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Abstract: This short note considers the source-channel coding tradeoff in networked control
systems. Specifically, we consider how to optimally allocate a fixed number of bits to source and
channel coding in order to minimize the estimation error variance of a Kalman filter operating
over a binary erasure channel. We develop an analytical model for the system performance,
quantify the source-channel coding tradeoff and compare the optimal performance with what
can be achieved with the optimal performance of a collocated estimator using both analytical
studies and extensive monte carlo simulations.

1. INTRODUCTION

Networked control systems present a multitude of design
challenges, ranging from the physical transmission schemes
and networking aspects all the way to application-level al-
gorithm design. While a lot of research has been devoted to
each layer in separation (e.g. developing coding techniques
for increasing link-layer reliability, routing protocols with
bounded delay and jitter, etc.) the work on cross-layer
design in relatively recent and is still only covering a small
part of the design spectrum. A remarkable exception is the
work on coding for control (see e.g. Nair et al. [2007], Bao
[2006]). In this field, a central problem has been the one of
the joint design of source coding (quantization) schemes
and associated feedback control laws to ensure stability
under minimal information rate. Our focus is different.

We consider the joint optimization of source and channel
coding for state estimation, assuming that a total budget
of B bits can be allocated to source and channel coding
at each sampling instant. The transmitted data is subject
to independent bit errors and our objective is to minimize
the estimation error variance of a Kalman filter operating
on the lossy data stream. It is clear that there is a trade-
off: allocating too many bits to source coding increases
the risk for packet losses while using too much channel
coding demands coarse quantization and introduces sig-
nificant distortion. However, quantifying this trade-off and
optimally designing the associated bit allocation appears
to be an unaddressed problem so far.

2. MODEL AND PROBLEM FORMULATION

We consider the networked estimation set-up in Figure 1.
Observations of a linear dynamic system are encoded and
transmitted over unreliable communication channel. The
received data is decoded and fed into an estimator that
attempts to reconstruct the process state. Specifically, we
consider a linear discrete-time process

xt+1 = Axt + Bwt

yt = Cxt + vt

where x ∈ R
n is the state vector, y ∈ R

p is the output
vector, while w ∈ R

m and v ∈ R
p are the state and output

Process Encoder
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Fig. 1. Networked estimation setup.

disturbances, respectively. The disturbances are supposed
to be Gaussian, uncorrelated, white, with

E{w} = 0, E{wwT } = Q

E{v} = 0, E{vvT } = R

The observations yt are encoded and transmitted over a
binary erasure channel with bit-loss probability pbit. The
communication rate is assumed to be B bits/sample.

The problem that we try to address in this paper is the
following: given B bits per sample, how should these be
allocated to source and channel coding in order to achieve
a minimal estimation error variance on the receiver side.

In this first attempt, our approach is practical rather
than fundamental: we separate source and channel coding
and optimize over given families of source and channel
coding schemes. One should bear in mind that the cel-
ebrated source-channel separation theorem (Cover and
Thomas [1991]) assumes infinitely long block codes and
does not hold in general for delay-constrained channels
(see, e.g., Bao [2006]). Moreover, quantizers engineered
specifically for control-theoretic objectives are typically
not uniform (Delchamps [1990], Bao [2006]). We are thus
also interested in quantifying the difference between the
best design within this family and the limits of achievable
performance.
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Fig. 2. Source coding: scaling and uniform unit quantizer.

3. SOURCE CODING

Within the control community, source-coding research has
focused on lossy coding and quantization, see Delchamps
[1990], Nair and Evans [1998], Tatikonda [2000], Picasso
et al. [2002]. We follow the developments in Xiao et al.
[2003] and assume uniform quantization. Although this is
not optimal, it is conventional, easily implementable and
leads to a simple model of how the system performance
depends on the number of source coding bits.

The unit range uniform b-bit quantizer partitions the
range [−1, 1] into 2b intervals of uniform width 21−b. Each
quantization interval is assigned a codeword of b bits.
Given one of these codewords, the numerical signal is
reconstructed by taking the midpoint of the corresponding
quantization interval. As long as the quantizer does not
overflow, the error between the original and reconstructed
signal lies in the interval [−2b, 2b].

The behavior of the quantizer for inputs z with |z| > 1
is not specified. To avoid overflow, the signal is scaled
by a factor s−1 prior to encoding, and re-scaled by a
factor s after decoding. Under this scaling, the error be-
tween original and reconstructed signal lies in the interval
[−s2−b, s2−b]. To minimize the quantization error while
ensuring no overflow (or that overflow is rare), the scale
factors s should be chosen as the maximum possible value
of the original signal, or as a value that with very high
probability is higher than the magnitude of the signal.
As in Xiao et al. [2003], we will use the 3σ-rule and let
si = 3rms(y). If yi is Gaussian, this scaling ensures that
overflow occurs only about 0.3% of the time. The structure
of our solution is illustrated in Figure 2.

Assuming that overflow is rare, we model the quantiza-
tion errors as independent random variables, uniformly
distributed on the interval s[−2b, 2b] (cf. Franklin et al.
[1990]). In other words, we model the effect of quantizing
y as an additive white noise source q such that

y
(r)
t = yt + qt

where E{q} = 0 and Var{q} = (1/3)s22−2b. See Widrow
et al. [1996] for further details about the statistical prop-
erties of the quantization error.

4. CHANNEL CODING

When the quantized sensor data is sent over the communi-
cation channel, there will always be a risk for transmission
errors. The information can be protected by adding care-
fully selected redundancy to the packets. This process is
knows as channel coding, see Figure 3.

In our model, we assume that sensor samples are sent over
an time-invariant independent binary erasure channel with
bit-loss probability pbit. If all B message bits are used for
source coding, the corresponding packet loss probability

B-bit packets

Channelpbit

          Data

(source coding)

    Redundancy

(channel coding)

Fig. 3. Channel coding: The packet contains B−bs channel
coding bits. If the received packet has fewer than
B − bs bit errors, the original source code word can
be recovered.

is 1 − (1 − pbit)
B (which, for small pbit is roughly equal

to Bpbit). This packet loss probability can be efficiently
reduced using channel coding.

One class of powerful block codes are the Reed-Solomon
codes. If bc bits are used for channel coding, the packet
can be recovered if any B − bc bits are received correctly.
The packet loss probability is thus

ppkt(bc) = 1 −

bc
∑

i=0

(

B
i

)

pi
bit(1 − pbit)

B−i (1)

5. OPTIMAL ESTIMATION UNDER PACKET LOSS

Optimal estimation under packet loss has been investi-
gated recently in Sinopoli et al. [2004]. In our setting,
the model of the system evolution and the observations
available at the receiver side takes the form

xt+1 = Axt + wt

y
(r)
t = γt(Cxt + vt + qt)

The stochastic variable γt models the packet loss process:
when a sensor packet is received correctly, γt = 1, while
γt = 0 corresponds to packet loss. According to our
channel model γt is an i.i.d. Bernoulli random variable
with Prob{γt = 0} = ppkt. The optimal estimator can be
derived using similar techniques as the standard Kalman
filter, and performs an innovation step

x̂t+1|t = Ax̂t|t

Pt+1|t = APt|tA
T + Q

at each sample, while the correction step

Kt+1 = Pt+1|tC
T (CPt+1|tC

T + R̃)−1

x̂t|t = x̂t+1|t + γt+1Kk+1(yt+1 − Cx̂t+1|t)

Pt+1|t+1 = Pt+1|t − γt+1Kt+1CPt+1|t

is only executed when new data is received (γt+1 = 1).

Although this scheme for dealing with packet losses has
a long history, the first comprehensive analysis of its
properties appears to be the work by Sinopoli et al. [2004].
The authors establish the existence of a critical packet
loss probability pcrit

pkt: the estimator covariance matrix

converges in mean if ppkt < pcrit
pkt and diverges otherwise.
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Further, they prove that when the loss probability is below
the critical value, the expected value of Pt can be bounded,

0 < St ≤ E{Pt} ≤ Vt

where limt→∞ St = S solves the algebraic Riccati equation

S = ppktASAT + Q

while limt→∞ Vt = V can be found as the solution to the
modified algebraic Riccati equation

V = AV AT + Q − (1 − ppkt)AV CT (CV CT + R)−1CV AT

6. THE SOURCE-CHANNEL CODING TRADEOFF

In our problem there is a clear trade-off between source and
channel coding. Allocating too few bits to source coding
induces a large quantization noise, while allocating too
many (and hence, too few to channel coding) results in
a high packet loss rate. We will now combine the results
from §3–§5 to quantify the source-channel coding tradeoff.
Specifically, we consider a stable scalar process,

xt+1 = axt + wt

yt = xt + vt

with E{w2} = 1 and E{v2} = r. For this system, it holds
that E{y2} = r + (1 − a2)−1, so using the 3σ-rule for
scalings and bs bits for channel coding induces an additive
quantization noise q with variance

E{q2} = 3(r + (1 − a2)−1)2−2bs (2)

and the associated packet loss is given by ppkt(B−bs). The
numerical examples in this section use a = 0.95, r = 0.01
and B = 16.

The first investigation we perform is to study how the
optimal allocation of bits to source and channel coding de-
pends on the loss probability pbit. The optimal allocation
is done by exhaustive search: for each value of bs ∈ [0, B],
we determine the effective variance of the quantization
noise q via (2) and the packet loss probability ppkt(B− bs)
using (1). We then solve the modified algebraic Riccati
equation for V and call the bit allocation that achieves
the smallest value of V the optimal one. The results are
shown in Figure 4. The results are intuitive: when there
are no packet losses, all bits should be allocated to source
coding. As the loss probability increases, more and more
bits should be allocated to channel coding.

Fixing the bit loss probability to (the arguably high value
of) pbit = 0.1, Figure 5 shows the estimator performance
as a function of the number of source coding bits. Although
there is indeed a trade-off, it does not appear to be very
important: as long as some bits are allocated to source
and channel coding, the performance curve is very flat
and changes in bit allocation does not change the actual
performance very much. The results remain qualitatively
the same when the bit loss probability is varied.

Although our coding scheme (the separation into source
and channel codes, as well as the specific codes) in subop-
timal, it is interesting to note that the performance comes
very close to the optimal performance of a sensor collated
with the process using full precision measurements; see
Figure 5 as soon as a handful of bits are allocated to both
source and channel code. Thus, in this specific example
there appears to be little room for improvement by using
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Fig. 4. Optimal allocation of bits to source coding as
function of bit loss probability.
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Fig. 5. Estimation error vs. number of source coding bits
for pbit = 0.1. The dashed line shows the optimal
performance obtained by a Kalman filter collocated
with the process that uses full-precision observations.

more advanced coding schemes (including jointly designed,
non-uniform and dynamic source-channel codes).

The observation is further strengthened by the results of a
Monte Carlo simulation of the complete encoder-decoder-
estimator scheme shown in Figure 6 (i.e. simulations with
actual quantization and reconstruction rather than the
white noise approximation, Bernoulli bit errors and the
actual time-varying Kalman filter working on the lossy
data stream). The 90% confidence intervals shown are the
results of 100 simulations with random initial state on the
process, and different noise realizations. One can clearly
see that the approximate model used for the theoretical
analysis is highly accurate, as soon as a couple of bits are
allocated to the source coding.
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Fig. 6. Estimation error vs. number of source coding bits
for pbit = 0.1. The dashed line shows the theoretically
derived source-channel coding tradeoff curve, while
the full line shows 90% confidence bounds for the
actual performance estimated from 100 Monte Carlo
simulations.

7. CONCLUSIONS

In this short note, we have considered the joint optimiza-
tion of source and channel coding for state estimation.
We have demonstrated that there is indeed a trade-off:
allocating too many bits to source coding increases the
risk for packet losses while using too much channel coding
demands coarse quantization and introduces significant
distortion. However, somewhat disappointingly, we noticed
that the trade-off curve is very flat once a handful bits
is allocated to each code, indicating that the trade-off
is perhaps of little relevance. Comparing our restricted
design, which optimizes over fixed families of source and
channel codes, we further noted that the performance can
come very close to the optimal that can be achieved by
a collocated estimator using full precision measurements.
Thus, there appears to be little room for improvements
using more advanced source and channel coding schemes.

This paper has only considered the case of stable linear
systems. Although the estimation problem becomes more
interesting if the process is unstable, the source coding
problem becomes non-trivial as the observed variable
grows unboundedly. Moreover, a more realistic channel
model would incorporate correlated losses. It is well-known
that forward error correcting codes becomes less efficient
in this case, indicating that our trade-off curves would be
shifted. We leave these issues to our future work.
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