
Neural Network Robot Control with Noisy
Learning

Abraham K. Ishihara ∗ Johan van Doornik ∗∗
Shahar Ben-Menahem ∗∗∗

∗ Department of Aeronautics and Astronautics 4035, Stanford
University, Stanford CA 94305-4035, U.S.A. (Email:

ishihara@stanford.edu
∗∗ Div. Child Neurology and Movement Disorders Stanford University
Medical Center 300 Pasteur, room A345 Stanford, CA 94305-5235

USA (Email: jvd@stanford.edu)
∗∗∗ Department of Physics, Stanford University, Stanford CA 94305,

U.S.A and Avago Technologies Inc., San Jose CA USA(Email:
sanverim@gmail.com)

Abstract: Neural network based control of a serial-link robotic manipulator is considered
subject to a signal dependent noise (SDN) model corrupting the training signal. A radial basis
function (RBF) network is utilized in the feedforward control to approximate the unknown
inverse dynamics. The weights are adaptively adjusted according to a gradient descent plus a
regulation term (Narendra’s e-modification). A typical quadratic stochastic Lyapunov function
is constructed which shows under certain noise models it is not necessary to employ quartic
Lyapunov functions as is typically carried out in stochastic adaptive backstepping designs.
Bounds on the feedback gains, and learning rate parameters are derived that guarantee the
origin of the closed loop system is semi-globally, uniformly bounded in expectation (SGUBE).

1. INTRODUCTION

In this paper, we consider the neural network based con-
trol of a robotic manipulator subject to signal dependent
noise (SDN) corrupting the training signal. Neural network
based control of robotic manipulators has been consid-
ered in the case of deterministic bounded disturbances
in the plant (Lewis et al. [1999]). The case of stochas-
tic disturbances in the plant was considered in Psillakis
[2002]. There, they employed an adaptive backstepping
design utilizing a quartic Lyapunov function to prove that
the mean square error is semi-global uniformly ultimately
bounded. In this note, we consider the signal dependent
noise model, where, roughly speaking, the variance of the
noise is proportional to the mean of the signal being
corrupted. This noise model has been considered in digital
picture processing (Hirakawa and Parks [2005]) and in
neuro-motor control (Harris and Wolpert [1998]).

2. BACKGROUND

In the following, we present the relevant material on the
plant dynamics, neural network approximation proper-
ties, the SDN model, and stochastic differential equations
(SDE’s).

Plant Dynamics and Feedforward Control : We take the
plant to be a serial link manipulator. The dynamics are
given as follows: Plant Dynamics

M(q)q̈ + V (q, q̇) + F (q̇) + G(q) + τd = τ (1)
where M(q) ∈ Rn×n is the inertia matrix, V (q, q̇) ∈
Rnx1 is the corriolis/centripetal matrix, G(q) ∈ Rnx1 is
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Fig. 1. General Neural Network based Feedforward Control
with SDN

the gravity matrix, and τd ∈ Rnx1 represents unknown
disturbances. q ∈ Rnx1 is the joint angle state vector, and
τ ∈ Rnx1 is the net torque applied at each joint. We have
the following standard assumptions Lewis et al. [1999].
Assumption 1. M(q) is symmetric, positive definite and
bounded.
Assumption 2. The corrolis/centripetal terms can be writ-
ten as Vm(q, q̇)q̇ such that Ṁ − 2Vm(q, q̇) is skew-
symmetric.
Assumption 3. The gravity and disturbance terms are
bounded.

We will neglect friction and disturbance terms in the
analysis. The desired trajectory is denoted by qd =[
qT
d q̇T

d q̈T
d

]T . The control input to the plant is denoted by
τ = τfb+τff . The feedback control is given by τfb = Kpq̃+
Kv

˙̃q where q̃ := qd − q, and Ks for s = p, v denotes a
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positive definite symmetric feedback gain matrix. We will
use the following notation for the lower and upper bounds
of key terms:

κM
d= inf

q∈Rn
σmin(M(q)) ωM

d= sup
q∈Rn

‖M(q)‖

κv
d= σmin(Kv) ωv

d= ‖Kv‖
κp

d= σmin(Kp) ωp
d= ‖Kp‖

κ̂v
d= σmin(K̂v) ω̂v

d= ‖K̂v‖
κ̂p

d= σmin(K̂p) ω̂p
d= ‖K̂p‖

(2)

where σmin denotes the minimum singular value. The
matrices, K̂p and K̂v are defined below in (4).

Neural Network Approximation:

The feedforward command, τff , is the output of a radial
basis function (RBF) network. In this control scheme, the
inputs consist only of desired trajectory states, qd. Let
qd ∈ K where K is compact. Let the desired feedforward
command, τ∗

ff ∈ C(K, Rn). It can be shown (see Liao et al.
[2003]) that for any εB > 0, there exists a number N ∈ Z+,
a matrix of weights, W ∗ ∈ R

N×n, and a basis function
vector, φ ∈ C∞(K, RN ), such that ε(qd) := τ∗

ff (qd) −
W ∗T φ(qd) is bounded uniformly from above by εB for all
qd ∈ K. The feedforward command that is implemented is
given by

τff = ŴT φ(qd) =
[
W ∗ − W̃

]
φ(qd)

= τ∗
ff − ε(qd) − W̃T φ(qd) (3)

where Ŵ ∈ R
N×n is a matrix of estimated parameters,

and W̃ ∈ R
N×n denotes the matrix of parameter errors

defined by W̃
d= W ∗ − W .

The Training Signal and Signal Dependent Noise: The
training signal of the network is given by

τ̂fb
d= K̂pq̃ + K̂v

˙̃q ∈ R
n×1 (4)

where K̂p, K̂v ∈ R
n×n are positive definite, symmetric

matrices. We assume that each component of the training
signal, τ̂fbi

is corrupted by SDN. In other words

τ̂fbi
→ τ̂fbi

(1 + σiḂi) i ∈ [1, n]
where σi represents the noise intensity of the ith compo-
nent of the Brownian motion process. Brownian motion
will be considered in detail in the next section. In the
main theorem presented below, we will use as the learning
rule, a gradient descent plus e-modification proposed by
Narendra and Annaswamy [1987]. This is given by

˙̃W = −γφ(qd)τ̂fb + hγ‖y‖pŴ

where ‖y‖ =
√
‖q̃‖2 + ‖ ˙̃q‖2, h > 0, and γ > 0. When

signal dependent noise on the training signal is considered
the above equation becomes

˙̃W = −γφ(qd)τ̂fb + hγ‖y‖pŴ − γφ(qd)(ΛḂ)T (5)
where

Λ = diag{σiτ̂fbi
} ∈ R

n×n

and B = [B1B2 . . . Bm]T denotes an m-dimensional Brow-
nian motion. In the above equation, we use the term, Ḃ to
denote the effect of noise on the learning dynamics. This
term, however, does not mean the time derivative of B,

as Brownian motion is not differentiable on [0,∞) almost
surely.

Relevant Stochastic Calculus and SGUBE

Here we define the relevant stochastic terminology, and
the term semi-global, uniform boundedness in expectation
(SGUBE). In the previous subsection, we briefly referred
to a Brownian motion process which corrupted the compo-
nents of the training signal. In this section, we make this
notion precise. We also state Ito’s Lemma which is critical
to the stability analysis of SDE’s. We refer the reader to
Mao [1997] for further details. Let (Ω,F , {Ft}, P ) be a
complete probability space. Let Bt be an m-dimensional
Brownian motion vector adapted to the filtration, {Ft}.
An n̄-dimensional Ito process, x(t, ω), is a continuous,
{Ft}-adapted stochastic process that is the solution of the
stochastic differential equation denoted by

dx = F (x(t, ω), t)dt + H(x(t, ω), t)dB (6)
or, by ‘dividing’ by dt,

ẋ(t, ω) = F (x(t, ω), t) + H(x(t, ω), t)Ḃ (7)
The above two equations have no mathematical meaning.
They are simply short hand notation to mean that x(t, ω)
satisfies the equality

x(t, ω) = x(0, ω)+
∫ t

0

F (x(s, ω), s)ds+
∫ t

0

H(x(s, ω), s)dB

for all t ∈ [0, T ]. For example, the stochastic learning
dynamics in (5) are written in the shorthand notation as
in (7). In the following, we will suppress the dependence
of x on ω ∈ Ω and denote x(t, ω) as simply x(t). It is to be
understood that for each fixed t, x is a random variable.
Let Lp(X;Y ) denote the collection of stochastic processes
f : X × Ω → Y such that∫ T

0

‖f(s)‖p
Y ds < ∞ a.s ∀T > 0

We now state the Ito formula, which is the stochastic
version of the chain rule from ordinary calculus.
Theorem 1. (Ito’s Lemma-adapted from Mao [1997]). Let
(Ω,F , {Ft}, P ) be a complete probability space, and
x(t, ω) be a n̄-dimensional Ito process satisfying

x(t, ω) − x(0, ω) =
∫ t

0

F (x, s)ds +
∫ t

0

H(x, s)dB (8)

where F ∈ L1(Rn̄ × R
+ × Ω; Rn̄), H ∈ L2(Rn̄ × R

+ ×
Ω; Rn̄×m), and B : R

+ × Ω → R
m is an m dimensional

Brownian motion. Let V ∈ C2,1(Rn̄ × R
+; R). Then,

V (x(t), t) − V (x(0), 0) =
∫ t

0

F̄ ds +
∫ t

0

H̄dB a.s

where F̄ = Vt +VxF + 1
2Tr

(
HT VxxH

)
and H̄ = VxH. The

notation, Vx denotes the gradient of V , and Vxx denotes
the Hessian of V .

Note the additional term given by
1
2
Tr

(
HT VxxH

)
(9)

This is the Ito anomaly and is the reason why stability
analysis of stochastic systems is very different than its
deterministic counterpart. The Ito anomaly is intimately
related to the fact that 1) Brownian motion is almost
surely nowhere differentiable with respect to time, and 2)
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Brownian motion has infinite first order variation. We do
not go into further details here.

Suppose that the dynamics can be written as
ẋ = F (x, t) + H(x, t)Ḃ (10)

where

x =

⎡
⎢⎣x(1)

...
x(d)

⎤
⎥⎦ F (x, t) =

⎡
⎢⎣F1(x, t)

...
Fd(x, t)

⎤
⎥⎦

H(x, t) =

⎡
⎢⎣H1(x, t)

...
Hd(x, t)

⎤
⎥⎦ B(t) =

⎡
⎢⎣B1(t)

...
Bm(t)

⎤
⎥⎦

and the dimensions of the components are x(i) ∈ R
ni ,

Fi ∈ R
ni , Hi ∈ R

ni×m and
∑

ni = n̄. Then, it can be
shown that the Ito Anomaly can be written as

Tr
(
VxxHHT

)
= Tr

⎛
⎝ d∑

j=1

d∑
i=1

Vx(j)x(i)HiH
T
j

⎞
⎠

=
d∑

i,j=1

Tr
(
Vx(j)x(i)HiH

T
j

)
(11)

where

Vx(j)x(i) :=

⎡
⎢⎢⎢⎢⎢⎣

∂

∂x
(j)
1

∂V

∂x
(i)
1

· · · ∂

∂x
(j)
1

∂V

∂x
(i)
ni

...
. . .

...
∂

∂x
(j)
nj

∂V

∂x
(i)
1

· · · ∂

∂x
(j)
nj

∂V

∂x
(i)
ni

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

nj×ni

Theorem 2. (GUBE). Let F and H in (10) satisfy the
local Lipschitz and linear growth condition described in
Mao [1997] (page 51). Let V ∈ C2,1(Rn̄ × R

+; R) be
positive definite and decrescent. That is, there exists class
K functions, μ1 and μ2 such that μ1(‖x‖) ≤ V (x, t) ≤
μ2(‖x‖) for all (x, t) ∈ R

n̄ × R
+. Denote the operator L

acting on V by

LV := Vt + VxF +
1
2
Tr

(
HT VxxH

)
(12)

Then, if for some R0 > 0, we have LV ≤ 0 for all
(x, t) : ‖x‖ ≥ R0 and t ≥ t0, the expected value,

E(‖x‖) ≤ μ−1
1 (μ2(R0))

Proof: Due to page limitations, we only provide a sketch
of the proof as it follows very closely to the proof of the
deterministic version first proposed by Yoshizawa [1960].
Taking the expected value of LV results in an inequality
that is similar to the deterministic case, only that we
have an expectation on both the right and left hand
sides. Appealing to the convexity of class K functions
and Jensens inequality, we get a bound on the expected
value, E‖x‖. The main differences in the proof involve
conditioning the expectation on the values of a set of
stopping times (see Mao [1997] for a definition of stopping
times) τ1, τ2, . . .. These are random numbers defined to be
the ordered time values (between the initial time t0 and
the current time t) at which the trajectory x(t) crosses
the sphere ‖x‖ = R0; there may be no such times, or a
finite number, or an infinity of them. Since the norm, ‖x‖
is bounded inside the sphere (by definition), and since LV

is negative semi-definite outside of it, we are able to prove
that the conditional expectation of ‖x(t)‖ is bounded, and
that this bound is uniform in t and in the values of the
stopping times. The condition is then removed, leading to
a proof that E‖x(t)‖ is bounded uniformly in time, with
bound described above. �

Closed Loop Dynamics: In this subsection, we determine
the closed loop dynamics of the error system. Let x(1) = q̃
and x(2) = ˙̃q. Vectorizing the weight matrix, we let x(3) =
[W̃[1,:] W̃[2,:] . . . W̃[N,:]]T where W̃[i,:] denotes the ith row of
matrix W̃ . With this, the closed loop system is given by

ẋ(1) = F1(x, t) + H1(x, t)Ḃ

ẋ(2) = F2(x, t) + H2(x, t)Ḃ

ẋ(3) = F3(x, t) + H3(x, t)Ḃ

(13)
where

F1(x, t) = x(2)

F2(x, t) = q̈d − M−1(x(1))
(
τ − Vmx(2) − G(x(1))

)

F3(x, t) =−γ

⎡
⎢⎢⎣

φ1τfb

φ2τfb

...
φNτfb

⎤
⎥⎥⎦ + hγ‖y‖p

⎡
⎢⎢⎢⎢⎣

(W ∗
[1,:] − W̃[1,:])T

(W ∗
[2,:] − W̃[2,:])T

...
(W ∗

[N,:] − W̃[N,:])T

⎤
⎥⎥⎥⎥⎦

H3(x, t) =−γ

⎡
⎢⎢⎣

φ1Λ
φ2Λ

...
φNΛ

⎤
⎥⎥⎦

and H1 = H2 = 0.

3. MAIN RESULTS

We require an estimate of the maximum component of the
noise intensity vector: σ, as well as the norm of the RBF
network. We define the constants σB and φB such that

max
i∈[1,n]

{|σi|} ≤ σB (14)

and
φB := sup

qd∈K
‖φ(qd)‖ (15)

Since the basis functions and the compact set K are known
in advance, φB is computed exactly, whereas the constant
σB is an estimate of the upper bound of the infinity norm
of the noise intensity vector. For notational convenience,
we define the constant

b0 := σ2
Bφ2

B (16)
Theorem 3. (Main Stability Theorem: SGUBE). Consider
the closed loop system depicted in Fig. (1) and described
by the SDE in (13). Let cγ and ω̂v be arbitrary posi-
tive real numbers. Then, if κp ≥ K̄plb

(cγ , b0), ω̂p = ω̂∗
p ,

κv ≥ K̄vlb
(κp, ω̂

∗
p , cγ , b0), and γ ≤ γ∗ = cγ

max{ω̂∗
p ,ω̂v} , the

closed loop system in semi-globally, uniformly bounded in
expectation. The terms, K̄plb

, K̄vlb
, and ω̂∗

p = β̂pκ̂
∗
p are

defined (35), (34) and (36), respectively.
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Proof: Consider the following Lyapunov function candi-
date:

V (q̃, ˙̃q, W̃ ) = V0 +
1
2
Tr

[
W̃T Γ−1W̃

]
where V0 = 1

2
˙̃qT K̂vM(q) ˙̃q + 1

2 q̃T K̂vKpq̃ + 1
2 q̃T K̂pKv q̃ +

q̃T K̂pM(q) ˙̃q. We will take γI = Γ. We first show that V0

is positive definite and decrescent. We lower bound V0 as

V0

(
q̃(t), ˙̃q(t)

)≥ 1
2
κ̂vκM‖ ˙̃q‖2 +

1
2
κ̂vκp‖q̃‖2 +

1
2
κ̂pκv‖q̃‖2

−ω̂pωM‖ ˙̃q‖‖q̃‖
≥ 1

2
κ̂vκM‖ ˙̃q‖2 +

1
2
κ̂vκp‖q̃‖2 +

1
2
κ̂pκv‖q̃‖2

−1
2
ω̂pωMν2

1‖q̃‖2 − 1
2
ω̂pωM

‖ ˙̃q‖2

ν2
1

where the last term follows from completion of squares and
holds for any non-zero ν1. It follows that

V0 ≥ c1‖q̃‖2 + c2‖ ˙̃q‖2 (17)

where

c1 =
1
2
(κ̂vκp + κ̂pκv − ω̂pωMν2

1) and

c2 =
1
2
(κ̂vκM − ω̂pωMν−2

1 )
(18)

To guarantee that c1 and c2 are positive, we find that

0 < κ̂p <
κvκM κ̂v +

√
(κ̂vκvκM )2 + 4β̂pω2

M κ̂2
vκMκp

2β̂2
pω2

M

(19)
Note that this bound is independent of the feedback gains,
Kp and Kv, as well as the training matrix, K̂v. Hence, we
have converted the condition on the positive defin

V0 ≤ 1
2
ω̂vωM‖ ˙̃q‖2+

1
2
ω̂vωp‖q̃‖2+

1
2
ω̂pωv‖q̃‖2+ω̂pωM‖q̃‖‖ ˙̃q‖

which yields
V0 ≤ c3‖q̃‖2 + c4‖ ˙̃q‖2 (20)

where

c3 =
ω̂vωp + ω̂pωv + ω̂pωMν2

2

2
and

c4 =
ω̂vωM + ω̂pωMν−2

2

2

(21)

where ν2 is any non-zero real number. Note that in this
case, we do not require any additional conditions on ν2

since c3 and c4 are always positive. Combining (17) and
(20) we have

min(c1, c2,
γ−1

2
)‖x‖2 ≤ V ≤ max(c3, c4,

γ−1

2
)‖x‖2 (22)

where x = [x(1)T

x(2)T

x(3)T

]T . Hence, V is positive
definite and decrescent.

We now consider the first term on the right hand side of
the LV equation (12) given by[

∂V

∂x

]T

F =
d∑

i=1

[
∂V

∂x(i)

]T

Fi(x)

It can be shown that

[
∂V

∂x

]T

F

= (K̂v
˙̃q + K̂pq̃)T (M(q)q̈d + Vmq̇d + G − τff )

+
1
2

˙̃qT K̂v

(
Ṁ − 2Vm

)
˙̃q − ˙̃qT K̂vKv

˙̃q − q̃T K̂pKpq̃

+ ˙̃qT K̂pM ˙̃q + q̃T K̂pV
T
m

˙̃q
+Tr

[
W̃T γ−1

(
−γφ(qd)τ̂fb + hγ‖y‖pŴ

)]
�

where we have used the fact that KpK̂v = K̂vKp and that
Ṁ = Vm +V T

m . Substituting the feedforward control given
in (3), we get

[
∂V

∂x

]T

F =

1©︷ ︸︸ ︷
(K̂v

˙̃q + K̂pq̃)T
(
M(q)q̈d + Vmq̇d + G − τ∗

ff

)

+

2©︷ ︸︸ ︷
(K̂v

˙̃q + K̂pq̃)T ε(qd) +

3©︷ ︸︸ ︷
1
2

˙̃qT K̂v(V T
m − Vm) ˙̃q

+ q̃T K̂pV
T
m

˙̃q︸ ︷︷ ︸
4©

−q̃T K̂pKpq̃ − ˙̃qT K̂vKv
˙̃q + ˙̃qT K̂pM ˙̃q︸ ︷︷ ︸

5©
+hγ‖y‖pTr

{
W̃T Ŵ

}
︸ ︷︷ ︸

6©
Term 1© is bounded by:
‖τ̂fb‖‖M(q)q̈ + Vmq̇d + G − τ∗

ff‖
= ‖τ̂fb‖‖(M − Md)q̈d + (Vm − Vmd

)q̇d + (G − Gd)‖
≤ ‖τ̂fb‖ (‖M − Md‖‖q̈d‖ + ‖Vm − Vmd

‖‖q̇d‖ + ‖G − Gd‖)
≤ ω̂p

(
α2‖q̃‖2 + α3‖q̃‖‖ ˙̃q‖) + ω̂v

(
α2‖q̃‖‖ ˙̃q‖ + α3‖ ˙̃q‖2

)
Term 2© is bounded by:∣∣∣(K̂v

˙̃q + K̂pq̃)T ε(qd)
∣∣∣ ≤ ω̂pεB‖q̃‖ + ω̂vεB‖ ˙̃q‖ (23)

Term 3© is bounded by:∣∣∣∣12 ˙̃qT K̂v(V T
m − Vm) ˙̃q

∣∣∣∣≤ ω̂v

(
η1‖ ˙̃q‖2 + η2‖ ˙̃q‖3

)
(24)

where η1 = CvCqd
, and η2 = Cv. Note, that if K̂v = κ̂vI,

then the matrix K̂v(V T
m − Vm) is skew-symmetric, and

hence we take η1 = η2 = 0.

Term 4© is bounded by:∣∣∣q̃T K̂pV
T
m

˙̃q
∣∣∣≤ ω̂p‖q̃‖‖ ˙̃q‖ (

Cv‖ ˙̃q‖ + Cv‖q̇d‖
)

= ω̂p

(
Cv‖q̃‖‖ ˙̃q‖2 + Cv‖q̇d‖‖q̃‖‖ ˙̃q‖)

= ω̂p

(
ξ2‖q̃‖‖ ˙̃q‖2 + ξ1‖q̃‖‖ ˙̃q‖) (25)

where ξ1 = Cv‖q̇d‖, and ξ2 = Cv. The bound used on Vm

is derived in the appendix.

Term 5© is bounded by:
−q̃T K̂pKpq̃ − ˙̃qT K̂vKv

˙̃q + ˙̃qT K̂pM ˙̃q
≤ −κ̂pκp‖q̃‖2 − κ̂vκv‖ ˙̃q‖2 + ω̂pωM‖ ˙̃q‖2

Term 6© is bounded by:

h‖y‖p

(∥∥∥W̃
∥∥∥

F
‖W ∗‖F −

∥∥∥W̃
∥∥∥2

F

)
Combining the above bounds, we have
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[
∂V

∂x

]T

F ≤−‖q̃‖2 (κ̂pκp − ω̂pα2)

−‖ ˙̃q‖2 (κ̂vκv − ω̂pωM − ω̂vα3 − ω̂vη1)

+‖q̃‖‖ ˙̃q‖ (ω̂pα3 + ω̂vα2 − ω̂pξ1)

+h‖y‖p

(∥∥∥W̃
∥∥∥

F
‖W ∗‖F −

∥∥∥W̃
∥∥∥2

F

)
+W(‖q̃‖, ‖ ˙̃q‖, K̂p, K̂v) (26)

where
W = ω̂p

(‖q̃‖‖εB + ‖ ˙̃q‖2‖q̃‖ξ2

)
+ ω̂v

(‖q̃‖‖εB + ‖ ˙̃q‖3η2

)
(27)

Ito Term: We now compute (11) along the trajectories of
the closed loop system given in (13). It can be shown that

1
2
Tr

(
VxxGGT

)≤ γb0

2
ω̂2

v‖ ˙̃q‖2 + γb0ω̂vω̂p‖q̃‖‖ ˙̃q‖

+
γb0

2
ω̂2

p‖q̃‖2 (28)

Using (26) and (28) we have the bound

LV ≤ −
[‖q̃‖
‖ ˙̃q‖

]T

A

[‖q̃‖
‖ ˙̃q‖

]
+ W(‖q̃‖, ‖ ˙̃q‖,Kp,Kv)

+h‖y‖p

(∥∥∥W̃
∥∥∥

F
‖W ∗‖F −

∥∥∥W̃
∥∥∥2

F

) (29)

where

A =
[
κpκ̂p − f0 −f1

−f1 κvκ̂v − f2

]
f0 = ω̂pα2 − γb0

2 ω̂2
p, f1 = ω̂p(α3+ξ1)+ω̂vα2+γb0ω̂vω̂p

2 and
f2 = ω̂pωM −ω̂v(α3+η1)− γb0

2 ω̂2
v . The matrix A is positive

definite if and only if we require b2 < ad and d + a > 0
where a = κpκ̂p−f0, b = −f1 and d = κvκ̂v −f2. The first
condition (b2 < ad) yields the inequality

(ω̂p(α3 + ξ1) + ω̂vα2 + γb0ω̂vω̂p)
2

4
<

(
κpκ̂p − ω̂pα2 − γb0

2
ω̂2

p

)
·(

κvκ̂v − ω̂pωM − ω̂v(α3 + η1) − γb0

2
ω̂2

v

) (30)

The second condition (d + a > 0) yields

κpκ̂p − ω̂pα2 − γb0

2
ω̂2

p

+κvκ̂v − ω̂pωM − ω̂v(α3 + η1) − γb0

2
ω̂2

v > 0
(31)

Suppose that we select gains such that (30) is satisfied.
Then, it follows that the left hand side of (31) is bounded
from below by

κpκ̂p − ω̂pα2 − γb0

2
ω̂2

p

+κvκ̂v − ω̂pωM − ω̂v(α3 + η1) − γb0

2
ω̂2

v

> κpκ̂p − ω̂pα2 − γb0

2
ω̂2

p

+
(ω̂p(α3 + ξ1) + ω̂vα2 + γb0ω̂vω̂p)

2

4
(
κpκ̂p − ω̂pα2 − γb0

2 ω̂2
p

)
The right hand side is positive if we require that

κpκ̂p − ω̂pα2 − γb0

2
ω̂2

p

or, equivalently

κp > κ̂p

(
ω̂pα2 +

γb0

2
ω̂2

p

)
=: Kplb

(32)

For (30) to be satisfied we find

κv >
1
κ̂v

⎡
⎣ (ω̂p(α3 + ξ1) + ω̂vα2 + γb0ω̂vω̂p)

2

4
(
κpκ̂p − ω̂pα2 − γb0

2 ω̂2
p

) + ω̂pωM

+ω̂v(α3 + η1) +
γb0

2
ω̂2

v

⎤
⎦ =: Kvlb

(33)
For any cγ , choose γ ≤ γ∗ = cγ

max{ω̂p,ω̂v} . Then, it follows
that

γω̂vω̂p ≤ cγω̂p γω̂2
p ≤ cγω̂p γω̂2

v ≤ cγω̂v

Using the above inequalities, it follows that

Kvlb
≤ 1

κ̂v

⎡
⎣ (ω̂p(α3 + ξ1) + ω̂vα2 + cγb0ω̂p)

2

4
(
κpκ̂p − ω̂pα2 − cγb0ω̂p

2

) + ω̂pωM

+ω̂v(α3 + η1) +
cγb0ω̂v

2
ω̂2

v

⎤
⎦ =: K̄vlb

(34)
Choosing κv > K̄vlb

implies κv > Kvlb
. Note also also that

γω̂p ≤ cγ . Using this in (32), we have

Kplb
≤ K̄plb

:= β̂p

(
α2 +

b0cγ

2

)
(35)

Choosing κp > K̄plb
implies κp > Kplb

. Observe that the
lower bound K̄plb

is independent of ω̂p and ω̂v. The term,
β̂p is regarded as a fixed quantity. On the other hand, K̄vlb

is a function of κ̂p, and κ̂v.

Optimizing K̄vlb
: If we regard κ̂v as fixed, we can optimize

K̄vlb
with respect to κ̂p. Setting ∂K̄vlb

∂κ̂p
= 0 we get

8
(

κpκ̂p − ω̂pα2 − cγb0ω̂p

2

)
(ω̂pg1 + ω̂vα2) β̂pg1

−4 (ω̂pg1 + ω̂vα2)
2

(
κpκ̂p − ω̂pα2 − cγb0ω̂p

2

)
+16β̂pωM

(
κpκ̂p − ω̂pα2 − cγb0ω̂p

2

)2

= 0

Solving for κ̂p in the above equations, and denoting the
solution as κ̂∗

p = argmin
κ̂p

K̄vlb
(κ̂p), we find that

κ̂∗
p =

ω̂vα2√
β̂2

pg2
1 + 4β̂pωM (κp − β̂pg2)

(36)

where g1 = α3 + ξ1 + cγb0 and g2 = α2 + cγb0
2 . Selecting

κ̂p = κ̂∗
p results in the minimum lower bound on κv. When

selecting κ̂p = κ̂∗
p, it can be shown that the lower bound

is given by

K̄vlb
(κ̂∗

p) = β̂v

⎡
⎣ (hβ̂p(α3 + ξ1) + α2 + cγb0hβ̂p)2

4h
(
1 − β̂pα2 − cγb0β̂p

2

) + hβ̂pωM

+α3 + η1 +
cγb0

2

⎤
⎦
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where h = α2√
β̂2

pg2
1+4β̂pωM (κp−β̂pg2)

. The important point

here is to note that with κ̂p = κ̂∗
p, the lower bound

K̄vlb
is independent of κ̂v. Thus, it follows that both

the lower bounds on the minimum singular values of the
feedback gain matrices are independent of the learning rate
parameter, κ̂v.

Bound on the Learning Rate: We now examine the bound
on the learning rate given by γ∗ = cγ

max{ω̂p,ω̂v} . Previously,

we argued that ω̂p = ω̂∗
p = β̂pκ̂

∗
p so that the lower bound

on κv is minimized. Hence, we have the following condition

γ∗ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cγ

ω̂∗
p

if
β̂pα2√

β̂2
pg2

1 + 4β̂pωM (κp − β̂pg2)
≥ 1

cγ

ω̂v
if

β̂pα2√
β̂2

pg2
1 + 4β̂pωM (κp − β̂pg2)

< 1
(37)

Uniform Boundedness in Expectation: With the feedback
gains selected such that κp ≥ K̄plb

and κv ≥ K̄vlb
, and

learning rate γ ≤ γ∗, we are guaranteed that the matrix A
given in (29) is positive definite. Hence, we can now bound
LV as follows

LV ≤−λmin(A)‖y‖2 + εB‖y‖(ω̂∗
p + ω̂v)

+‖y‖3

(
ω̂∗

pξ2

2
+ ω̂vη2

)

−h‖y‖3

(∥∥∥W̃
∥∥∥2

F
−

∥∥∥W̃
∥∥∥

F
‖W ∗‖F

)
=−λmin(A)‖y‖2 + εB‖y‖(ω̂∗

p + ω̂v)

+‖y‖3

(
ω̂∗

pξ2

2
+ ω̂vη2

)

−h‖y‖3

[(∥∥∥W̃
∥∥∥

F
− ‖W ∗‖F

2

)2

− ‖W ∗‖2
F

4

]

=−‖y‖
(

λmin(A)‖y‖ − εB(ω̂∗
p + ω̂v)+

‖y‖2

[
h

((∥∥∥W̃
∥∥∥

F
− ‖W ∗‖F

2

)2

− ‖W ∗‖2
F

4

)
−

(
ω̂∗

pξ2

2
+ ω̂vη2

)])
It follows that LV ≤ 0 for all x : ‖x‖ ≥ R0 where

R0 =
√

R2
y + R2

W where

Ry =
εB(ω̂p + ω̂v)

λmin(A)
and

RW =
‖W ∗‖F

2
+

√
1
h

(
ω̂pξ2

2
+ ω̂vη2

)
+

‖W ∗‖2
F

4
Hence, the closed loop system is semi-globally, uniformly
bounded in expectation. �
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Appendix A. BOUNDING CONSTANTS OF
THEOREM 1

In this section, we define the bounding constants used in
Theorem 1. The bounds presented here are similar to that
in Kelly and Salgado [1994].

ξ1 = CV ‖q̇d‖ α2 = CM‖q̈d‖ + CVq
‖q̇d‖2 + CG

α3 = CVq̇
‖q̇d‖ CVq̇

= max
j

sup
q

n∑
i=1

‖ωij(q)‖

η1 = CV CV = max
j

sup
q

n∑
i=1

‖ωij(q)‖

ωij(q) = [Vi(q)][:,j] CM = max
j

n∑
i=1

sup
q

∥∥∥∥∂mij(q)
∂q

∥∥∥∥
CVq

= max
j

sup
q

n∑
i=1

√√√√ n∑
k=1

∥∥∥∥∂ωij

∂qk

∥∥∥∥2

CG = max
j

sup
q

∑
i

∣∣∣∣∣
[
∂G

∂q

]
ij

∣∣∣∣∣
(A.1)

where mij denotes that ith row and jth column of the in-
ertia matrix, M(q), and [Vi(q)][:,j] denotes the jth column
of the matrix Vi(q) defined by

Vm(q, q̇) =

⎡
⎢⎢⎢⎣

q̇T V1(q)
q̇T V2(q)

...
q̇T Vn(q)

⎤
⎥⎥⎥⎦
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