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Abstract: These It is generally accepted in yeast production industry that intracellular trehalose is an 
indicator of yeast fermentation capacity and viability. The disaccharide trehalose is a cytoplasmic 
compound, so it must be quantified after extraction by means of an off-line analytical method during a 
biomass production process. Thus, knowing experimental determinations of yeast trehalose content is 
always delayed; hence no opportune actions can be implemented in order to lead the production process 
toward a high intracellular trehalose concentration in the produced biomass. An attempt of predicting 
trehalose concentration in yeast cells through two different mathematical approaches is presented. On the 
one hand, a biomass and trehalose concentrations estimator was developed with a differential neural 
network technique. On the other hand, a structured model results are analyzed for explaining the main 
metabolic events that induce a trehalose accumulation in cells. Our results allow us to think that the 
coupling of both methods can provide acceptable information aimed at reaching high trehalose content in 
yeast. Indeed, by integrating the two alternatives, a trehalose-enriched yeast production process could be 
successfully driven. 

 

1. INTRODUCTION 

This Saccharomyces cerevisiae has been largely 
considered as a paradigmatic model for the study of 
unicellular eukaryotic systems, and it is also of the most 
economic importance since it is a paramount microoganism 
in food industry. This yeast is a central supply for bread 
production, brewing and wine-making as well (Aranda-
Barradas J.S. and Salgado-Manjarrez 2002; Aranda-Barradas 
J.S. 2002), in a way that the quality of such final products 
strongly depends on both biochemical composition and 
kinetic characteristics of the yeast cells involved in the 
corresponding production techniques. Cell viability and 
fermentation capacity (CO2 production power) are probably 
the main properties determining yeast quality for its usage in 
further food or alcoholic beverages production processes. 
Disaccharide trehalose (α-D-glucopyranosyl-1,1-α-D-
glycopyranoside) is considered as an important factor in 
preserving yeast resistance to environmental stress conditions 
(Wiemken 1990; Attfield 1994; Lewis 1997), so increasing 
cell viability for alcoholic fermentation processes, and also 
during biomass reactivation in dough, thus providing a good 
consistency and texture to the mixture through CO2 release  
(Jorgensen, Olsson et al. 2002) in bread-making. Several 
studies report trehalose presenting three metabolic roles in 
Saccharomyces cerevisiae. The first one refers to increased 
yeast ability to remain viable when confronted to stressful 
environments (Wiemken 1990; Lewis, Learmonth et al. 
1997), such as nitrogen or carbon starvation (Lillie and 
Pringle 1980; Ertugay, Hamamci et al. 1997; Parrou, 
Enjalbert et al. 1999; Jorgensen, Olsson et al. 2002), heat-

shock conditions (Hottiger, Schmutz et al. 1987; Attfield 
1994; Ertugay, Hamamci et al. 1997) or strongly acid culture 
media (Arneborg, Hoy et al. 1995). The second trehalose 
metabolic function is related to cell carbohydrate reserves. 
The disaccharide appears to accumulate in cell plasma under 
certain culture conditions, and then to enzymatic split into 
two glucose molecules that incorporate to energy production 
metabolism through total or partial oxidation in the 
corresponding biochemical pathways (Parrou, Teste et al. 
1997). In the third reported metabolic role of trehalose, it is 
involved in cell cycle progression, and apparently it also 
produces a partial regulatory effect on the glycolytic pathway 
enzyme hexokinase III (Sillje, Paalman et al. 1999). 
Therefore, trehalose determines in some extent the 
physiological condition and the biochemical composition of 
yeast cells regarding their quality and usefulness for some 
subsequent production process in food industry. This 
disaccharide has even been considered as an important 
predicting parameter of yeast viability (Slaughter 1992). 
Trehalose seems to be a necessary compound of 
Saccharomyces cerevisiae cells in order to assure an 
acceptable yeast quality for wine and bread making 
processes, so it should be continuously monitored while the 
microorganism is being produced. However, in order to 
follow intracellular trehalose content as a viability and cell 
physiology indicator during a yeast production process, 
biomass samples must be taken periodically and trehalose 
concentration in cells is then obtained from off-line analytical 
procedures. In order to avoid delayed quantification and 
knowledge of cytoplasmic trehalose concentration during 
yeast production, a structured model has been proposed 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 9631 10.3182/20080706-5-KR-1001.3944



     

aiming at predicting trehalose accumulation in 
Saccharomyces cerevisiae (Aranda 2004). This approach 
takes account of multiple biochemical events that result in 
disaccharide accumulation within the cell. Yeast biomass is 
structured in three cellular compartments, a trehalose 
compartment defining the disaccharide cytoplasmic content, 
an enzymatic compartment that includes the enzymes directly 
involved in trehalose intracellular accumulation, and a 
cellular compartment with all other cellular components, 
including genetic material and regulating molecules. This 
structured model intends a trehalose content prediction during 
yeast production through computer process simulation.  

An interesting alternative for obtaining on-line fed-
batch fermentation data is process identification and 
estimation through neural networks, where two different 
techniques have been applied, the first one is the fermentation 
process identification by differential neural networks 
(Cabrera 2002) and the second one is a recurrent neural 
network to predict biomass concentration (Chen, Nguang et 
al. 2004). Nevertheless, a classical development of this 
approach gives only information about the macroscopic 
process state variables, such as the volume of liquid in the 
bioreactor or the substrates and products concentrations in the 
culture medium, so no data regarding the in-cell conditions 
are available. A modified differential neural network 
structure, coupled to a state observer, is proposed in the 
present work. This mathematical technique allowed us to 
generate very precise real-time estimations of intracellular 
trehalose, considered as a no-measured state variable. 
Trehalose estimation is accomplished through a software 
sensor that consists of a state observer which calculates the 
no-measured state variable given a real-time dynamical 
analysis of substrate concentration and liquid volume 
evolving in a fed-batch yeast production process. 
Experimental data are used to evaluate the estimator 
performance and its predicting usefulness as well. 

2. THEORETICAL BACKGROUND 

2.1 Compartmental and biochemical structured model. 

The structured model considers the trehalose-enriched 
yeast production process depicted by three abiotic variables 
or states (biomass concentration, substrate concentration and 
culture medium volume in the bioreactor) and four main 
biotic components (trehalose concentration in the cell, 
trehalose phosphate synthesis activity, trehalase activity and 
cAMP intracellular concentration). Yeast cells are regarded 
as individually organized in a three compartment 
constitution, as seen in Fig. 1. 

 
The compartments interact with one another through a 

set of reactions that could be described as follows. The 
glucose substrate gets into the cell at rate qs through a 
membrane phosphorilation reaction producing glucose-6-P, 
which is normally incorporated to the yeast energetic 
metabolism for ATP synthesis in the cellular compartment. 
However, glucose-6-P can also condensate with the glycosil 
group from an UDPG molecule to form trehalose-P in a 
biochemical reaction catalyzed by trehalose phosphate 
synthase (TPS), qST. Trehalose-P then releases inorganic 

phosphate by a phosphatase activity to produce trehalose, 
thus increasing the trehalose compartment, wT. The 
disaccharide can also be dynamically mobilized to provide 
intracellular glucose to the cell at rate qHT, if the trehalase 
(TH) enzyme is active in cell plasma. Trehalose content then 
decreases so leading to a reduction in the trehalose 
compartment. Under this scheme, enzymes trehalose 
phosphate synthase and trehalase concomitantly control the 
trehalose accumulation rate inside the cell. Both enzymes are 
synthesized from components included in the cellular 
compartment at rates qES and qEH for trehalose phosphate 
synthase and trehalase, respectively. These enzymatic 
activities are supposed to depend on cAMP intracellular 
concentration, which is linked to the glucose concentration in 
the culture medium. The enzymatic compartment could 
eventually be reconverted through proteolysis, qP, into 
cellular compartment components, i.e. amino acid units. 
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Figure 1. Biomass structure. 

 

2.2 Biomass estimator and trehalose content observer 

It should be inferred from the structured model that 
yeast production and trehalose accumulation in cells are non-
linear systems, with a number of kinetic parameters needed 
for the state estimation of the process. Process estimation 
through a physical-based model strongly depends on 
parameters precision, which is usually inaccurate or 
unknown. Besides, the biotic components of the model are 
not completely observable states, hence process estimation by 
means of a dynamical neural network technique provides a 
good approximation of process numerical indicators, with 
neither preliminary parameter identification nor exact 
knowledge of the physical system. To estimate process 
abiotic states, together with the intracellular trehalose 
concentration, a dynamic neuro network observer (DNNO) is 
suggested. This estimation method is based on pervious 
works, such as Lyapunov-like observers (Slotine 1984), high 
gain system observation (Nicosia 1989; Giccarella 1993), 
optimization-based observers (Krener 1983) and reduced-
order nonlinear observers (Garcia 1995).  

Artificial neural networks (ANN) represent a good 
conceptual instrument, when nonlinear systems are trying to 
be identified (El-Din 2002). There are two known types of 
ANN: static (SNN) using the back-propagation technique 
(Narendra 1995) and dynamic neural networks (DNN) 
(Poznyak 2001). The first one deals with the so-called global 
optimization problem, trying to adjust the weights of a SNN 
in order to minimize an identification error. The second 
approach, exploiting the feedback properties of the applied 
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DNN (see Fig. 2), permits to avoid many problems related to 
global search extremum converting the learning-training 
process to an adequate feedback design. Several effective 
approaches are known to create the corresponding feedback 
design. One of them is the variable structure approach (VSA) 
(Utkin 1992). The corresponding procedures, treated within 
this theory, usually exploit the so-called signum-type or 
switching (sliding mode) structures. Despite fruitful research 
in the variable structure control theory, few authors have 
considered the application of the sliding mode approach to 
the problem of observer design for dynamic systems (Utkin 
1992; Slotine 1984). In this study we suggest the DNN 
observer (DNNO), which incorporates a switching type term 
to correct current state estimates using only available, 
measurable output data. 

The DNN observer corresponding to the scheme given 
at Fig. 2 is covered by the following ordinary differential 
equation: 

 

( ) ( ) ( ) ( )

( )
1 2 1

2

ˆ ˆ ˆ ˆ ˆ

ˆ
ˆ ˆ

t
t t t t t t

t t

t t

dx Ax W x W x u K y y
dt
K SIGN y y

y Cx

σ ϕ γ= + + + −

+ −

=

 (1) 
 

Here, ˆtx  is the state vector of DNNO representing the 
current estimates of abiotic states and the observer prediction 
of intracellular trehalose content as well, ˆty  is the output of 
DNN corresponding the estimates of measurable abiotic 
states, A, K1 and K2 are constant matrices obtained from 
DNNO training with K1 being a linear proportional 
(Luenberger) correction term matrix and K2 a sliding mode 
correction term matrix, σ(·) and φ(·) are standard sigmoid 
functions, ( )tuγ  is the control function applied to the 
DNNO, C is an output formatting function and the sign 
function is given by: 

( ) ( )( )1( ) : , , nSIGN v sign v sign v= …  
with, 

1 0
( ) : 1 0

0

if z
sign z if z

not defined if z

>⎧
⎪= − <⎨
⎪ =⎩

 

Specifying the xt and ŷ  vector components would 
produce the following straightforward equivalences: 
x1 is the biomass concentration variation in the culture 
medium (abiotic state), 
x2 is the substrate concentration variation in the fermentation 
(abiotic state), 
x3 is the working volume in the bioreactor (abiotic state), and 

4x̂ is the intracellular trehalose content estimate (biotic 
variable). 
 The measurable data are two abiotic states, therefore: 

2ŷ  is the output substrate concentration estimate. 

3ŷ  is the output liquid volume estimate in the biorreactor. 
 

[ ]2 30 0ty x x=  
(2) 

So, in this case [ ]0 1 1 0C diag= . The 
estimated states are the biomass concentration and the 
intracellular trehalose content. 

 
AA

Sign(e(t))Sign(e(t))

e(t)e(t)

**

**

W1
W1

**

u(t)u(t)

**

K1K1

**

K2K2

W2
W2

σσ

ϕϕ

+ ⌠
⌡ x(t)

CORRECTION TERMS

EXTERNAL WEIGHTS

AA

Sign(e(t))Sign(e(t))

e(t)e(t)

**

**

W1
W1

**

u(t)u(t)

**

K1K1

**

K2K2

W2
W2

σσ

ϕϕ

+ ⌠
⌡
⌠
⌡ x(t)

CORRECTION TERMS

EXTERNAL WEIGHTS

 
 

Figure 2. Differential Neuro Observer Structure. 

2.2 Training DNNO. 

The matrix of weights Wi (i=1,2) is the output tuning 
by a special on-line learning procedure (Poznyak 2001), these 
matrices are updated with a special learning law is described 
by the equation: 
 

( )( )0ˆ, , , ,t t t t tW W x u t y W= Φ  (3) 
 

This learning law is denoted by: 

( ) ( ) ( )( ), , , ; , 1,i j i j i j
t t t tW k S sign W i j nμ= − =  (4) 

where St  is any matrix with the condition { } 1ttr S = , 
and: 
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(5) 

The matrix P is the positive solution for the algebraic 
Riccati equation given by: 

( ) ( )( )0 0 0
T

PA A P PRP Q∗ ∗+ + + =  (6) 

To guarantee a small enough state estimation error the 
adequate parameters of DNNO (1) should be selected. The 
stationary parameters A, K1, K2 may be tuned during the so-
called”training” process. The weights Wi, (i=1,2) are quickly 
adjusted on-line by the special differential learning law. The 
training procedure may be conducted by using only 
experimental measurements as a correction criterion of 
DNNO parameters, as well as for an adequate selection of the 
initial conditions in the applied learning procedure. The 
adequate learning of DNNO (1) provides a small enough 
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upper bound (in an average sense) for the state estimation 
error ˆt t tx xΔ = − . 

 

3. MATERIALS AND METHODS 

3.1 Experimental Characteristics. 

The used strain in all experiments was a commercial 
baker’s yeast obtained from the market. The micro organism 
was isolated by triplicate in order to have a one-cell derived 
colony, and then identified as Saccharomyces cerevisiae. The 
strain was maintained on slants (glucose 20 g L-1, yeast 
extract 10 g L-1, agar-agar 20 g L-1) at 4 oC. Periodic 
inoculations were made in new slants every three months ca. 

Fed-batch yeast production experiments were done on 
a chemically well-defined fermentation medium [31, 32]. The 
medium composition is glucose 50 g L-1, KH2PO4 7 g L-1, 
CaCl2·2H2O 0.25 g L-1, NaCl 0.5 g L-1, MgCl2·6H2O 6 g 
L-1, mineral solution 10 mL L-1, vitamins solution 10 mL L-
1. Five hundred millilitres of mineral solution contain 
FeSO4·7H2O (278 mg), ZnSO4·7H2O (288 mg), 
CuSO4·5H2O (7.5 mg), Na2MoO4·2 H2O (25 mg), 
MnSO4·H2O (169 mg), H2SO4 a few drops, the required for 
dissolve ferric sulphates. Five hundred millilitres of vitamins 
solution are prepared with biotin (1.5 mg), calcium 
pantothenate (20 mg), inositol (125 mg), pyridoxine-HCl (25 
mg), thiamine (50 mg). 

Inoculums was grown in a 1 L flask containing 500 mL 
of the synthetic medium at 30 oC and 150 rpm over 24 h. The 
bioreactor was inoculated with the obtained biomass and the 
batch fermentation was carried out on a 6 L work volume. 
The fed-batch cultivations were initiated after 10 h of the 
previously established batch cultivation, until a final volume 
between 12 and 13 L was reached. 

A 15 L bioreactor (applikon Z81315 M607) was used 
for all fed-batch experiments. The experimental conditions 
were: temperature 30 oC, pH 5.0, air flow 450 L h-1, 
dissolved oxygen 10 % of saturation value (0.8 mgO2 L-1 
ca). The culture pH was controlled with ammonia-water (20 
% v/v) and this solution was the only nitrogen source. The 
flow of carbon substrate was a function of the respiratory 
quotient (RQ) of the culture as calculated from effluent gas 
composition data. The glucose concentration in the working 
liquid in the bioreactor was always kept near to zero in order 
to minimize ethanol production. Starving conditions on 
carbon or nitrogen source were imposed at the end of the 
culture (last three hours) for inducing intracellular trehalose 
accumulation. All experiments were triplicate to check out 
data reproducibility. 

Trehalose. Samples of 20 mg dry yeast were extracted 
twice with 3 mL of 0.05 M trichloroacetic acid in continuous 
orbital shaking during 40 min each time. Trehalose was then 
determined by anthrone method (Slaughter 1992). 

Biomass. The yeast growth was followed by measuring 
the optical density of the culture at 620 nm with an UV-Vis 
spectrophotometer (Hitachi U-2000). A correlation between 
dry weight and optical density was previously established. 

Glucose. The glucose concentration was determined by 
the glucose oxydase method with an automatic analyzer (YSI 
2700 Select). 

Based on the data base for the feed-batch process 
dynamic variables of Saccharomyces cerevisiae culture, the 
DNNO was trained, and then the neuro-observer was 
implemented to estimate the biomass and trehalose states, 
these variables were compared with the experimental data 
obtained from different experimental setups. Finally, the 
complete evolution for biomass and intracellular trehalose 
concentrations was plotted for both states (estimate and 
measure). 

4. RESULTS AND DISCUSSION 

Substrate depletion, either carbon or nitrogen, at the 
final three hours of a yeast growth process produces an 
increase in cytoplasmic trehalose, as shown in Fig. 3. 
Trehalose content in yeast cells was initially about 0.025 – 
0.035 gtrehalose gbiomass

-1, and intracellular accumulation of the 
disaccharide has reached a nearly 4-fold increase during the 
fed-batch processes, attaining final concentrations of about 
0.13 gtrehalose gbiomass

-1 (13 % of biomass dry weight) at the end 
of the culture.  

 
Figure 3. Biomass (x), substrate (s), intracellular 

trehalose (wT) and culture medium volume (v) as functions 
of time during a first yeast production process. 

 

 
Figure 4. Biomass (x), intracellular trehalose (wT) and 

their estimate states during a first yeast production process. 
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Figure 5. Biomass (x), substrate (s), intracellular 

trehalose (wT) and culture medium volume (v) as functions 
of time during a second yeast production process. 

 

 
Figure 6. Biomass (x), intracellular trehalose (wT) and 

their estimate states during a second yeast production 
process. 

 
This fact seems to be explained by some molecular and 

metabolic events happening in the cytoplasm. Since the 
trehalose accumulation depends on the enzymatic activity of 
trehalase and trehalose phosphate synthase, and these 
enzymatic activities rely upon cAMP intracellular 
concentration as stated before, it can be assumed that 
nitrogen starvation produces an important modification of 
cAMP in the cell. The hypothesis is supported by the 
reported evidence that adenyl cyclase (the enzyme that 
catalyses the cAMP synthesis in the cell) is enhanced when a 
membrane associated Ras system is active (Werner-
Washburne M 1993). Like some other G-proteins, the activity 
of the Ras proteins is controlled by the guanine nucleotide 
being inactive when bounded to GDP and active when it joins 
to GTP (Barbacid 1987). While yeast is taken to a nitrogen-
depeted culture medium, guanine nucleotides synthesis is 
stopped (Moat 2002), and then the Ras system becomes 
inactive. As a consequence, cAMP synthesis could be 
stopped or, at least, decreased so giving low intracellular 
levels of cAMP. Under these conditions, trehalose phosphate 
synthase activity is increased with a concomitant lessening of 
trehalase activity, thus yielding a significant increment of 
trehalose in cells cytoplasm.  

 Intracellular cAMP concentration dependence on the 
carbon source availability seems to be more direct, since the 
extra cellular glucose determines the energy charge, that is, 
the total adenosine phosphates concentration in the cell. This 
means that a lack of glucose in the culture medium will 
produce a plasmic shortage of adenosine phosphates, 
including cAMP. This condition leads to an increasing TPS 

activity and to a diminished TH activity, jointly with the 
intracellular trehalose accumulation. 

The proposed structured model requires kinetic 
parameters estimation in order to be applied to the 
cytoplasmic trehalose prediction during the yeast production 
process. The model parameters estimation has been 
accomplished using an error function evaluated through a 
least squares criterion as a maximum likelihood estimator 
(Aranda 2004). Prediction of trehalose content in cell plasma 
by means of the structured model is presented in Fig. 4, for 
both carbon and nitrogen source limitations. 

It can be seen that, as a general trend, the model 
follows the experimental trehalose accumulation in yeast 
cells, so this structured model could be a helpful tool for 
predicting trehalose cells content in the course of a yeast 
production process, as long as similar experimental 
conditions are established in such a process. However, model 
predictions accuracy may not fulfil process simulation 
expectations because of the too large variations in the 
estimated yeast trehalose content. This accurateness problem 
won’t allow applying the appropriate correcting measures to 
shift a yeast production process toward the intended purpose 
of reaching a high intracellular trehalose concentration. The 
origin of simulations inaccuracy is the lack of precision in 
parameters numerical values, and also the incomplete 
knowledge of the complex metabolic phenomena taking place 
in the yeast cells. The structured model is nevertheless useful 
because it captures some essential traits of yeast growth and 
trehalose biosynthesis, and explains the biosynthesis 
intensification within the cells while the carbon or nitrogen 
sources are exhausted in the culture medium. 

Yeast production with a high intracellular trehalose 
needs a better forecast method for yeast trehalose content 
than the estimations given by a bio chemically structured 
model. DNNO estimates of biomass and intracellular 
trehalose concentrations are shown in Fig. 5 and Fig. 6. These 
numerical results were developed using the DNNO 
parameters of Table 3. 

DNNO estimate for abiotic state biomass and 
experimental data of two different yeast production processes 
are represented in Fig. 5. In this graphs it can be seen that the 
estimate states present an oscillating behavior around the 
experimental values, however the DNNO estimated values 
approximate sufficiently enough the experimental states so 
estimations are considered acceptably correct to depict the 
biomass evolution in the bioreactor. As shown in Fig. 6, 
DNNO intracellular trehalose estimations give a more regular 
behavior following the experimental results. These estimated 
values of trehalose content provide a more reliable basis for 
decision-making in producing yeast biomass with a high 
yield in cytoplasmic trehalose. 

The presented trehalose and biomass estimator is based 
on the differential neural network theory applied to a fed-
batch production process of Saccharomyces cerevisiae. The 
obtained results suggest the possibility of developing a new 
class of sensors called soft sensors. These sensors only need 
the experimental data for a few process variables in order to 
accomplish the estimation of some other no measurable 
process variables. Of course, soft sensors performance is 
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restricted to a certain experimental conditions, those used in 
the learning-training procedure.  

 

5.  CONCLUSIONS 

Two alternatives have been analyzed in this paper; the 
first is dealing with the biochemical fundamentals of 
trehalose synthesis, and the second one aiming at trehalose 
content prediction through a dynamical neural network 
observer. The combination for both techniques shown a good 
performance described by the dynamical evolution between 
the estimate states and the experimental states. The 
biochemical model contributes to correct the estimate states 
given by the neuro estimator and this technique could be the 
basis to develop basic algorithms to soft sensors. 
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