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Abstract: In this paper, we state the positive real lemma and the strictly positive real lemma
(KYP lemma) for non-minimal realization systems. First we show the positive real lemma for
stabilizable and observable systems under only the constraint on the regularity of the systems,
by using the generalized algebraic Riccati equation. Moreover we show that the solution of the
Lyapunov equation in the positive real lemma is positive definite. Next we similarly derive the
KYP lemma for stabilizable and observable systems with only the above constraint and show
that the corresponding solution in the KYP Lemma is positive definite. Finally, as the duals of
these problems, we show that the positive real and KYP lemmas for controllable and detectable
systems have both positive definite solutions.

1. INTRODUCTION

The positive real lemma is well-known as a useful criterion
for determining positive realness in the state space repre-
sentation [2, 9]. On the other hand, the strictly positive
real lemma (or Kalman-Yakubovich-Popov (KYP) lemma)
is also well-known as a significant criterion for determining
strictly positive realness of transfer functions [2, 8, 9].
There are many researches on the KYP Lemma [3, 5, 14].
Both the positive real lemma and the KYP lemma are
used in analysis and synthesis of control systems [4, 7].
In particular, Lur’e systems are made stable by using
observer based control in Reference [6, 10], where the
KYP lemma was required for stabilizable and observable
systems since the observer is uncontrollable. In Reference
[3], Collado et al. gave the KYP Lemma for stabilizable
and observable systems. However, the systems that they
discussed had the constraint that the set of controllable
modes and the set of uncontrollable modes do not inter-
sect. On the other hand, In Reference [14], Zhang et al.
provided the conditions that descriptor systems without
infinite zeros are regular, stable, impulse-free and strictly
positive real. In the present paper, we derive the positive
real and KYP lemmas for stabilizable and observable state
space systems without the above mode constraint, by using
the descriptor form.

We state the following four cases. First, we discuss the
Positive Real Lemma in the case where σ(A) ⊂ C−,
(A,B) is stabilizable and (C,A) is observable. Second, we
discuss that lemma in the case where σ(A) ⊂ C− ∪ Ω,
(A,B) is stabilizable and (C,A) is observable. Next, we
discuss the Strictly Positive Real Lemma in the case where
σ(A) ⊂ C−, (A,B) is stabilizable and (C,A) is observable.
Finally, Finally, we discuss the duals of the above three
cases.

The notation is fairly standard in this paper. In particular
the descriptor form of a transfer function matrix is denoted

by [
A − sE B

C D

]
:= C(sE − A)−1B + D

When E = I, the system has a proper transfer function
matrix and can be represented in the state space form.
However, to avoid any confusion, the above notation with
E = I will be used.The notations C− and C+ represent
the open left and right half complex plane, respectively; Ω
denotes the imaginary axis. Furthermore, σ(A) is the set
of the eigenvalues of A, and σf (sE −A) denotes the set of
the finite eigenvalues of sE − A. A generalized eigenvalue
of (E,A) is defined to be a scalar λ satisfying |λE−A| = 0.
Const denotes some constant matrix.

2. PRELIMINARY

In this section, we consider a proper square transfer matrix
G(s) with a minimal realization as follows:

G(s) :=
[

A − sI B
C D

]
(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈
Rm×m. Note in this paper that we do not assume the
nonsingularity of D+DT , namely G(s)+GT (−s) can have
infinite zeros.

2.1 Positive Realness

Definition 1. A m×m transfer matrix G(s) is positive real
if the following inequality is satisfied.

G(s) + GT (s̄) ≥ 0 ∀Re(s) > 0 (2)
Lemma 1. (Positive Real Lemma[2])
Assume (A,B) is controllable and (C,A) is observable.
Then a proper matrix G(s) is positive real if and only if
there exist real matrices P > 0, L, and W that satisfy the
Positive Real Lemma Equations (PRLE):
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PA + AT P = −LT L (3a)
C − BT P = WT L (3b)
D + DT = WT W (3c)

Then G(s) has the following spectral factorization:

G(s) + GT (−s) = V T (−s)V (s) (4)
where

V (s) :=
[

A − sI B
L W

]
(5)

2.2 Strictly Positive Realness

Definition 2. A m × m transfer matrix G(s) is strictly
positive real if there exists a scalar ε > 0 such that G(s−ε)
is positive real.
Lemma 2. (Strictly Positive Real Lemma[2])
Assume (A,B) is controllable and (C,A) is observable.
Then a proper matrix G(s) is strictly positive real if and
only if there exist real matrices P > 0, L, W and a
scalar ε > 0 that satisfy the Strictly Positive Real Lemma
Equations:

PA + AT P = −LT L − εP (6a)
C − BT P = WT L (6b)
D + DT = WT W (6c)

3. MAIN RESULT

Instead of G(s) given by (1), the following descriptor form
of G(s) with De nonsingular is used in the sequel:

G(s) =

⎡
⎣ A − sI 0 B

0 I αI − D
C I αI

⎤
⎦ =:

[
Ae − sEe Be

Ce De

]
(7)

where α is a positive scalar such that B2 := αI − D is
nonsingular.

3.1 A new characterization of Positive Realness

We propose a new characterization of positive realness
using a generalized algebraic Riccati equation (GARE)
instead of the PRLE (3).
Theorem 3. Assume that (A,B) is controllable and (C,A)
is observable. Then a proper transfer matrix G(s) is pos-
itive real if and only if the following generalized alge-
braic Riccati equation has a solution X ∈ Rp×p with
MT ET

e XM > 0

XT Ae + AT
e X + γ−2(Ce − BT

e X)T (Ce − BT
e X) = 0

(8a)
ET

e X = XT Ee (8b)

where p := n + m, M := [In 0n×m]T and γ2 := 2α.

Proof: (Sufficiency) It follows obviously from MT ET
e XM

> 0 and (8b) that a solution X satisfying (8) takes the
following form

X =
[

X11 0n×m

X21 X22

]
, X11 = XT

11 > 0 (9)

Then (8a) becomes

X11A + AT X11 + LT L = 0 (10a)
X21 + LT

2 L = 0 (10b)
XT

22 + X22 + LT
2 L2 = 0 (10c)

where L := γ−1(C − BT X11 − BT
2 X21), L2 := γ−1(I −

BT
2 X22). By (10b) we obtain (γI−BT

2 LT
2 )L = C−BT X11.

Since W := γI − L2B2 satisfies WT W = D + DT (see
Appendix A), there exists a triple of P := X11 > 0, L and
W satisfying (3).

(Necessity) Since G(s) is positive real, there exist P > 0,
L and W satisfying (3). Without loss of generality W is a
square matrix (See Appendix B), we can define L2 := (γI−
W )B−1

2 and choose X11 := P > 0, X21 := −LT
2 L and

X22 := B−T
2 (I − γL2). By WT L = C − BT X11 and

X21 = −B−T
2 (γI − WT )L, we obtain γL = C − BT X11 −

BT
2 X21. Therefore we can see that L and L2 can be written

by L = γ−1(C − BT X11 − BT
2 X21) and L2 = γ−1(I −

BT
2 X22), respectively. With these matrices X11, X21, X22

and L2, it is easy to show that (3) implies (8a), and hence
the X of the form (9) associated with these X11, X21 and
X22 satisfies (8) and MT ET

e XM > 0. ♠
Although the GARE (8) in one variable X is replaced from
the PRLE (3) in three variables P , L and W in Theorem
3, it is only the change of an algebraic relation and nothing
changes essentially. However, since the GARE (8) reduces
to generalized eigenvalue problems, it could be solved like
algebraic Riccati equations.

3.2 Positive Real Lemma for stabilizable and Observable
systems

In this subsection, we show that P > 0 (L, W ) satisfying
(3) even if (A,B) is stabilizable and (C,A) is controllable.

Below, we consider a system (Ā, B̄, C̄, D̄) such that (Ā, B̄)
is stabilizable and (C̄, Ā) is observable. Without loss of
generality, the system (Ā, B̄, C̄, D̄) can be represented
as in the following Kalman canonical decomposition [15]
using a minimal realization system (A,B,C,D) with a
controllable pair (A,B).

Ḡ(s) :=

[
Ā − sI B̄

C̄ D̄

]
:=

⎡
⎣ A − sI Aun B

0 Au − sI 0
C Cu D

⎤
⎦ (11)

where Au ∈ Rl×l and σ(Au) ⊂ C−, Aun ∈ Rn×l and
Cu ∈ Rm×l.

In the following two theorems, we first state the case of
σ(Ā) ⊂ C−, and then the case of σ(Ā) ⊂ C− ∪ Ω.
Theorem 4. Assume that σ(Ā) ⊂ C−, (Ā, B̄) is stabiliz-
able, (C̄, Ā) is observable and |Ḡ(s) + ḠT (−s)| �≡ 0. Then
Ḡ(s) is positive real if and only if there exist P̄ > 0, L̄ and
W̄ satisfying the following equations.

P̄ Ā + ĀT P̄ + L̄T L̄ = 0 (12a)
C̄ − B̄T P̄ = W̄T L̄ (12b)
D̄ + D̄T = W̄T W̄ (12c)

Proof: (Sufficiency) Since there exist P̄ , L̄ and W̄ satis-
fying (12), Ḡ(s) + ḠT (s̄) becomes as follows:
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Ḡ(s) + ḠT (s̄)

=
[
(s̄I − Ā)−1

I

]T [
0 C̄T

C̄ D̄ + D̄T

] [
(sI − Ā)−1

I

]

≥
[
(s̄I − Ā)−1

I

]T [
P̄ Ā + ĀT P̄ P̄ B̄

B̄T P̄ 0

] [
(sI − Ā)−1

I

]
= (s + s̄)B̄T (s̄I − ĀT )−1P̄ (sI − Ā)−1B̄ (13)

Since s+s̄ > 0 for ∀Re(s) > 0 and P̄ > 0, Ḡ(s)+ḠT (s̄) ≥ 0
for ∀Re(s) > 0.

(Necessity) Case 1: Having no controllable part in (Ā, B̄).
By the assumptions, B̄ = 0, |D̄+D̄T | �= 0 and σ(Ā) ⊂ C−
in Case 1. Also D̄ + D̄T > 0 due to the positive realness
of Ḡ(s). Here, W̄ := (D̄ + D̄T )1/2 and L̄ := W̄−T C̄ satisfy
(12b) and (12c), respectively. Since σ(Ā) ⊂ C− and (L̄, Ā)
is observable, there always exists P̄ > 0 satisfying (12a).
Hence there are P̄ > 0, L̄ and W̄ satisfying (12).

Case 2: Having a controllable part in (Ā, B̄).
As in the case with (7), let’s consider the following descrip-
tor form.

Ḡ(s) =

⎡
⎢⎣ Ā − sI 0 B̄

0 I αI − D̄

C̄ I αI

⎤
⎥⎦ =:

[
Āe − sĒe B̄e

C̄e D̄e

]
(14)

where α is a positive scalar such that B̄2 := αI−D̄ = B2 is
nonsingular. By Theorem 3, it is enough to show that there
exists a solution X̄ ∈ R(p+l)×(p+l) with M̄T ĒeX̄M̄ > 0
satisfying the following GARE.

X̄T Āe + ĀT
e X̄ + γ−2(C̄e − B̄T

e X̄)T (C̄e − B̄T
e X̄) = 0

(15a)
ĒT

e X̄ = X̄T Ēe (15b)

where M̄ :=
[
In+l 0(n+l)×m

]T . X̄ has the following form
due to (15b).

X̄ =:
[

X̄11 0(n+l)×m

X̄21 X̄22

]
, X̄11 = X̄T

11 (16)

=:

⎡
⎣

[
X11 Xα

XT
α Xβ

]
0(n+l)×m

[X21 Xu] X22

⎤
⎦

Here, let ΓX̄ be the left hand side of (15a). Then

TT
a X̄Ta =

⎡
⎣

[
X11 0n×m

X21 X22

] [
Xα

Xu

]
[
XT

α 0l×m

]
Xβ

⎤
⎦ =:

[
X Xγ

XT
γ Ee Xβ

]

TT
a ĀTa =

[
Ae Āun

0l×p Au

] (
Āun :=

[
Aun

0

])

T−1
a B̄ =

[
B
B2

0

]
, C̄Ta = [C I Cu]

where

Ta :=

[
In 0 0
0 0 Il

0 Im 0

]

Here ΓX̄ can be transformed as follows:

Γ̃X̄ := TT
a ΓX̄Ta =

[
ΓX Γ̃X̄(1, 2)

Γ̃T
X̄(1, 2) Γ̃X̄(2, 2)

]
(17)

where Γ̃X̄(1, 2) := (ÂT
e + γ−2XT BeB

T
e )Xγ + XT Â12 +

ET
e XγAu + γ−2CT

e Cu, Γ̃X̄(2, 2) := XT
γ Â12 + ÂT

12Xγ +

γ−2XT
γ BeB

T
e Xγ + XβAu + AT

u Xβ + γ−2CT
u Cu and Âe :=

Ae − γ−2BeCe.

With the above preliminaries, we first consider ΓX . Since
the minimal realization part G(s) = C(sI − A)−1B + D
of Ḡ(s) is obviously positive real, there exists a solution
X with MT ET

e XM > 0 to the GARE (8) by Theorem 3,
which indicates ΓX = 0.

Next we show an existence of Xγ satisfying Γ̃X̄(1, 2) = 0.
The pair (Ee, Âe + γ−2BeB

T
e X) can be transformed into

the following Weierstrass form.

S(Âe + γ−2BeB
T
e X)T =

[
Λ 0
0 I

]
, SEeT =

[
I 0
0 N

]
(18)

where σ(Λ) ⊂ C− ∪ Ω and N is a nilpotent matrix. Note
that there exists X such that σf (sEe−Âe−γ−2BeB

T
e X) =

σ(Λ) ⊂ C− ∪ Ω in (8) (See Appendix B). Multiplying S

from the left hand side of Γ̃X̄(1, 2) = 0 yields the following
equation. [

ΛT X̄γ1 + X̄γ1Au + Const
X̄γ2 + NX̄γ2Au + Const

]
= 0 (19)

where T−1X̄γ =:
[
X̄T

γ1 X̄T
γ2

]T
. The above two Sylvester

equations are feasible with respect to X̄γ1 and X̄γ2 due to
σ(Λ) ⊂ C− ∪ Ω, σ(Au) ⊂ C− and σ(N) = 0, respectively.
Therefore, there always exists Xγ satisfying Γ̃X̄(1, 2) = 0.

Next we show an existence of Xβ satisfying Γ̃X̄(2, 2) = 0.
With substituting Xγ for Γ̃X̄(2, 2), Γ̃X̄(2, 2) becomes Lya-
punov equation with respect to Xβ . Since this Lyapunov
equation is feasible due to σ(Au) ⊂ C−, there always exists
Xβ . Therefore, there always exists X̄ satisfying the GARE
(15) if Ḡ(s) is positive real.

Finally, we show that P̄ := X̄11 = MT ĒT
e X̄M > 0, L̄ :=

γ−1(C̄ − B̄T X̄11 − B̄T
2 X̄21) and W̄ := γ−1(I − B̄T

2 X̄22)
satisfy (12). Now, since σ(Ā) ⊂ C− and L̄T L̄ ≥ 0, we
have P̄ ≥ 0. By Lemma 9 (See Appendix C), a solution
X̄ satisfying (15) is nonsingular since (C̄, Ā) is observable.
Hence, by |X̄| = |X̄11||X̄22| �= 0, we obtain X̄11 = P̄ > 0.

♠

Remark 1. The regularity of Ḡ(s) + ḠT (−s) is required
as a basic condition to treat a generalized eigenvector
problem of the Hamiltonian matrix pencil with respect
to the GARE (8). See Reference [13] in detail to solve the
GARE by using the generalized eigenvector problem.

Theorem 5. Assume that σ(Ā) ⊂ C− ∪ Ω, (Ā, B̄) is
stabilizable and (C̄, Ā) is observable. Moreover, assume
that |Ḡ(s) + ḠT (−s)| �≡ 0 if σ(Ā) �⊂ Ω. Then Ḡ(s) is
positive real if and only if there exist P̄ > 0, L̄ and W̄
satisfying (12).

Proof: (Sufficiency) The proof is the same as that of
Theorem 4.
(Necessity) The proofs in the cases of σ(Ā) ⊂ Ω and
σ(Ā) ⊂ C− are obvious by Lemma 1 and Theorem 4,
respectively. In the case of σ(Ā) ⊂ C− ∪ Ω, Ḡ(s) can be
represented as follows:
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Ḡ(s) =

[
Ā − sI B̄

C̄ D̄

]
=:

⎡
⎢⎣ Ā0 − sI 0 B̄0

0 Ā− − sI B̄−
C̄0 C̄− D̄−

⎤
⎥⎦ (20)

where σ(Ā0) ⊂ Ω, (Ā0, B̄0) is controllable, (C̄0, Ā0) is
observable, and σ(Ā−) ⊂ C−, (Ā−, B̄−) is stabilizable,
(C̄−, Ā−) is observable. Now, since σ(Ā0) ⊂ Ω, σ(Ā−) ⊂
C− and Ḡ(s) is positive real, both Ḡ0(s) := C0(sI −
A0)−1B0 and Ḡ−(s) := C−(sI − A−)−1B− + D− are
positive real. When Ḡ0(s) is positive real, there exist Ā0

with Ā0+ĀT
0 = 0, and B̄0, C̄0 with B̄T

0 = C̄0 [9]. Therefore,
since |Ḡ(s)+ḠT (−s)| = |Ḡ−(s)+ḠT

−(−s)| �≡ 0 by Ḡ0(s)+
ḠT

0 (−s) = C̄0(sI − Ā0)−1(Ā0 + ĀT
0 )(sI + ĀT

0 )−1C̄T
0 ≡ 0,

there exist P̄− > 0, L̄−, W̄− satisfying Theorem 4 for
Ḡ−(s). Here, let P̄ , L̄ and W̄ be as follows:

P̄ :=
[
I 0
0 P̄−

]
, L̄ :=

[
0 L̄−

]
, W̄ := W̄− (21)

Then P̄ > 0 and L̄ as well as W̄ satisfy (12). ♠
Remark 2. In Theorem 5, note that we have |Ḡ(s) +
ḠT (−s)| ≡ 0 when Ḡ(s) is positive real, σ(Ā0) �= φ,
σ(Ā−) �= φ, B̄− = 0 and |D̄−+D̄T

−| = 0. In this case, there
do not always exist solutions satisfying (12). In particular,
when D̄− + D̄T

− = 0, there exist no solutions P̄ > 0, L̄ and
W̄ satisfying (12), where there exists P̄ ≥ 0 if C̄− = 0.

3.3 Strictly Positive Real Lemma for Stabilizable and
Observable Systems

In this subsection, we state the strictly positive real lemma
for stabilizable and observable systems (KYP Lemma for
stabilizable and observable systems).
Theorem 6. Assume that σ(Ā) ⊂ C−, (Ā, B̄) is stabiliz-
able, (C̄, Ā) is observable and |Ḡ(s)+ḠT (−s)| �≡ 0 in (11).
Then Ḡ(s) is strictly positive real if and only if there exist
matrices P̄ > 0, L̄, W̄ and a scalar ε > 0 satisfying the
following equations.

P̄ Ā + ĀT P̄ + L̄T L̄ + εP̄ = 0 (22a)
C̄ − B̄T P̄ = W̄T L̄ (22b)
D̄ + D̄T = W̄T W̄ (22c)

Proof: (Sufficiency) Obviously σ(Ā + (ε/2)I) ⊂ C− ∪ Ω
since (22a) can be written equivalently as follows:

P̄ (Ā + (ε/2)I) + (Ā + (ε/2)I)T P̄ + L̄T L̄ = 0 (23)
By Theorem 5, (23), (22b) and (22c) indicate that C̄(sI −
(Ā + (ε/2)I))−1B̄ + D̄ = Ḡ(s − ε/2) is positive real.

(Necessity) Ḡ(s− ε/2) = C̄(sI − (Ā + (ε/2)I))−1B̄ + D̄ is
positive real and σ(Ā + (ε/2)I) ⊂ C− for some sufficient
small scalar ε > 0 since Ḡ(s) is strictly positive real.
Therefore, by Theorem 4 there exist matrices P̄ > 0, L̄
and W̄ satisfying (23), (22b) and (22c), which indicates
that P̄ > 0, L̄, W̄ and ε > 0 satisfy (22). ♠
Remark 3. Theorem 6 gives a general result without the
constraint that the set of controllable modes and the set
of uncontrollable modes do not intersect in Reference [3].

3.4 The case with Controllable and detectable Systems

In this subsection, we state the positive real and strictly
positive real lemmas for controllable and detectable sys-

tems. Let us consider Ḡ(s) := C̄(sI − Ā)−1B̄ + D̄ such
that (Ā, B̄) is controllable and (C̄, Ā) is detectable. Then
we obtain two results as the dual cases of the lemmas for
stabilizable and observable systems.
Theorem 7. Assume that σ(Ā) ⊂ C− ∪ Ω, (Ā, B̄) is
controllable and (C̄, Ā) is detectable. Moreover, assume
that |Ḡ(s) + ḠT (−s)| �≡ 0 if σ(Ā) �⊂ Ω. Then Ḡ(s) is
positive real if and only if there exist P̄ > 0, L̄ and W̄
satisfying (12).

Proof: (Sufficiency) The proof is the same as that of
Theorem 4.
(Necessity) The transfer matrix ḠT (s) is also positive real
when Ḡ(s) is positive real. Since (ĀT , C̄T ) is stabilizable
and (B̄T , ĀT ) is observable, by Theorem 5 there exist
Q̄ > 0, L̄q and W̄q satisfying the following equations.

Q̄ĀT + ĀQ̄ + L̄T
q L̄q = 0

B̄T − C̄Q̄ = W̄T
q L̄q

D̄T + D̄ = W̄T
q W̄q

By defining P̄ := Q̄−1, L̄ := −L̄qQ̄
−1 and W̄ := W̄q, we

obtain P̄ > 0, L̄ and W̄ satisfying (12). ♠
Theorem 8. Assume that σ(Ā) ⊂ C−, (Ā, B̄) is control-
lable, (C̄, Ā) is detectable and |Ḡ(s)+ ḠT (−s)| �≡ 0. Then
Ḡ(s) is strictly positive real if and only if there exist
matrices P̄ > 0, L̄, W̄ and a scalar ε > 0 satisfying (22).

Proof: The proof is similar to Theorem 7. ♠
4. NUMERICAL EXAMPLE

Let us consider Ḡ(s) as follows:

Ḡ(s) =

[
Ā − sI B̄

C̄ D̄

]
=

⎡
⎣ −2 − s 1 1

0 −2 − s 0
1 1 0

⎤
⎦ =

1
s + 2

where σ(Ā) ⊂ C−, (Ā, B̄) is stabilizable, (C̄, Ā) is observ-
able. Then Ḡ(s) is obviously positive real and the following
P̄ , L̄ and W̄ satisfy (12).

P̄ =

[
1 1

1
17
16

]
> 0, L̄ = ±

[
2

3
2

]
, W̄ = 0

By defining V̄ (s) such that Ḡ(s)+ḠT (−s) = V̄ T (−s)V̄ (s),
we obtain

V̄ (s) :=

[
Ā − sI B̄

L̄ W̄

]
=

±2
s + 2

Next, consider the dual system ḠT (s) of the above
Ḡ(s). Then ḠT (s) is positive real and the following
P̄ , L̄ and W̄ satisfy (12) for (Ā, B̄, C̄, D̄) replaced by
(ĀT , B̄T , C̄T , D̄T ).

P̄ =

[
1 1

1
17
16

]−1

=
[

17 −16
−16 16

]
> 0

L̄ = −
(
±

[
2

3
2

]) [
1 1

1
17
16

]−1

= ∓ [10 −8]

W̄ = 0
which were calculated by using a method in the proof
Theorem 8. By defining V̄c(s) such that ḠT (s) + Ḡ(−s) =
V̄ T

c (−s)V̄c(s), we obtain
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V̄c(s) :=

[
ĀT − sI C̄T

L̄ W̄

]
=

±2(s − 2)
(s + 2)2

Note that V̄c(s) is minimal realization, V̄c(s) has no unob-
servable mode and V̄c(s) is a transfer function multiplying
an all-pass transfer function (2 − s)/(2 + s) for V̄ (s).

5. CONCLUSION

In this paper, we have stated the positive real lemma
and the strictly positive real lemma (the KYP lemma) for
non-minimal realization systems. First we have shown the
positive real lemma for stabilizable and observable systems
under only the constraint with respect to the regularity
of the systems, by using the generalized algebraic Riccati
equation (GARE). Moreover we have shown that there
always exist the solutions P̄ with positive definite, L̄ and
W̄ . Next we have similarly shown the KYP lemma for
stabilizable and observable systems under only the above
constraint. Finally, as their dual problems, we have shown
that the positive real and strictly positive real lemmas for
controllable and detectable systems have positive definite
P̄ , respectively.
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Appendix A. THE COMPLEMENT OF THEOREM 3

Using (10c), B2 = αI − D and γL2 = I − BT
2 X22, we

obtain
WT W = γ2I − γBT

2 LT
2 − γL2B2 − BT

2 (XT
22 + X22)B2

=2αI − {BT
2 (γLT

2 + XT
22L2) + (γL2 + BT

2 X22)B2}
=D + DT

Appendix B. PROOF OF σ(Λ) ⊂ C− ∪ Ω

When G(s) is positive real, G(s)+GT (−s) can be written
as

G(s) + GT (−s) = V T (−s)V (s) = ΠT (−s)Π(s)
Here, a square transfer matrix Π(s) is defined by

Π(s) :=
[

A − sI B
−Z21 Im − Z22

]
where Z21 and Z22 are the elements of Z defined by (B.1).
In Reference [13], it is known that there always exists Z
satisfying the following equations for V (s). (Note that it
is allowable that V (s) is a q × m(q ≥ m) transfer matrix
[13].)

Z =
[

Z11 0n×m

Z21 Z22

]
, Z11 = ZT

11 ≥ 0 (B.1)

σf (sEe − Aa + BaBT
a Z) ⊂ C− ∪ Ω

Aa :=
[

A B
0 Im

]
, Ba :=

[
0

−Im

]

Z11A + AT Z11 + LT L = ZT
21Z21 (B.2a)

BT Z11 + WT L = −(I − Z22)T Z21 (B.2b)
WT W = (I − Z22)T (I − Z22) (B.2c)

Let P̂ be P̂ := P − Z11. By substituting (B.2) for (3), we
obtain

P̂A + AT P̂ + ZT
21Z21 = 0

C − BT P̂ = −(I − Z22)T Z21

WT W = (I − Z22)T (I − Z22)

Therefore, by σf (sEe − Âe − γ−2BeB
T
e X) = σf (sEe −

Aa + BaBT
a Z), Theorem 3 and Lemma 9, we obtain a

solution X with MT ET
e XM > 0 to the GARE (8) such

that σf (sEe − Âe − γ−2BeB
T
e X) = σ(Λ) ⊂ C− ∪ Ω. ♠

Appendix C. ON THE NONSINGULARITY OF
SOLUTIONS OF GARE

Lemma 9. Any solution X̄ satisfying the GARE (15) is
nonsingular if (C̄, Ā) is observable.
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Proof: We assume |X̄| = 0. Then there exists a basis
matrix V with colum full rank of Ker(X̄). Multiplying V T

from the left hand side and V from the right hand side
of (15a) yields C̄eV = 0. Multiplying V from the right
hand side of (15a) and (15b) also yields X̄T ĀeV = 0 and
X̄T ĒeV = 0, respectively. Here, we show that a matrix
ĒeV is of colum full rank. If ĒeV is not of colum full
rank, there exists a vector y �= 0 such that ĒeV y = 0.
Now although

[
ĒT

e C̄T
e

]T
V y = 0 by C̄eV = 0, we obtain

y = 0 from the fact that
[
ĒT

e C̄T
e

]T
is of colum full

rank. Therefore, ĒeV is of colum full rank. Next, since
dim{Ker(X̄T )} = dim{Ker(X̄)} by the fact that X̄ is a
square matrix, we can represent ĒeV Θ = ĀeV by using
the full rankness of ĒeV . Let λ and u be an arbitrary pair
(λ, u) such that Θu = λu and u �= 0. Then multiplying u
from the right hand side of ĒeV Θ = ĀeV yields (λĒe −
Āe)V u = 0. By C̄eV = 0, we obtain the following equation.[

λĒe − Āe

C̄e

]
V u = 0, V u �= 0

Since (C̄, Ā) is observable and V is of colum full rank, we
obtain u = 0, which contradicts u �= 0. Therefore, X̄ is
nonsingular. ♠
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