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Abstract: This paper presents an approach for sliding mode control(SMC) and feedback
linearization(FBL) of systems with relative order singularities. Traditionally, SMC and FBL
are designed by taking derivatives of the output until the control signal appears(at the rth

1
derivative). When a system does not have a well-defined relative degree (r1), the coefficient that
multiplies u vanishes for some region of the state-space S1. In this instance, conventional SMC
and FBL techniques fail. The presented approach differentiates further the output until the
control input appears again (the secondary relative degree, r2) and a differential equation in u
is acquired. It may be possible to solve for a dynamic compensator, or in the neighborhood of the
singularity, N1, the equations degenerate to a polynomial form. Preliminary results show that at
the singularity region, S1, the control-derivative term disappears and the differential equation
is degenerated to a center manifold defined by a polynomial (quadratic in general) equation on
u. The solution to the quadratic equations is discussed. When this equation has only real roots,
the system is well defined at the singularity. A switching controller can be designed to switch
from the rth

1 controller when system is far away from the singularity to the rth
2 controller when

the system is in the neighborhood of the singularity. We demonstrate the controller applied to
the ball and beam system.

1. INTRODUCTION

The ball and beam (B&B) system (Fig. 1) is one of the
most popular models for studying control systems because
of its simplicity and yet the control techniques that can
be studied cover many important control methods (Barbu
et al. [1997], Hauser et al. [1992], Lai et al. [1994], Leith
and Leithead [2001], Marra et al. [1996], Tomlin and Sastry
[1997], Yi et al. [1996]).

Fig. 1. The ball beam system

The (B&B) system is non-regular, i.e., the relative degree
of it is not well defined at certain locations in the phase
space. This interesting property, common to other difficult-
to-solve control systems, has motivated much research
in the past. Thus, conventional exact feedback lineariza-
tion(eFBL) and sliding mode control(SMC), are hard or
simply do not apply. The well-known work of Hauser et.
al. (Hauser et al. [1992]), used approximation feedback
linearization(aFBL) by disregarding certain terms that
lead to the singularity. However, this approach does not

work well when the system is away from the singularity,
because of the approximation error that is generated by
disregarding the terms. Tomlin et. al. (Tomlin and Sastry
[1997]) proposed a switching control law: a controller that
uses eFBL when the system is in the region far away from
the singularity and a switch to the aFBL controller when
the system approaches the singularity. Lai et. al. (Lai et al.
[1994]), proposed a tracking controller based on approxi-
mate backstepping (aBS) that has better steady state error
than other approximation methods. Other approaches for
the B&B control problem include a fuzzy controller (Yi
et al. [1996]) and a genetic controller (Marra et al. [1996]).

This paper tries to generalize the control problem to
non-regular systems. The main idea is to define multiple
relative orders rk and propose controllers (FBL or SMC)
for each of the relative orders and create a control law
that switches when the system approaches the singularity
neighborhood Sk associated with each relative order. The
result is a group of possible switching controllers. The
specific desired controller structure will depend on the
particular system characteristics.

The technique is applied to the B&B problem, generating
a switching control law similar to the switching controller
presented in (Tomlin and Sastry [1997]). The contribution
of this paper is that by taking (r + 1)th (r is the relative
degree of the system away from singularities) derivatives,
it shows that the neighborhood of the singularity can be
further divided into two regions. In one of the region, the
exact system still have a well-defined relative degree. While
approaches in (Hauser et al. [1992]) and (Tomlin and
Sastry [1997]), the exact system is not well-defined in the
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whole region. Our controller, by dividing the neighborhood
into two regions, is able to realize a more precise control.

This paper is organized as follows: Section 2 is a brief de-
scription of the supporting methods presented in (Hauser
et al. [1992], Tomlin and Sastry [1997]). Section 3 presents
the high order derivative approach, with the ball and beam
system used as an example. Section 4 shows how to extend
the high order method to SMC. Section 5 is the discussion
of the presented approach and the behavior of a non-
regular system, Section 6 gives some simulation results and
Section 7 is the generalized formulation of the presented
method to solve feedback linearization with singularities.
Section 8 presents the summary and some open questions.

2. APPROXIMATION FEEDBACK LINEARIZATION

Figure 1 shows the ball and beam schematic as a specific
sample of the class of systems under investigation(namely,
non-regular systems). The controller input τ rotates the
beam with the ball on it, around a pivot point. The
ball rolls based on the gravitational pull projected by
the beam’s angle, θ. The objective of the controller is to
maintain the ball at a distance rd from the pivot point.

We assume that that the ball is always in contact with
the beam. Without loss of generality, we can neglect the
contact friction. Using a nonlinear transformation, the
equations of the system can be written as (Hauser et al.
[1992]):
⎡
⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎦ =

⎡
⎢⎣

x2

B(x1x
2
4 − g sin x3

x4

0

⎤
⎥⎦ +

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦ u = f(x) + g(x) · u

y = x1 = h(x) (1)

where, x1(t) = r(t) is the ball position measured from
the beam center to the ball center, x2(t) = ṙ(t) = v(t)
is the ball relative velocity to the beam, x3(t) = θ(t) is
the beam angle, and x4(t) = θ̇(t) = ω(t) is the beam’s
angular velocity. B and g are constants and the input u is
a nonlinear transformation of the torque τ .

Using the typical steps for feedback linearization (FBL) or
sliding mode control (SMC), take the derivatives of y till
u appears at the right-hand side, we obtain:

y =L0
f (h) = x1 = h(x)

ẏ =L1
f (h) = x2 = Lfh(x)

ÿ =L2
f (h) = B(x1x

2
4 − g sin(x3))

...
y = B(x2x

2
4 − gx4 cos x3)︸ ︷︷ ︸
L3

f (h)

+ 2Bx1x4︸ ︷︷ ︸
Lg(L2

f (h))

u (2)

where Lk
f (h) is the kth Lie derivative of h along f

(Fernández-Rodŕıguez [1998]). Here, u appears at the
right-hand side of the 3rd derivative of y, hence the
relative degree of the system is 3, except at the singularity
S1 = {∀ x ∈ Rn | Lg(L2

f (h(x))) = 0}. At this point, u

disappears from the right-hand side of the derivative, and
the relative degree is not well defined.

If we want to FBL, we can make
...
y = v, then

u =
v − B(x2x

2
4 − gx4 cos(x3))

2Bx1x4
=

v(t) − α(x)
β(x)

(3)

The aFBL technique presented by Hauser (Hauser et al.
[1992]) proposes two approximation methods. The first
one is to disregard the x1x

2
4 term in Eq. (2) and then

differentiate the output y until u appears (again):
ξ1 = y = x1

ξ̇1 = ξ2 = ẏ = x2

ξ̇2 = ξ3 = ÿ = Bx1x
2
4︸ ︷︷ ︸

Disregards this term

−Bg sin(x3)

ξ̇3 = ξ4 ≈ ...
y = −Bgx4 cos(x3)

ξ̇4 = y[4] = Bgx2
4 sin(x3) − Bg cos(x3))u (4)

u =
v − Bgx2

4 sin(x3)
−Bg cos(x3)

=
v(t) − α(x)

β(x)
(5)

The other approximation is to disregard the 2Bx1x4u term
in Eq. (2) and then take the 4th derivative of y:

y = x1

ẏ = x2

ÿ = B(x1x
2
4 − g sin(x3))

...
y = B(x2x

2
4 − gx4 cos(x3)) + 2Bx1x4︸ ︷︷ ︸

Disregards this term

u

y[4] = B2x1x
4
4 + B(1 − B)x2

4 sin(x3)

+ (−Bg cos(x3) + 2Bx2x4)u

u =
v − (B2x1x

4
4 + B(1 − B)gx2

4 sin(x3))
B(2x2x4 − g cos(x3))

=
v(t) − α(x)

β(x)
(6)

This approximation approach (Hauser et al. [1992]) works
well when system is far away from the S1.

In (Hauser et al. [1992]), both approximations disregarded
the terms that lead to singularity before taking the 4th

derivative of y and thus effectively adding modeling errors.
These techniques are compared in a later section with our
proposed approach and are further discussed then.

3. APPROXIMATION USING HIGH ORDER
DERIVATIVES

An alternative is to take the 4th derivative of y without
disregarding the nonlinear terms. This is typically not
done because it results in a differential equation of u that
could be difficult to solve and because it creates a dynamic
compensator. Following the general feedback linearization
procedures and differentiating the output one more time,
we obtain u̇ at the right-hand side:

ξ1 = y = x1

ξ̇1 = ξ2 = ẏ = x2

ξ̇2 = ξ3 = ÿ = B(x1x
2
4 − g sin(x3))

ξ̇3 = ξ4 =
...
y = B(x2x

2
4 − gx4 cos(x3) + 2x1x4u)

ξ̇4 = y[4]

= B[ẋ2x
2
4 + 2x2x4ẋ4 − g(ẋ4 cos(x3) − x4ẋ3 sin(x3))

+ 2(ẋ1x4 + ẋ4x1)u + 2u̇x1x4︸ ︷︷ ︸
u̇−term

] (7)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14427



Substitute the state space equations (1) into (7), yields:

y[4] = B[(Bx1x
2
4 − Bg sin(x3))x2

4 + 2x2x4u (8)

− g(u cos(x3) − x2
4 sin(x3)) + 2(x2x4 + ux1)u

+ 2u̇x1x4︸ ︷︷ ︸
This term vanishes at singularity S1

Around the neighborhood of the singular point, N1, where,
N1 =

{∀ x ∈ Rn , z ∈ S1 | ‖x − z‖ < δ2
}

(9)
we have x1x4 → 0 and Eq. (8) becomes:

y[4] = B
[
Bx1x

4
4 − Bg sin(x3)x2

4 (10)

+ 2x2x4u − g(u cos(x3) − x2
4 sin(x3)) + 2(x2x4 + ux1)u

]
Let v = y[4], collecting the terms, a quadratic equation of
u at the singular point results:

[2Bx1] u2 + [B(4x2x4 − g cos(x3))] u (11)

+
[
B2x1x

4
4 + Bg(1 − B) sin(x3)x2

4 − v
]

= 0

If the general FBL procedure is applied and the 4th order
derivative of the output is calculated, this yields Eq. (8),
a differential equation in u. This results in a dynamic
controller that may be implemented outside N1. However,
close to the singular point, x ∈ N1, x1x4 → 0, and the
differential equation degenerates to the quadratic equation
Eq. (11) that can be used to solve for u. Further more,
Eq. (11) can be used to approximate the system around
the neighborhood of the singularity, N1.

By using the switching idea introduced in (Tomlin and
Sastry [1997]), a switching controller can be designed using
Eq. (3) when x ∈ N1 and Eq. (11) when x /∈ N1.
Unlike (Hauser et al. [1992]) and (Tomlin and Sastry
[1997]), Eq. (11) is an “exact” feedback linearization of the
original system at the singularity without disregarding the
terms that lead to the singularity.

Since Eq. (11) is a quadratic equation, the general solu-
tions are two conjugate complex roots. Define:

a(t) = 2Bx1

b(t) = B(4x2x4 − g cos(x3))

c(t) = B2x1x
4
4 + Bg(1 − B)x2

4 sin(x3) − v

Δ = b2 − 4ac

u =
−b ±√

Δ
2a

(12)

Solutions to Eq. (11) depend on the value of Δ in Eq. (12).
In order to implement Eq. (11), Δ ≥ 0. It is difficult
to find the conditions that guarantee Δ ≥ 0. However,
the following section shows that Eq. (11) has only real
solutions in some neighborhood of the singularity. In the
event of having complex conjugates, one may use the real
part of the solution of Eq. (12), i.e.,

u = −B(4x2x4 − g cos(x3)) + v (13)
which cancels the open-loop dynamics of the system.

4. SMC THROUGH SINGULARITIES

For Sliding Mode Control, we use the same steps for
feedback linearization (FBL), taking the derivatives of y

until u appears at the right side, we obtain Eq. (2) where
u appears at the right-hand side of the 3rd derivative of y
hence the relative degree of the system is 3, except at the
singularity S1. For SMC, we define a sliding surface as a
stable differential operator of order r1 − 1 on y.

S(t) =
{

x ∈ Rn
∣∣∣ s(t) � s(x) = 0

}
(14)

where, s(x) is referred to as the surface parameter vec-
tor. The order of the surface operator is one less than the
relative order rk of the system. This is done so the surface
attractiveness can be guaranteed. The surface parameter
vector s is defined as follows

s(x) = Dk(y) =
rk−1∑
i=0

λi
di

dti
ỹ(t) (15)

where Dk(·) is a linear differential operator that defines
the surface dynamics with coefficients λi (coefficients or
the characteristic equation), and ỹ(t) = yd(t) − y(t) is
the output tracking error (yd(t) is the desired output
trajectory).

Existence of the sliding mode requires the attractiveness
condition:

lim
s(t)→0

sT (t) · ṡ(t) < 0 (16)

Differentiating the surface parameter vector s(t) and forc-
ing its time derivative to a function in the 2nd and 4th

quadrant,

ṡ(t) = −η σ
(s(t)

μ

)
= ṡd(t) (17)

the surface satisfies the existence condition in Eq. (16).
The parameter μ is introduced to adjust the “boundary
layer” of the surface. The squashing function, σ(·) pro-
posed is the hyperbolic tangent, defined by

σ(ζ) =
1 − e−ζ

1 + e−ζ
(18)

ṡd(t) =
d

dt
Dk(y) =

rk−1∑
i=0

λi
di+1

dti+1
ỹ(t) = −η σ

(s(t)
μ

)

=
rk−1∑
i=0

λiy
[i+1]
d (t) −

rk−2∑
i=0

λiy
[i+1](t) + λrk−1y

[rk](t)

=
rk−1∑
i=0

λiy
[i+1]
d (t) −

rk−1∑
i=0

λiLi+1

f
(h) − Lg(Lrk−1

f
(h))u

= Γ(yd) + α(x) + β(x)u (19)
next, we solve for u(t) from Eq. (19)

u(t) =
ṡd(t) − Γ(yd) − α(x)

β(x)

=
v(t) − α(x)

β(x)
(20)

where,

v(t) = −η σ
(s(t)

μ

)
−

rk−1∑
i=0

λiy
[i+1]
d (t) (21)

Hence, all results from FBL, including using higher deriva-
tives mentioned in above section, can be extended to SMC
by replacing v(t) in the FBL framework by the v(t) of
Eq. (21).
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5. BEHAVIOR AROUND THE SINGULARITY

The singularity and its neighborhood N1 are shown in
Fig. 2. In the x1-x4 phase plane it can be divided into
two regions:

Sa: x1 = 0, x2 ∈ R In Fig. 5, it is the x4-axis.
Sb: x4 = 0, x4 ∈ R In Fig. 5, it is the x1-axis.

Fig. 2. The singularity region S1 are both axes. The
neighborhood N1 of the singularity region is enclosed
by the hyperbolas x1x4 = ±δ2.

In the x1-x4 phase plane, N1 is the shadowed region
surrounded by four hyperbolic curves: |x1x4| = δ2. The
neighborhood of S1 can also be divided into two regions:

Sα = {x ∈ N1 |‖x1‖ ≤ δ } ⊂ N1

Sβ =N1 − Sα ⊂ N1

Condition (1) when system falls in |x1| ≤ δ, Eq. (11)
can be approximated by

2Bx1u
2︸ ︷︷ ︸

disregarded, when x1 → 0

+ B(4x2x4 − g cos(x3))

+[B2x1x
4
4 + Bg(1 − B) sin(x3)x2

4 − v] = 0

(22)
Thus,

uSa =
v − [B2x1x

4
4 + B(1 − B)gx2

4 sin(x3)]
B(4x2x4 − g cos(x3))

(23)

Comparing with the aFBL expression of u (Eq. 6)
used in (Hauser et al. [1992]), the only difference of
the two equations is the factor of the Bx2x4 term.
In Eq. (23), the factor is 4 and in Eq. (6) is 2. This
difference is because of the disregarded term 2Bx1x4u
in aFBL.

More importantly, it shows that Eq. (6) only cap-
tures the system when x1 → 0 while it tries to
approximate the system when x1x4 → 0. In other
words, approximation by disregarding the nonlinear
term before taking (r+1)th derivatives (Hauser et al.
[1992], Tomlin and Sastry [1997]) is only a partial
approximation of system near the singularity.
Condition (2). When system falls into |x4| < δ.
Eq. (11) can be approximated by

2Bx1u
2 + uB(−g cos(x3)) − v = 0 (24)

In this case, the solutions to Eq. (10) is a pair of
conjugate complex roots. The condition for the above
equation to have only real roots is:

Δ = (Bg cos(x3))2 + 8Bvx1 ≥ 0 (25)
The above condition Eq. (25) is a paraboloid (in
the x1-x3 subspace) bifurcation surface. Outside the
paraboloid sub-region, Eq. (24) will only have real
roots and inside only complex-conjugate roots. Fur-
ther study in this region is needed. Currently, as a
heuristic rule, we suggest to use the real part of u.
Thus, the neighborhood of the singularity can be
approximated by Eq. (11) and Eq. (24).

The switching of controllers can be designed so that:
When x /∈ N1, exact linearization Eq. (3) is used. when
x ∈ Sα, Eq. (23), which is also exact linearization, will
be used. When x ∈ Sβ , Eq. (24) is used. Previous work
(Tomlin and Sastry [1997]) provides the applicability of
such switching law based on the zero dynamics at the
switching boundary.

Fig. 3. The switching controller

Figure 3 shows the switching controller using the afore-
mentioned scheme.

6. SIMULATION RESULTS

Several test cases used in (Hauser et al. [1992], Lai
et al. [1994], Tomlin and Sastry [1997], Yi et al. [1996])
are also used for comparison purpose. Simulink� (Mat
[2004]) was used for simulations with the 3rd order and
4th order controllers that are designed with all the poles
at –2. B=0.7143 and g=9.8. For comparison purpose, the
following four cases are simulated:

� Regulation of the system to the equilibrium point [0 0
0 0]. The same examples are used in (Yi et al. [1996]).

(1a) Initial conditions close to singularity:
The switching condition is δ2 = |x1x4| = 0.02.
The simulation results are shown in Fig. 4. The
Results are similar to (Hauser et al. [1992], Yi
et al. [1996]).

(1b) Initial conditions away from the singularity:
The switching condition is δ2 = |x1x4| = 1. The
simulations are shown in Fig. 6. As pointed out
in (Yi et al. [1996]), the approximation method
used in (Hauser et al. [1992]) failed on set(1b).
Compared to the results in (Yi et al. [1996]),
(compare Fig. 6 in (Yi et al. [1996]) and Fig. 5
in this paper), the presented method gives faster
regulation.

This test case shows that the presented method can
regulate the system, even from initial conditions away
from the singularity, with faster response.

� Tracking periodic functions, the switching condition
is δ2 = |x1x4| = 0.02.
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Fig. 4. Results of set (1a), regulation with xo close to N1.

Fig. 5. Set (1b) regulation to origin results. xo far from N1.
Similar simulation with method from (Hauser et al.
[1992]) fails for these cases.

(2a) yd = 1.9 sin(1.3t) + 3, xo = [3,0,0,0]. This case
is used in (Tomlin and Sastry [1997]) and the
approximation method presented in (Hauser
et al. [1992]) is unstable. Fig. 6 shows the tracking
results, with yd = 1.9 sin(1.3t)+ 3, xo = [3,0,0,0].
The transient period is short and then the system
quickly tracks the target with a maximum steady
state error equals to 5e-5.

Although the method in (Tomlin and Sastry
[1997]) is stable, the steady state error is quite
large. (Compare Fig. 3 in (Tomlin and Sastry
[1997]) and Fig. 6 in this paper).

(2b) yd = 3 cos(π
5 t), x = [3,0,0,0], which is used in

(Hauser et al. [1992], Lai et al. [1994]), Fig. 7
shows the tracking results for this case. The
maximum steady state error is 1.5e-3.

The results above demonstrate the benefits of the proposed
algorithm as compared to the reviewed literature.

7. GENERAL FORMULATION OF FEEDBACK
LINEARIZATION WITH SINGULARITY

Here, we try to generalize the formulation to a class of
SISO nonlinear systems of the form:

ẋ(t) = f(x) + g(x) · u
y(t) = h(x) (26)

Fig. 6. Tracking of yd = 1.9 sin(1.3t) + 3, xo = [3,0,0,0]

Fig. 7. Tracking of yd = 3 cos(π
5 t), x = [3,0,0,0]

where, x ∈ Rn, u ∈ R1, y ∈ R1, are the states, input,
and output of the system. If the system has relative order
of the output r1, then,

Lg(Lk
f (h)) = 0 1 < k < r1 − 2

Lg(Lr1−1

f
(h)) �= 0 ∀x /∈ S1 ⊂ Rn

For exact I/O linearization, ∃ r1 ≤ n. Then, following the
general procedure, we obtain:

ξ1 = h(x) = y = L0
f (h)

ξ2 = ξ̇1 = ẏ = L1
f (h)

ξ3 = ξ̇2 = ÿ = L2
f (h)

... (27)

ξr1−2 = ξ̇r1−1 = y[r1−1] = Lr1−1

f
(h)

ξr1−1 = ξ̇r1 = Lr1

f
(h) + Lg(Lr1−1

f
(h))u(t)

Let v = y[r], then

u =
v − Lr1

f
(h)

Lg(Lr1−1

f
(h))

=
v − α1(x)

β1(x)
∀ x /∈ S1 (28)

where, S1 is the singularity space for r1, defined as:

S1 =
{

x ∈ Rn
∣∣∣ Lg(Lr1−1

f
(h(x))) = 0

}
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When x = xs ∈ S1, then xs is a singularity and the
relative degree is not well defined and exact linearization
will fail.

However, differentiating the output one more step yields:

νy[r1+1] =
d

dt

[
Lr1

f
(h(x)) + Lg(Lr1−1

f
(h(x)))u(t)

]

=Lr1+1

f
(h(x))

+
[
L2

g(Lr1−1

f
(h(x)))

]
u2

+
[
Lg(Lr1

f
(h(x))) + Lf (Lg(Lr1−1

f
(h(x))))

]
u

+
[
Lg(Lr1−1

f
(h(x)))

]
u̇ (29)

Where x ∈ S1, then Lg(Lr1−1

f
(h(x))) = 0, Eq. (29)

becomes

y[r1+1] = Lr1+1

f
(h) +

[
Lg(Lr1

f
(h)) + Lf (Lg(Lr1−1

f
(h)))

]
u

+
[
L2

g(Lr1−1

f
(h))

]
u2

and the system looses relative order. Let y[r+1] = w, we
have:[
L2

g(Lr1−1

f
(h))

]
u2 +

[
Lf (Lg(Lr1−1

f
(h))) + Lg(Lr1

f
(h))

]
u

+
[
Lr1+1

f
(h) − w

]
= 0 (30)

which is quadratic in u. Generally this equation has two
complex conjugate roots. However, if L2

g(Lr1−1

f
(h)) = 0,

then Eq. (30) becomes a linear equation in u with a real
solution.

On the other hand if both L2
g(Lr1−1

f
(h)) = 0 and

Lg(Lr1

f
(h)) + Lf (Lg(Lr1−1

f
(h))) = 0 ∀ x ∈ Zr1 (31)

then, Eq. (29) needs to be differentiated further until the
next (secondary) relative order r2, where

Lg(Lk
f (h)) = 0 r1 < k < r2 − 2

Lg(Lr2−1

f
(h)) �= 0 ∀x /∈ S2 ⊂ Rn

where S2 is the singularity space for r2, defined as:

S2 =
{

x ∈ S1 ∪ Z1

∣∣∣ Lg(Lr2−1

f
(h)) = 0

}

This means that when x ∈ S1, and r2 < n then, through
u we can control the rth

2 derivative of the y.

A similar procedure as for r1 can be used to design the
FBL or SMC. A switching controller can be designed that
uses an rth controller (28) when the system is away from
singularity S1, and switches to two (r2)th controller when
x ∈ S1 ∪ Z1. On the other hand, if x ∈ S1 ∪ S2, the
procedure could be used recursively k-times until rk = n
after which the system becomes uncontrollable.

8. CONCLUSIONS

This paper presented an approach to feedback lineariza-
tion(FBL) and sliding mode control(SMC) of a class of
non-regular systems. As in SMC and FBL, the output is

differentiated r1 times till the control variable u appears.
The coefficient that multiplies u vanishes in a certain
subspace S1(x). In this region, traditional FBL, and SMC
techniques fail. Our claim is that, by further differentiating
the output, a nonlinear (polynomial) differential equation
of u is obtained. At the singularity region, S1, the coeffi-
cient of the u̇ term disappears and the differential equa-
tion degenerates to a quadratic equation. If the quadratic
equation has only real roots, the system has a well defined
relative degree at the singularity equal to r1 + 1.

Switching controllers can be designed to switch from an rth
1

order controller to two (r1 + 1)th order controllers when
the system is in the neighborhood of the singularity, or
even to a rth

2 order controller in the singularity space.

Further research will focus on the condition under which
the quadratic equation will have only real solutions and
the relationship between the type of the roots and the sta-
bilizability of the system. An adaptive switching condition
is also under study.
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