occurrence of pi, the new uncertain parameter p̃I
P+2 is

set to pI
i on the third and so on. The number of the

components in p̃I after the expansion described above
is denoted by P̃ . This expansion has to be done for all
parameters pi in the original system (2).

To fulfill the condition (10), all new and unique parameters
p̃i are multiplied by −1, which causes negative signs in the
Jacobian. For that, a leading signs vector α is introduced.
All components of α are set to −1, whose corresponding
parameters p̃i are causing the negative Jacobian entries.
In addition a new vector is given by p̂ = α p̃. If the new
vector p̂ with its uncertain parameters and leading signs
vector leads to a system

ẋ(t) = f(x, t; (α p̂)), p̂ ∈ (α p̃)I with x(0) = x0, (21)

for which condition (10) holds, guaranteed bounds can be
computed for all solutions of the IVP of the uncertain
monotone system (21).
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For this computing guaranteed enclosure, the leading signs
vector α needs not be determined. It is sufficient to
compute the solutions of 2P̃ IVPs of the system with all
possible infima and suprema combinations of the uncertain
parameters. Thus, the solutions of the following IVPs

ẋ(t) = f
(

x(t), t; [p̃L
1 , p̃L

2 , · · · , p̃L

P̃
]
)

ẋ(t) = f
(

x(t), t; [p̃R
1 , p̃L

2 , · · · , p̃L

P̃
]
)

ẋ(t) = f
(

x(t), t; [p̃L
1 , p̃R

2 , · · · , p̃L

P̃
]
)

ẋ(t) = f
(

x(t), t; [p̃R
1 , p̃R

2 , · · · , p̃L

P̃
]
)

...
ẋ(t) = f

(

x(t), t; [p̃R
1 , p̃R

2 , · · · , p̃R

P̃
]
)

(22)

with initial condition x(0) = x0 have to be computed.

Due to the expansion of the parameter vector, all uncertain
parameters are unique in (21). Moreover, two solutions

of all 2P̃ IVPs (22) represent the guaranteed lower and
upper bounds for all possible solutions of the IVP of the

original system (2). Thus, not all solutions of the 2P̃

IVPs has to be computed, if the leading signs vector α

is determined. With the acknowledgment of α, the lower
and upper bounds for the enclosure of the system (21) are
computed according to (14) and (15) with

ẋ(t) = f(x, t; (α p̂))L) with x(0) = x0 (23)

and

ẋ(t) = f(x, t; (α p̂))R) with x(0) = x0. (24)

Nevertheless, the expansion of the parameter vector can
lead to overestimation, which means that the guaranteed
lower and upper bounds are conservative and not tight.
In the case of overestimation these bounds are not part of
solution set which represents the precise enclosure set of
all possible solutions. The term overestimation comes from
interval arithmetic and denotes an overly conservative
enclosure of a solution set, c.f. Moore (1966); Alefeld and
Herzberger (1974); Hansen (1992); Didrit et al. (2001).

3.1 Second Example

Taking the uncertain system of the first example, the
second differential equation is has also made dependent
on the uncertainties. Thus, the new system is given by

ẋ1 = p1x2 + p2x
2
1

ẋ2 = −p2x1 − p3x
2
2 + p3x1x2

(25)

and the initial values are once again, set to x(0) = (5 0)T .
The uncertain parameters are given by pI

1 = [1, 1.1],
pI
2 = [−1,−0.9] and pI

3 = [0.9, 1.1]. These slight changes
make the system noncooperative in the sense of section 1.
This can be easily verified by computing the Jacobian and
examining condition (10). The Jacobian results in

∂g

∂z
=











2 p2x1 p1 x2 x2
1 0

−p2 + p3x2 −2 p3x2 + p3x1 0 −x1 x1x2 − x2
2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











.

As one can see, several elements of the Jacobian except
those on the main diagonal are negative. Thus, the de-
scribed above expansion of the parameter vector will be

used. The parameter vector expansion leads to a new
system

ẋ1 = p̃1x2 + p̃2x
2
1

ẋ2 = −p̃4x1 − p̃3x
2
2 + p̃5x1x2.

(26)

To meet conditions (10), the leading signs vector α is
defined as

α = (1 1 −1 −1 1)
T

,

thus the new parameter vector p̂ = αp̃ transforms the
system (26) to

ẋ1 = p̂1x2 + p̂2x
2
1

ẋ2 = p̂4x1 + p̂3x
2
2 + p̂5x1x2.

(27)

The Jacobian of the system (27) with z = (x p̂)T

eqaluates to

∂g

∂z
=













2p̂2x1 p̂1 x2 x2
1 0 0 0

p̂4 + p̂5x2 2p̂3x2 + p̂5x1 0 0 x2
2 x1 x1x2

0 0 0 0 0 0 0
...

...
0 0 0 0 0 0 0













,

with the newly defined uncertain parameter vector p̂ con-
sisting of p̂I

1 = [1, 1.1], p̂I
2 = [−1,−0.9], p̂I

3 = [−1.1,−0.9],
p̂I
4 = [0.9, 1] and p̂I

5 = [0.9, 1.1]. To prove the cooperativity
of the transformed system (27), the nonnegativity condi-
tions (11) and (12) have to be examined. The inequalities

f1(0, x2) = p̂1x2 ≥ 0 and f2(x1, 0) = p̂4x1 ≥ 0

fulfill the nonnegativity condition (11) with respect to the
states for all x1, x2 > 0 and all p̂1 ∈ p̂I

1 as well as p̂4 ∈ p̂I
4.

Moreover, condition (12) with respect to the parameters
is examined with

d

dt

(

∂x

∂p̂

)

=

(

2 p̂2x1 p̂1

p̂4 + p̂3x2 2 p̂3x2 + p̂2x1

)







∂x1

∂p̂
∂x2

∂p̂







+

(

x2 x2
1 0 0 0

0 0 x2
2 x1 x1x2

)

,

which leads to the set of inequalities

d

dt

(

∂x1

∂p̂1

) ∣

∣

∣

∣

∂x1

∂p̂1
=0

= p̂1

(

∂x2

∂p̂1

)

+ x2 ≥ 0

d

dt

(

∂x2

∂p̂1

) ∣

∣

∣

∣

∂x2

∂p̂1
=0

= (p̂4 + p̂5x2)

(

∂x1

∂p̂1

)

≥ 0

d

dt

(

∂x1

∂p̂2

) ∣

∣

∣

∣

∂x1

∂p̂2
=0

= p̂1

(

∂x2

∂p̂2

)

+ x2
1 ≥ 0

d

dt

(

∂x2

∂p̂2

) ∣

∣

∣

∣

∂x2

∂p̂2
=0

= (p̂4 + p̂5x2)

(

∂x1

∂p̂2

)

≥ 0

d

dt

(

∂x1

∂p̂3

) ∣

∣

∣

∣

∂x1

∂p̂3
=0

= p̂1

(

∂x2

∂p̂3

)

≥ 0

d

dt

(

∂x2

∂p̂3

) ∣

∣

∣

∣

∂x2

∂p̂3
=0

= (p̂4 + p̂5x2)

(

∂x1

∂p̂3

)

+ x2
2 ≥ 0

d

dt

(

∂x1

∂p̂4

) ∣

∣

∣

∣

∂x1

∂p̂4
=0

= p̂1

(

∂x2

∂p̂4

)

≥ 0

d

dt

(

∂x2

∂p̂4

) ∣

∣

∣

∣

∂x2

∂p̂4
=0

= (p̂4 + p̂5x2)

(

∂x1

∂p̂4

)

+ x1 ≥ 0

d

dt

(

∂x1

∂p̂5

) ∣

∣

∣

∣

∂x1

∂p̂5
=0

= p̂1

(

∂x2

∂p̂5

)

≥ 0

d

dt

(

∂x2

∂p̂5

) ∣

∣

∣

∣

∂x2

∂p̂5
=0

= (p̂4 + p̂5x2)

(

∂x1

∂p̂5

)

+ x1x2 ≥ 0,
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Fig. 3. second example: simulation of x1 with guaranteed
bounds and Monte-Carlo simulations

which is fulfilled for all nonnegative x and all p̂ ∈ p̂I . In
this example the computation of the guaranteed bounds
is achieved by solving the 25 IVPs given by scheme (22),
which is shown in Fig. 3 and Fig. 4. The most outward
lying graphs determine the set of the guaranteed enclosure
of all possible solutions of the IVP of the given system
(25). These solution graphs can be computed by solving
(23) and (24), but for this computation, the leading signs
vector α has to be identified. It depends on the system
and its uncertain parameters, whether the computation of

2P̃ solutions of an IVP or the identification of α and then
only 2 computations of solutions of an IVP leads to an
easier and faster guaranteed enclosure.

The green graphs are achieved by computing 64 Monte-
Carlo simulations. As one can see, the guaranteed en-
closure of all possible solutions apparently leads to some
overestimation.

4. REDUCING OVERESTIMATION FOR
UNCERTAIN MONOTONE SYSTEMS

The overestimation can be reduced for some uncertain
monotone systems. The reduction can be achieved by
using another or not any parameter expansion method. A
general method of parameter expansion cannot be given,
it depends on the system’s differential equations and their
dependence on the parameters. But in general not all
parameters have to be separated. Separation means the
parameter expansion; the parameters pi, which occur twice
or more, are substituted by p̃k with k > P .

To get a guaranteed enclosure of all possible solutions of
the IVP with uncertain parameters, test with all α from

α = ( 1 1 · · · 1 )T

α = ( −1 1 · · · 1 )T

α = ( 1 −1 · · · 1 )T

α = ( −1 −1 · · · 1 )T

...
α = ( −1 −1 · · · −1 )T

(28)

and the resulting parameter vectors p̂ = αp̃ the conditions
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Fig. 4. second example: simulation of x2 with guaranteed
bounds and Monte-Carlo simulations

d

dt
xi|xi=0 =fi(x; p̂)|xi=0 ≥ 0 ∀i = 1,· · ·, n and (29)

d

dt

(

∂xi

∂p̂j

)∣

∣

∣

∣

∂xi
∂p̂j

=0
≥ 0 ∀i = 1,· · ·, n, j = 1,· · ·, P (30)

with xk ≥ 0,

(

∂xk

∂p̂l

)

≥ 0, k = 1,· · ·, n, l = 1,· · ·, P and

∂gi

∂zj

(z(t), t; p̂)≥0 ∀ i 6= j, with i, j = 1, · · · , n + P. (31)

If (29), (30) and (31) hold with different α and their
resulting parameter vectors p̂ for all times, then a guar-
anteed enclosure of all possible solutions of the IVP of the
system (20) can be computed. This guaranteed enclosure
is achieved by the union of all guaranteed enclosure sets,
which are computed by solving the IVPs of (22). To
illustrate the results of reducing the overestimation, the
second example is investigated once again.

4.1 Second Example with Reduced Overestimation

To compute the guaranteed enclosure of the uncertain
system of the second example, the parameters do not need
to be expanded. Choosing α = (1 −1 1)T , the Jacobian
of the condition (31) results in

∂g

∂z
=











−2 p̂2x1 p̂1 x2 x2
1 0

p̂2 + p̂3x2 −2 p̂3x2 + p̂3x1 0 x1 x1x2 − x2
2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











.

The conditions (29) are

f1(0, x2) = p̂1x2 ≥ 0 and f2(x1, 0) = −p̂2x1 ≥ 0.

The conditions (30) result in

d

dt

(

∂x1

∂p̂1

) ∣

∣

∣

∣

∂x1

∂p̂1
=0

= p̂1

(

∂x2

∂p̂1

)

+ x2 ≥ 0

d

dt

(

∂x2

∂p̂1

) ∣

∣

∣

∣

∂x2

∂p̂1
=0

= (p̂2 + p̂3x2)

(

∂x1

∂p̂1

)

≥ 0
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Fig. 5. second example with no overestimation: simulation
of x2 with guaranteed bounds and Monte-Carlo sim-
ulations

d

dt

(

∂x1

∂p̂2

) ∣

∣

∣

∣

∂x1

∂p̂2
=0

= p̂1

(

∂x2

∂p̂2

)

+ x2
1 ≥ 0

d

dt

(

∂x2

∂p̂2

) ∣

∣

∣

∣

∂x2

∂p̂2
=0

= (p̂2 + p̂3x2)

(

∂x1

∂p̂2

)

+ x1 ≥ 0

d

dt

(

∂x1

∂p̂3

) ∣

∣

∣

∣

∂x1

∂p̂3
=0

= p̂1

(

∂x2

∂p̂3

)

≥ 0

d

dt

(

∂x2

∂p̂3

) ∣

∣

∣

∣

∂x2

∂p̂3
=0

= (p̂2 + p̂3x2)

(

∂x1

∂p̂3

)

+ x1x2 − x2
2 ≥ 0.

The conditions (29), (30) and (31) are satisfied for x1 ≥ x2

because in the (2, 5)-entry of the Jacobian as well as in
d
dt

(

∂x2

∂p̂3

)

the term x1x2 − x2
2 does not fulfill the nonnega-

tivity condition for all x. Thus, a second parameter vector
with α = (1 −1 −1)T is chosen. Now, the Jacobian
results in

∂g

∂z
=











−2 p̂2x1 p̂1 x2 x2
1 0

p̂2 + p̂3x2 2 p̂3x2 − p̂3x1 0 x1 −x1x2 + x2
2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











.

The partial derivative of interest is given by

d

dt

(

∂x2

∂p̂3

) ∣

∣

∣

∣

∂x2

∂p̂3
=0

= (p̂2 + p̂3x2)

(

∂x1

∂p̂3

)

− x1x2 + x2
2 ≥ 0

Thus, the conditions (29), (30) and (31) are satisfied for
x1 ≤ x2. The guaranteed enclosure of all possible solutions
of the IVP given by the system (25) is computed by the
union of both guaranteed enclosures using the parameter
vectors p̂ above given. The simulation results are shown
in Fig. 5 and 6. As one can see, the union set of the
guaranteed enclosures is almost completely filled by the
512 green Monte-Carlo simulations. Strictly speaking the
computed guaranteed bounds provided by the method of
section 4 are the exact enclosure of all possible solutions
of the IVP of the uncertain system (25).
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